II. Linear Programming

Thomas Sauerwald

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

What are Linear Programs?

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

What are Linear Programs?

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising (from CLRS3)

What are Linear Programs?

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising (from CLRS3)

- Imagine you are a politician trying to win an election

What are Linear Programs?

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising (from CLRS3)

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters

What are Linear Programs?

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising (from CLRS3)

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you

What are Linear Programs?

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising (from CLRS3)

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

Political Advertising Continued

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

Political Advertising Continued

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

2

- Possible Solution:
- $\$ 20,000$ on advertising to building roads
- \$0 on advertising to gun control
- \$4,000 on advertising to farm subsidies
- \$9,000 on advertising to a gasoline tax

Political Advertising Continued

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

2

- Possible Solution:
- \$20,000 on advertising to building roads
- \$0 on advertising to gun control
- \$4,000 on advertising to farm subsidies
- \$9,000 on advertising to a gasoline tax
- Total cost: \$33,000

Political Advertising Continued

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

2

- Possible Solution:
- \$20,000 on advertising to building roads
- \$0 on advertising to gun control
- \$4,000 on advertising to farm subsidies
- \$9,000 on advertising to a gasoline tax
- Total cost: \$33,000

What is the best possible strategy?

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- $x_{1}=$ number of thousands of dollars spent on advertising on building roads
- $x_{2}=$ number of thousands of dollars spent on advertising on gun control
- $x_{3}=$ number of thousands of dollars spent on advertising on farm subsidies
- $x_{4}=$ number of thousands of dollars spent on advertising on gasoline tax

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- $x_{1}=$ number of thousands of dollars spent on advertising on building roads
- $x_{2}=$ number of thousands of dollars spent on advertising on gun control
- $x_{3}=$ number of thousands of dollars spent on advertising on farm subsidies
- $x_{4}=$ number of thousands of dollars spent on advertising on gasoline tax

Constraints:

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- $x_{1}=$ number of thousands of dollars spent on advertising on building roads
- $x_{2}=$ number of thousands of dollars spent on advertising on gun control
- $x_{3}=$ number of thousands of dollars spent on advertising on farm subsidies
- $x_{4}=$ number of thousands of dollars spent on advertising on gasoline tax

Constraints:

- $-2 x_{1}+8 x_{2}+0 x_{3}+10 x_{4} \geq 50$

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- $x_{1}=$ number of thousands of dollars spent on advertising on building roads
- $x_{2}=$ number of thousands of dollars spent on advertising on gun control
- $x_{3}=$ number of thousands of dollars spent on advertising on farm subsidies
- $x_{4}=$ number of thousands of dollars spent on advertising on gasoline tax

Constraints:

- $-2 x_{1}+8 x_{2}+0 x_{3}+10 x_{4} \geq 50$
- $5 x_{1}+2 x_{2}+0 x_{3}+0 x_{4} \geq 100$

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- $x_{1}=$ number of thousands of dollars spent on advertising on building roads
- $x_{2}=$ number of thousands of dollars spent on advertising on gun control
- $x_{3}=$ number of thousands of dollars spent on advertising on farm subsidies
- $x_{4}=$ number of thousands of dollars spent on advertising on gasoline tax

Constraints:

- $-2 x_{1}+8 x_{2}+0 x_{3}+10 x_{4} \geq 50$
- $5 x_{1}+2 x_{2}+0 x_{3}+0 x_{4} \geq 100$
- $3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25$

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- $x_{1}=$ number of thousands of dollars spent on advertising on building roads
- $x_{2}=$ number of thousands of dollars spent on advertising on gun control
- $x_{3}=$ number of thousands of dollars spent on advertising on farm subsidies
- $x_{4}=$ number of thousands of dollars spent on advertising on gasoline tax Constraints:
- $-2 x_{1}+8 x_{2}+0 x_{3}+10 x_{4} \geq 50$
- $5 x_{1}+2 x_{2}+0 x_{3}+0 x_{4} \geq 100$
- $3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25$

Objective: Minimize $x_{1}+x_{2}+x_{3}+x_{4}$

The Linear Program

minimize subject to	x_{1}	+	χ_{2}	+	x_{3}	$+$	χ_{4}		
	$-2 x_{1}$	$+$	$8 x_{2}$	$+$	$0 x_{3}$	$+$	$10 x_{4}$	\geq	50
	$5 x_{1}$	+	$2 x_{2}$	+	$0 x_{3}$	$+$	$0 x_{4}$	\geq	100
	$3 x_{1}$	-	$5 x_{2}$	$+$	$10 x_{3}$	-	$2 x_{4}$	\geq	25
		x_{1}, x_{2}	x_{3}, x_{4}					\geq	0

