1 Exercises Advanced Algorithms

1.1 Sorting Networks, Counting Networks

Question 1 (CLRS, Question 27.2-2). Prove that a comparison network with n inputs correctly sorts the input sequence $\langle n, n-1, \ldots, 1\rangle$ if and only if it correctly sorts the $n-1$ zero-one sequences $\langle 1,0,0, \ldots, 0,0\rangle,\langle 1,1,0, \ldots, 0,0\rangle, \ldots,\langle 1,1,1, \ldots, 1,0\rangle$.

Question 2. [CLRS, Question 27.2-5] Prove that an n-input sorting network must contain at least one comparator between the i-th and $(i+1)$-st lines for all $i=1,2, \ldots, n-1$.

Question 3. [CLRS, Question 27.4-3] Show that any network that can merge 1 item with $n-1$ sorted items to produce a sorted sequence of length n must have depth at least $\log n$.

Question 4. How many binary bitonic sequences of length n are there?
Question 5. [CLRS, Problem 27-1] An odd-even-sorting network on n inputs $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ is a transposition sorting network with n levels of comparators connected in the "bricklike" pattern illustrated below.

As can be seen in the figure, for $i=1,2, \ldots, n$ and $d=1,2, \ldots, n$, line i is connected by a depth- d comparator to line $j=i+(-1)^{i+d}$ if $1 \leq j \leq n$.

Prove that odd-even sorting networks actually sort.
Question 6. Prove that any sorting network must have depth $\Omega(\log n)$.
Question 7. Give a construction of a sorting network of depth $O\left(\log ^{2} n\right)$ that works even if n may not be a power of 2 .

Question 8. Construct a network that is a sorting network but not a counting network.
Question 9. Prove that a perfect halver for n inputs must have depth $\Omega(\log n)$.

1.2 Matrix Multiplication and Multithreading

Question 10. Exam Question 2014 Paper 3 Question 1 (Algorithms II). Warning: Parts of the solution may require Theorem 27.1 (Greedy-Scheduler-Theorem) in CLRS3, which is not cavered in the lectures.

Question 11. [CLRS, Question 4.2-7] Show how to multiply the complex numbers $a+b i$ and $c+d i$ using only three multiplicatrons of real numbers. The algorithm should take a, b, c, and d as input and produce the real compenent $a c-b d$ and the imaginary component $a d+b c$ separately.

Question 12. What can be said about the relation betwoen the time complexity for multiplying two arbitrary square matrices A and B and the time complexity for multiplying a matrix C with itself?

Question 13. [CLRS, Question 4.2-2] Write pseudocode for Strassen's algorithin

1.3 Linear Programming

Question 14. [CLRS: 29.1-5] Convert the following linear program into slack form:

$$
\begin{array}{lclll}
\operatorname{maximize} & 2 x_{1} & & -6 x_{3} \\
\text { subject to } & & & \\
& x_{1} & +x_{2}-x_{3} & \leq 7 \\
& 3 x_{1} & -x_{2} & & \geq 8 \\
& -x_{1} & +2 x_{2}+2 x_{3} & \geq 0 \\
& & x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

What are the basic and non-basic variables?
Question 15. [CLRS: 29.1-6] Show that the following linear program is infeasible:

$$
\begin{array}{cccc}
\operatorname{maximize} & 3 x_{1}-2 x_{2} & \\
\text { subject to } & & \\
& x_{1}+x_{2} & \leq 2 \\
& -2 x_{1}-2 x_{2} & \leq-10 \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

Question 16. [CLRS: 29.1-7] Show that the following linear program is unbounded:

$$
\begin{array}{ccccc}
\operatorname{maximize} & x_{1} & - & x_{2} & \\
\text { subject to }
\end{array} c
$$

Question 17. [Thanks to the student for mentioning this question.] Consider the linear program for the minimum-weight shortest-path from s to t from the lecture notes (Slide 23 from III Linear Programming).

