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33 city contest (1964)

  Traveling Salesman 12 
 

rather simple methods could be found to yield a tour much nearer optimal than 30 

percent.  However, even a few percent gain would be well worth-while in some 

cases, so the problem does seem to have practical importance as well as 

mathematical interest. (p. 65) 

 
Thus Flood realized that the Nearest Neighbor method is not a good estimate of the TSP 

but it created a decent first solution.  

 In 1962 a contest brought the TSP national recognition through a contest given by 

Proctor and Gamble.  A flyer of the contest is pictured below.   

 

The traveling salesman problem recently achieved national prominence when a 

soap company used it as the basis of a promotional contest.  Prizes up to $10,000 
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532 cities (1987 [Padberg, Rinaldi])
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13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)
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History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v )

2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(1.5, 3.3)
(2.25, 3)

(2, 3)

More cuts are needed to find integral solution
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Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem

Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem

Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.
Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1) = (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1) = (ρ+ 1)|V |.
Gap of ρ+ 1 between tours which are using only edges in G and those which don’t

ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

V. Travelling Salesman Problem General TSP 10



Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1) = (ρ+ 1)|V |.
Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction
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Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!
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Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: in a preorder walk of Tmin

6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is Θ(V 2).

Remember: In the Metric-TSP problem, G is a complete graph.
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Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin

X

2. Perform preorder walk on MST Tmin

X

3. Return list of vertices according to the preorder tree walk

X
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Approximate Solution: Objective 921
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Optimal Solution: Objective 699
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Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:

Consider the optimal tour H∗ and remove an arbitrary edge
⇒ yields a spanning tree T and

c(Tmin) ≤

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W ) = 2c(Tmin) ≤ 2c(T ) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W ) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗spanning tree T as a subset of H∗
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Christofides Algorithm

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching Mmin with minimum weight in the complete graph
5: over the odd-degree vertices in Tmin

6: let H be a list of vertices, ordered according to when they are first visited
7: in a Eulearian circuit of Tmin ∪Mmin

8: return the hamiltonian cycle H

There is a polynomial-time 3
2 -approximation algorithm for the travelling salesman

problem with the triangle inequality.

Theorem (Christofides’76)
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6: let H be a list of vertices, ordered according to when they are first visited
7: in a Eulearian circuit of Tmin ∪Mmin

8: return the hamiltonian cycle H

There is a polynomial-time 3
2 -approximation algorithm for the travelling salesman

problem with the triangle inequality.
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Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W ) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin)

(1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd )
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W ) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

Number of odd-degree vertices is even!
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Concluding Remarks

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

still the best algorithm for the metric TSP problem(!)

There is a PTAS for the Euclidean TSP Problem.
Theorem (Arora’96, Mitchell’96)

Both received the Gödel Award 2010

“Christos Papadimitriou told me that the traveling sales-
man problem is not a problem. It’s an addiction.”

Jon Bentley 1991
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Exercise: Prove that the approximation ratio of APPROX-TSP-TOUR
satisfies ρ(n)<2.
Hint: Consider the effect of the shortcutting, but note that edge costs
might be zero!

V. Travelling Salesman Problem Metric TSP 22


	Introduction
	General TSP
	Metric TSP