The Linear Program

minimize	x_{1}	+	χ_{2}	+	χ_{3}	+	χ_{4}		
	$-2 x_{1}$	$+$	$8 x_{2}$	$+$	$0 x_{3}$	$+$	$10 x_{4}$	\geq	50
	$5 x_{1}$	$+$	$2 x_{2}$	$+$	$0 x_{3}$	$+$	$0 x_{4}$	\geq	100
	$3 x_{1}$	-	$5 x_{2}$	+	$10 x_{3}$	-	$2 x_{4}$	\geq	25
$x_{1}, x_{2}, x_{3}, x_{4}$								\geq	0

The Linear Program

Formal Definition of Linear Program

The Linear Program

Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .
$$

The Linear Program

Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .
$$

- Linear Equality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$
- Linear Inequality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq b$

The Linear Program

_L Linear Program for the Advertising Problem
minimize $\quad x_{1}+x_{2}+x_{3}+x_{4}$ subject to

\[

\]

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .
$$

- Linear Equality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$
- Linear Inequality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geqq b$

The Linear Program

L Linear Program for the Advertising Problem
$\operatorname{minimize} \quad x_{1}+x_{2}+x_{3}+\quad x_{4}$ subject to

$$
\begin{array}{rlrlrlr}
-2 x_{1} & +8 x_{2} & +0 x_{3} & + & 10 x_{4} & \geq & 50 \\
5 x_{1} & +2 x_{2} & +0 x_{3} & + & 0 x_{4} & \geq & 100 \\
3 x_{1} & -5 x_{2} & +10 x_{3} & - & 2 x_{4} & \geq & 25 \\
x_{1}, x_{2}, x_{3}, x_{4}
\end{array}
$$

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

- Linear Equality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$
- Linear Inequality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geqq b$

Linear Constraints

- Linear-Progamming Problem: either minimize or maximize a linear function subject to a set of linear constraints

A Small(er) Example

$\operatorname{maximize}$	x_{1}	+	x_{2}	
subject to				
	$4 x_{1}$	-	x_{2}	\leq
	$2 x_{1}$	+	x_{2}	\leq
	$5 x_{1}$	-	$2 x_{2}$	\geq
	x_{1}, x_{2}		\geq	-2

A Small(er) Example

A Small(er) Example

A Small(er) Example

A Small(er) Example

maximize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{array}{rlrl}
4 x_{1} & - & x_{2} & \leq \\
2 x_{1} & + & x_{2} & \leq \\
5 & 10 \\
5 x_{1} & - & 2 x_{2} & \geq \\
x_{1}, x_{2} & & \geq & 0
\end{array}
$$

Any setting of x_{1} and x_{2} satisfying all constraints is a feasible solution

A Small(er) Example

maximize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{array}{rlrl}
4 x_{1} & - & x_{2} & \leq \\
2 x_{1} & + & x_{2} & \leq \\
5 & 10 \\
5 x_{1} & - & 2 x_{2} & \geq \\
x_{1}, x_{2} & & \geq & 0
\end{array}
$$

Any setting of x_{1} and x_{2} satisfying all constraints is a feasible solution

A Small(er) Example

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that
$w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that

$w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that

$w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Shortest Paths as LP
subject to

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that
 $w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Shortest Paths as LP
subject to

$$
\begin{aligned}
d_{v} & \leq d_{u}+w(u, v) \quad \text { for each edge }(u, v) \in E \\
d_{s} & =0
\end{aligned}
$$

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that
 $w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Shortest Paths as LP
maximize
d_{t}
subject to

$$
\begin{aligned}
d_{v} & \leq d_{u}+w(u, v) \quad \text { for each edge }(u, v) \in E \\
d_{s} & =0
\end{aligned}
$$

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that
 $w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Shortest Paths as LP

maximize $\quad d_{t}$
subject to

$$
\begin{aligned}
d_{v} & \leq d_{u}+w(u, v) \quad \text { for each edge }(u, v) \in E \\
d_{s} & =0
\end{aligned}
$$

this is a maxi-

mization problem!