1. What happens if there exists a negative-weight cycle?
2. Prove that, if there are no negative-weight cycles, the optimal solution $\overline{d_{t}}$ of the linear program equals the correct distance d_{t}.
3. Find a counter-example in which the linear program does not compute all values d_{v} correctly. How would you formulate the single-source-shortest path problem as a linear program?

Question 18. Prove that the set of feasible solutions of a linear program in standard form forms a convex set.

Question 19. [Thanks to the student for mentioning this question (and answer).] Find a linear program which has at least one optimal solution that is not a vertex.

Question 20. [CLRS: 29.1-8] Suppose that we have a general linear program with n variables and m constraints, and suppose we convert it into standard form. Give an upper bound on the number of variables and constraints in the resulting linear program.

Question 21. [CLRS: 29.1-9] Give an example of a linear program for which the feasible region is not bounded, but the optimal objective value is finite.

Question 22. [CLRS: 29.2-5] Rewrite the linear program for maximum flow so that it uses only $O(V+E)$ constraints.

Question 23. [CLRS: 29.3-6] Solve the following linear program using Simplex:
maximize $5 x_{1}-3 x_{2}$
subject to

$$
\begin{gathered}
x_{1}-x_{2} \leq 1 \\
2 x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2}
\end{gathered}
$$

Question 24. [CLRS: 29.5-5] Solve the following linear program using Simplex:

$$
\begin{array}{ccc}
\operatorname{maximize} & x_{1}+3 x_{2} & \\
\text { subject to } & & \\
& x_{1}-x_{2} \leq 8 \\
& -x_{1}-x_{2} \leq-3 \\
& -x_{1}+4 x_{2} \leq 2 \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

1.4 Approximation Algorithms

Question 25. Let $G=(V, E)$ be an undirected graph with maximum degree Δ. A dominating set is a subset of vertices $S \subseteq V$ so that for every vertex $u \in V$ there exists a vertex $v \in S$ with $\{u, v\} \in E(G)$. The goal is to find a dominating set as small as possible. Design an approximation algorithm based on greedy for the problem and analyse the quality of its solution.

Question 26. Given an undirected graph $G=(V, E)$, a vertex cover of G is a set of vertices $C \subseteq V$ so that each edge in G is incident to at least one vertex in C. A minimum vertex cover is a vertex cover with smallest possible size $|C|$. Consider a greedy approach which iteratively adds the vertex with the highest degree to C and then removes all covered edges from E. Find an example that shows that this greedy algorithm does not always find the optimum solution.

Question 27. [CLRS: 35.1-3, this one improves on the previous question and is marked with a " \star " in CLRS] Professor Bündchen proposes the following heuristic to solve the vertex-cover problem. Repeatedly select a vertex of highest degree, and remove all of its incident edges. Give an example to show that the professor's heuristic does not have an approximation ratio of 2 . (Hint: Try a bipartite graph with vertices of uniform degree on the left and vertices of varying degree on the right.)

Question 28. How can you implement Approx-Vertex-Cover in time $O(V+E)$?
Question 29. [CLRS: Problem 35.3-3] Consider the analysis of Greedy-Set-Cover (Theorem 35.4). Show that the following weaker form of Theorem 35.4 is trivially true:

$$
|\mathcal{C}| \leq\left|\mathcal{C}^{*}\right| \cdot \max \{|S|: S \in \mathcal{F}\}
$$

Question 30. How would you solve an instance of the Vertex-Cover problem using the Greedy Algorithm for the Set-Cover?

Question 31. Consider the problem Subset-Sum. Design a simple Greedy algorithm which runs in polynomial-time and achieves an approximation ratio of 2 .