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that
 $w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that
 $w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow as LP
maximize

$$
\begin{aligned}
& \sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} \\
& f_{u v} \leq c(u, v) \\
& \sum_{v \in V} f_{v u} \text { for each } u, v \in V, \\
& f_{u v} \geq \sum_{v \in V} f_{u v} \\
& \text { for each } u \in V \backslash\{s, t\}, \\
& 0 \text { for each } u, v \in V .
\end{aligned}
$$

Minimum-Cost Flow

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from s to t with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from s to t with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

(a)

(b)

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from s to t with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

Optimal Solution with total cost:

$$
\sum_{(u, v) \in E} a(u, v) f_{u v}=(2 \cdot 2)+(5 \cdot 2)+(3 \cdot 1)+(7 \cdot 1)+(1 \cdot 3)=27
$$

(a)

(b)

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP
minimize $\quad \sum_{(u, v) \in E} a(u, v) f_{u v}$
subject to

$$
\begin{aligned}
f_{u v} & \leq c(u, v) & & \text { for each } u, v \in V, \\
\sum_{v \in V} f_{v u}-\sum_{v \in V} f_{u v} & =0 & & \text { for each } u \in V \backslash\{s, t\}, \\
\sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} & =d, & & \\
f_{u v} & \geq 0 & & \text { for each } u, v \in V .
\end{aligned}
$$

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP
minimize $\quad \sum_{(u, v) \in E} a(u, v) f_{u v}$
subject to

$$
\begin{aligned}
f_{u v} & \leq c(u, v) & & \text { for each } u, v \in V, \\
\sum_{v \in V} f_{v u}-\sum_{v \in V} f_{u v} & =0 & & \text { for each } u \in V \backslash\{s, t\}, \\
\sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} & =d, & & \\
f_{u v} & \geq 0 & & \text { for each } u, v \in V .
\end{aligned}
$$

Real power of Linear Programming comes from the ability to solve new problems!

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Standard and Slack Forms

Standard Form

$$
\begin{aligned}
& \text { maximize } \quad \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & \text { for } i=1,2, \ldots, m \\
x_{j} \geq 0 & \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Standard and Slack Forms

Standard Form
maximize $\sum_{j=1}^{n} c_{j} x_{j}<$ Objective Function
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & \text { for } i=1,2, \ldots, m \\
x_{j} \geq 0 & \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Standard and Slack Forms

maximize subject to	$\sum_{j=1}^{n} c_{j} x_{j} \curvearrowright \text { Objective Function }$
$n+m$ Constraints	$\begin{aligned} \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & \text { for } i=1,2, \ldots, m \\ x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n \end{aligned}$

Standard and Slack Forms

Standard and Slack Forms

Standard Form (Matrix-Vector-Notation)
maximize
subject to

$$
c^{T} x<\text { Inner product of two vectors }
$$

$$
A x \leq b<\text { Matrix-vector product }
$$

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize	$-2 x_{1}$	$+$	$3 x_{2}$		
subject to					
	x_{1}	+	x_{2}	$=$	7
	x_{1}	-	$2 x_{2}$	\leq	4
	x_{1}			\geq	0
		Negate objective function			

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize	$-2 x_{1}$	$+$	$3 x_{2}$		
subject to					
	χ_{1}	+	χ_{2}	$=$	7
	χ_{1}	-	$2 x_{2}$	\leq	4
	χ_{1}			\geq	0
		Negate objective function			
maximize	$2 x_{1}$	-	$3 x_{2}$		
subject to		+			
	x_{1}		x_{2}	$=$	7
	x_{1}	-	$2 x_{2}$	\leq	4
	x_{1}				0

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

$$
\begin{array}{lcl}
\operatorname{maximize} & 2 x_{1}-3 x_{2} & \\
\text { subject to } & & \\
& x_{1}+2 x_{2}=7 \\
& x_{1}-2 x_{2} \leq 4 \\
& x_{1} & \geq 0 \\
& & \geq 0
\end{array}
$$

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

$$
\begin{aligned}
& \text { maximize } 2 x_{1}-3 x_{2} \\
& \text { subject to } \\
& \text { Replace } x_{2} \text { by two non-negative } \\
& \text { variables } x_{2}^{\prime} \text { and } x_{2}^{\prime \prime}
\end{aligned}
$$

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

$$
\begin{array}{lcl}
\begin{array}{l}
\operatorname{maximize} \\
\text { subject to }
\end{array} & 2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
& x_{1}+x_{2}^{\prime}-2 x_{2}^{\prime \prime}=7 \\
& x_{1}-2 x_{2}^{\prime}+2 x_{2}^{\prime \prime} \leq 4 \\
& x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} & \geq 0
\end{array}
$$

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize subject to	$2 x_{1}$	-	$3 x_{2}^{\prime}$	$+$	$3 x_{2}^{\prime \prime}$		
	x_{1}		x_{2}^{\prime}	-	$\chi_{2}^{\prime \prime}$		7
			$2 x_{2}^{\prime}$	$+$	$2 x_{2}^{\prime \prime}$	\leq	4
		$x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime}$ Replace each equality by two inequalities.					

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3 . There might be equality constraints.
maximize $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

$x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime}=7$
$x_{1}-2 x_{2}^{\prime}+2 x_{2}^{\prime \prime} \leq 4$
$x_{1}, x_{2}^{\prime} x_{2}^{\prime \prime}$
Reppace each equality
by two inequalities.

\downarrow by two
maximize $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

x_{1} x_{1}	+		-				7
	+	x_{2}^{\prime}	-	$x_{2}^{\prime \prime}$			7
		${ }_{2}^{\prime}$	+	$2 x_{2}^{\prime \prime}$			
							0

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with \geq instead of \leq).

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

> maximize $\quad 2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$ subject to

$x_{1}+r x_{2}^{\prime}$
$x_{1}+2 x_{2}^{\prime \prime}$
:---
$x_{1}-2$
$x_{1}-2 x_{2}^{\prime}$
$x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime}$

Negate respective inequalities.

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Converting into Standard Form (5/5)

maximize	$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$		
subject to							
	x_{1}	+	x_{2}	-	x_{3}	\leq	7
	$-x_{1}$	-	x_{2}	+	x_{3}	\leq	-7
	x_{1}	-	$2 x_{2}$	+	$2 x_{3}$	\leq	4
	x_{1}, x_{2}, x_{3}			\geq	0		

Converting into Standard Form (5/5)

Converting into Standard Form (5/5)

It is always possible to convert a linear program into standard form.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by

$$
s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}
$$

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by

$$
\begin{aligned}
& s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& s \geq 0
\end{aligned}
$$

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} \mathrm{a}_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by
s measures the slack between the two sides of the inequality.

$$
\begin{aligned}
& s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& s \geq 0
\end{aligned}
$$

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} \mathrm{a}_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by
s measures the slack between the two sides of the inequality.

$$
\begin{aligned}
& s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& s \geq 0
\end{aligned}
$$

- Denote slack variable of the i th inequality by x_{n+i}

Converting Standard Form into Slack Form (2/3)

maximize	$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$		
subject to							
	x_{1}	+	x_{2}	-	x_{3}	\leq	7
	$-x_{1}$	-	x_{2}	+	x_{3}	\leq	-7
	x_{1}	-	$2 x_{2}$	+	$2 x_{3}$	\leq	4
	x_{1}, x_{2}, x_{3}			\geq	0		

Converting Standard Form into Slack Form (2/3)

Converting Standard Form into Slack Form (2/3)

$$
\begin{aligned}
& \text { maximize } 2 x_{1}-3 x_{2}+3 x_{3} \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& \text { subject to } \\
& x_{4}=7-x_{1}-x_{2}+x_{3}
\end{aligned}
$$

Converting Standard Form into Slack Form (2/3)

maximize subject to	$2 x_{1}-3 x_{2}+3 x_{3}$							
	x_{1}	$+$	x_{2}	-	x_{3}		7	
	$-x_{1}$	-	χ_{2}	$+$	x_{3}	\leq	-7	
	x_{1}		$2 x_{2}$	$+$	$2 x_{3}$	\leq	4	
		x_{1}, x_{2}				\geq	0	
			\downarrow	Introd	duce s	lack	ariab	
subject to								
	x_{4}	$=$	7	-	x_{1}	-	x_{2}	+
	x_{5}		-7	+		+		

Converting Standard Form into Slack Form (2/3)

Converting Standard Form into Slack Form (2/3)

subject to

\[

\]

Converting Standard Form into Slack Form (2/3)

maximize $2 x_{1}-3 x_{2}+3 x_{3}$
subject to
maximize
subject to

\[

\]

Converting Standard Form into Slack Form (3/3)
maximize
subject to

\[

\]

Converting Standard Form into Slack Form (3/3)

maximize
subject to

\[

\]

Use variable z to denote objective function and omit the nonnegativity constraints.