Question 32. Consider the algorithm Approx-Subset-Sum from the lecture. Prove formally that for every element y, at most t, which can be written as a sum of a subset of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, there exists an element $z \in L_{n}$ (the list in iteration n after the trimming operation), such that

$$
\frac{y}{(1+\delta)^{n}} \leq z
$$

where $0<\delta<1$ is the trimming parameter.
Question 33. [CLRS: 35.3-3] Show how to implement Greedy-Set-Cover in such a way that it runs in time $O\left(\sum_{S \in \mathcal{F}}|S|\right)$.

Question 34. [CLRS: 35.2-1] Suppose that a complete undirected graph $G=(V, E)$ with at least 3 vertices has a cost function that satisfies the triangle inequality. Prove that $c(u, v) \geq 0$ for all $u, v \in V$.

Question 35. [CLRS: 35.2-5] Suppose that the vertices for an instance of the travellingsalesman problem are points in the plane and that the cost $c(u, v)$ is the euclidean distance between points u and v. Show that an optimal tour never crosses itself.

Question 36. Recall the subtour elimination procedure from Lecture 10: In order to eliminate a subtour going through cities in S only, we add the following constraint:

$$
\sum_{i \in S, j \notin S} x(\max (i, j), \min (i, j)) \geq 2
$$

Prove that adding this constraint to the linear program is equivalent to adding the constraint

$$
\sum_{i \in S, j \in S, i<j} x(i, j) \leq|S|-1
$$

Question 37. [CLRS: 35.2-3] Show how in polynomial time we can transform one instance of the travelling-salesman problem into another instance whose cost function satisfies the triangle inequality. The two instances must have the same set of optimal tours. Explain why such a polynomial-time transformation does not contradict the inapproximability result (Theorem 35.3), assuming that $P \neq N P$.

Question 38. Consider the following problem. Given an undirected, connected graph $G=(V, E)$ with non-negative, integral edge capacities $c(u, v)$ for each edge $(u, v) \in E(G)$ and $|E| \geq|V|=n$, the goal is to find a subset $E^{\prime} \subseteq E$ with $\left|E^{\prime}\right|=n$ so that (i) E^{\prime} connects all vertices and (ii) $\sum_{e \in E^{\prime}} c(e)$ is minimized. Either prove that this problem is NP-hard or design a polynomial-time algorithm.

Question 39. Find an example of a graph in the Euclidean space, with as few vertices as possible, so that the optimal TSP tour does not include a minimum spanning tree.

Question 40. [CLRS: 35.4-2] The MAX-CNF satisfiability problem is like the MAX-3-CNF satisfiability problem, except that it does not restrict each clause to have exactly 3 literals. Give a randomized 2-approximation algorithm for the MAX-CNF satisfiability problem.

Question 41. [CLRS: Problem 35-1] Suppose that we are given a set of n objects, where the size s_{i} of the i th object satisfies $0<s_{i}<1$. We wish to pack all the objects into the minimum number of unit-size bins. Each bin can hold any subset of the objects whose total size does not exceed 1.

The first-fit heuristic takes each object in turn and places it into the first bin that can accommodate it. Let $S:=\sum_{i=1}^{n} s_{i}$.

1. Argue that the optimal number of bins required is at least $\lceil S\rceil$.
2. Argue that the first-fit heuristic leaves at most one bin less than half full.
3. Prove that the number of bins used by the first-fit heuristic is never more than $\lceil 2 S\rceil$.
4. Prove an approximation ratio of 2 for the first-fit heuristic.
5. Give an efficient implementation of the first-fit heuristic, and analyse its running time.

Question 42. Consider the following algorithm for MAX-CUT on an unweighted, undirected graph $G=(V, E)$, which can be regarded as an iterative colouring procedure with three colours possible, grey (=unassigned), red (assigned to S) and blue (assigned to $V \backslash S$). Initially, all vertices are grey. Then the algorithm does the following in each step: If there is a grey vertex u which has more blue than red neighbours colour it red, if there is a grey vertex u which has more red than blue neighbours colour it blue. Otherwise, take a grey vertex and colour it arbitrarily. Prove that this algorithm returns a 2 -approximation.