Converting Standard Form into Slack Form (3/3)

maximize
subject to

$$
2 x_{1}-3 x_{2}+3 x_{3}
$$

$$
\begin{array}{rrrrrrrr}
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - \\
x_{3} \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - \\
c & 2 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & & \geq & 0 &
\end{array}
$$

Use variable z to denote objective function and omit the nonnegativity constraints.

z	$=$		$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-
x_{3}							
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-
2							

Converting Standard Form into Slack Form (3/3)

maximize
subject to

$$
2 x_{1}-3 x_{2}+3 x_{3}
$$

$$
\begin{array}{rrrrrrrr}
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - \\
x_{3} \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - \\
c & 2 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & & \geq & 0 & &
\end{array}
$$

Use variable z to denote objective function and omit the nonnegativity constraints.

z	$=$		$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$	
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+	x_{3}
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-	x_{3}
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-	$2 x_{3}$

This is called slack form.

Basic and Non-Basic Variables

z	$=$			$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+	x_{3}
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-	x_{3}
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-	$2 x_{3}$

Basic and Non-Basic Variables

Basic and Non-Basic Variables

Basic and Non-Basic Variables

z	$=$			$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+	x_{3}
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-	x_{3}
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-	$2 x_{3}$

Basic Variables: $B=\{4,5,6\}$
Non-Basic Variables: $N=\{1,2,3\}$

Slack Form (Formal Definition)
Slack form is given by a tuple (N, B, A, b, c, v) so that

$$
\begin{aligned}
& z=v+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } i \in B
\end{aligned}
$$

and all variables are non-negative.

Basic and Non-Basic Variables

z	$=$			$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+	x_{3}
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-	x_{3}
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-	$2 x_{3}$

Basic Variables: $B=\{4,5,6\}$
Non-Basic Variables: $N=\{1,2,3\}$

Slack Form (Formal Definition)
Slack form is given by a tuple (N, B, A, b, c, v) so that

$$
\begin{aligned}
& z=v+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } i \in B
\end{aligned}
$$

and all variables are non-negative.
Variables/Coefficients on the right hand side are indexed by B and N.

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-1 \frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-1 \frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3} \\
& x_{4}=18-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
&
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

$$
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right)
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

$$
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right), \quad c=\left(\begin{array}{l}
c_{3} \\
c_{5} \\
c_{6}
\end{array}\right)=\left(\begin{array}{l}
-1 / 6 \\
-1 / 6 \\
-2 / 3
\end{array}\right)
$$

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3} \\
& x_{4}=18 \\
& x_{1}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

$$
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right), \quad c=\left(\begin{array}{l}
c_{3} \\
c_{5} \\
c_{6}
\end{array}\right)=\left(\begin{array}{l}
-1 / 6 \\
-1 / 6 \\
-2 / 3
\end{array}\right)
$$

- $v=28$

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

- Since $A(x+d)=b$ and $A x=b \Rightarrow A d=0$
- W.I.o.g. assume $c^{T} d \geq 0$ (otherwise replace d by $-d$)
- Consider $x+\lambda d$ as a function of $\lambda \geq 0$

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

- Case 1: There exists j with $d_{j}<0$

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

- Case 2: For all $j, d_{j} \geq 0$

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

- Case 2: For all $j, d_{j} \geq 0$
- $x+\lambda d$ is feasible for all $\lambda \geq 0: A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$
- If $\lambda \rightarrow \infty$, then $c^{T}(x+\lambda d) \rightarrow \infty$
\Rightarrow This contradicts the assumption that there exists an optimal solution.

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm: Introduction

Simplex Algorithm

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm: Introduction

Simplex Algorithm

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0 , and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Simplex Algorithm: Introduction

Simplex Algorithm

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0 , and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Extended Example: Conversion into Slack Form

maximize $3 x_{1}+x_{2}+2 x_{3}$
subject to

$$
\begin{array}{llll}
x_{1}+x_{2}+3 x_{3} & \leq 30 \\
2 x_{1}+2 x_{2}+5 x_{3} & \leq \\
4 x_{1}+ & x_{2}+24 \\
& x_{1}, x_{2}, x_{3} & \leq & \\
& &
\end{array}
$$

Extended Example: Conversion into Slack Form

Extended Example: Conversion into Slack Form

Extended Example: Iteration 1

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-2 x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
\end{aligned}
$$

Extended Example: Iteration 1

Extended Example: Iteration 1

Increasing the value of x_{1} would increase the objective value.

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-2 x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-2 x_{2}-2 x_{3}
\end{aligned}
$$

The third constraint is the tightest and limits how much we can increase x_{1}.

Switch roles of x_{1} and x_{6} :

Extended Example: Iteration 1

Increasing the value of x_{1} would increase the objective value.

$$
\begin{aligned}
& z=3 x_{1}+2 x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-2 x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-2 x_{2}-2 x_{3}
\end{aligned}
$$

The third constraint is the tightest and limits how much we can increase x_{1}.

Switch roles of x_{1} and x_{6} :

- Solving for x_{1} yields:

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

Extended Example: Iteration 1

Increasing the value of x_{1} would increase the objective value.

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-2 x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-2 x_{2}-2 x_{3}
\end{aligned}
$$

The third constraint is the tightest and limits how much we can increase x_{1}.

Switch roles of x_{1} and x_{6} :

- Solving for x_{1} yields:

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

- Substitute this into x_{1} in the other three equations

Extended Example: Iteration 2

$$
\begin{aligned}
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}
\end{aligned}
$$

Extended Example: Iteration 2

$$
\begin{aligned}
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \\
& \text { Basic solution: }\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=(9,0,0,21,6,0) \text { with objective value } 27
\end{aligned}
$$

Extended Example: Iteration 2

Extended Example: Iteration 2

Extended Example: Iteration 2

The third constraint is the tightest and limits how much we can increase x_{3}.

Switch roles of x_{3} and x_{5} :

Extended Example: Iteration 2

Increasing the value of x_{3} would increase the objective value.
$z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4}$
$x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}$
$x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4}$
$x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}$

The third constraint is the tightest and limits how much we can increase x_{3}.

Switch roles of x_{3} and x_{5} :

- Solving for x_{3} yields:

$$
x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}-\frac{x_{6}}{8}
$$

Extended Example: Iteration 2

Increasing the value of x_{3} would increase the objective value.
$z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4}$
$x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}$
$x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4}$
$x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}$

The third constraint is the tightest and limits how much we can increase x_{3}.

Switch roles of x_{3} and x_{5} :

- Solving for x_{3} yields:

$$
x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}-\frac{x_{6}}{8} .
$$

- Substitute this into x_{3} in the other three equations

Extended Example: Iteration 3

$$
\begin{aligned}
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
& x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}
\end{aligned}
$$

Extended Example: Iteration 3

$$
\begin{aligned}
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
& x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16} \\
& \text { Basic solution: }\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=\left(\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0,0\right) \text { with objective value } \frac{111}{4}=27.75
\end{aligned}
$$

Extended Example: Iteration 3

Increasing the value of x_{2} would increase the objective value.
$z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16}$
$x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16}$
$x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8}$
$x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}$

Basic solution: $\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{\bar{x}_{6}}\right)=\left(\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0,0\right)$ with objective value $\frac{111}{4}=27.75$

Extended Example: Iteration 3

The second constraint is the tightest and limits how much we can increase x_{2}.

Extended Example: Iteration 3

The second constraint is the tightest and limits how much we can increase x_{2}.

Switch roles of x_{2} and x_{3} :

Extended Example: Iteration 3

The second constraint is the tightest and limits how much we can increase x_{2}.

Switch roles of x_{2} and x_{3} :

- Solving for x_{2} yields:

$$
x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3}
$$

Extended Example: Iteration 3

The second constraint is the tightest and limits how much we can increase x_{2}.
Switch roles of x_{2} and x_{3} :

- Solving for x_{2} yields:

$$
x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} .
$$

- Substitute this into x_{2} in the other three equations

Extended Example: Iteration 4

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Extended Example: Iteration 4

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Basic solution: $\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=(8,4,0,18,0,0)$ with objective value 28

Extended Example: Iteration 4

All coefficients are negative, and hence this basic solution is optimal!

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Basic solution: $\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=(8,4,0,18,0,0)$ with objective value 28

Extended Example: Visualization of Simplex

Extended Example: Visualization of Simplex

Exercise: How many basic solutions (including non-feasible ones) are there?

Extended Example: Visualization of Simplex

Exercise: How many basic solutions (including non-feasible ones) are there?

Extended Example: Visualization of Simplex

Exercise: How many basic solutions (including non-feasible ones) are there?

Extended Example: Alternative Runs (1/2)

z	$=$		$3 x_{1}$	+	x_{2}	+	$2 x_{3}$
x_{4}	$=$	30	-	x_{1}	-	x_{2}	-
x_{5}	$=$	34	-	$2 x_{1}$	-	$2 x_{2}$	-
	$5 x_{3}$						
x_{6}	$=$	36	-	$4 x_{1}$	-	x_{2}	-
2							

Extended Example: Alternative Runs (1/2)

z	$=$			$3 x_{1}$	+	x_{2}	+	$2 x_{3}$
x_{4}	$=$	30	-	x_{1}	-	x_{2}	-	$3 x_{3}$
x_{5}	$=$	24	-	$2 x_{1}$	-	$2 x_{2}$	-	$5 x_{3}$
x_{6}	$=$	36	-	$4 x_{1}$	-	x_{2}	-	$2 x_{3}$

Extended Example: Alternative Runs (1/2)

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& \text { Switch roles of } x_{2} \text { and } x_{5} \\
& z=12+2 x_{1}-\frac{x_{3}}{2}-\frac{x_{5}}{2} \\
& x_{2}=12-x_{1}-\frac{5 x_{3}}{2}-\frac{x_{5}}{2} \\
& x_{4}=18-x_{2}-\frac{x_{3}}{2}+\frac{x_{5}}{2} \\
& x_{6}=24-3 x_{1}+\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Extended Example: Alternative Runs (1/2)

$$
\begin{array}{lllllllll}
z & = & & & 3 x_{1} & + & x_{2} & + & 2 x_{3} \\
x_{4} & = & 30 & - & x_{1} & - & x_{2} & - & 3 x_{3} \\
x_{5} & = & 24 & - & 2 x_{1} & - & 2 x_{2} & - & 5 x_{3} \\
x_{6} & = & 36 & - & 4 x_{1} & - & x_{2} & - & 2 x_{3} \\
& & & & \text { Switch roles of } x_{2} & \text { and } x_{5} \\
z & = & 12 & + & 2 x_{1} & - & \frac{x_{3}}{2} & - & \frac{x_{5}}{2} \\
x_{2} & = & 12 & - & x_{1} & - & \frac{5 x_{3}}{2} & - & \frac{x_{5}}{2} \\
x_{2} \\
x_{4} & = & 18 & - & x_{2} & - & \frac{x_{3}}{2} & + & \frac{x_{5}}{2} \\
x_{6} & = & 24 & - & 3 x_{1} & + & \frac{x_{3}}{2} & + & \frac{x_{5}}{2} \\
& & & & \text { Switch roles of } x_{1} & \text { and } x_{6}
\end{array}
$$

Extended Example: Alternative Runs (1/2)

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& \text { Switch roles of } x_{2} \text { and } x_{5} \\
& z=12+2 x_{1}-\frac{x_{3}}{2}-\frac{x_{5}}{2} \\
& x_{2}=12-x_{1}-\frac{5 x_{3}}{2}-\frac{x_{5}}{2} \\
& x_{4}=18-x_{2}-\frac{x_{3}}{2}+\frac{x_{5}}{2} \\
& x_{6}=24-3 x_{1}+\frac{x_{3}}{2}+\frac{x_{5}}{2} \\
& \text { Switch roles of } x_{1} \text { and } x_{6} \\
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Extended Example: Alternative Runs (2/2)

z	$=$		$3 x_{1}$	+	x_{2}	+	$2 x_{3}$
x_{4}	$=$	30	-	x_{1}	-	x_{2}	-
x_{5}	$=$	34	-	$2 x_{1}$	-	$2 x_{2}$	-
x_{6}							
x_{6}	$=$	36	-	$4 x_{1}$	-	x_{2}	-
$2 x_{3}$							

Extended Example: Alternative Runs (2/2)

z	$=$			$3 x_{1}$	+	x_{2}	+	$2 x_{3}$
χ_{4}	$=$	30	-	x_{1}	-	x_{2}	-	$3 x_{3}$
χ_{5}	$=$	24	-	$2 x_{1}$	-	$2 x_{2}$	-	$5 x_{3}$
x_{6}	$=$	36	-	$\begin{aligned} & 4 x_{1} \\ & 1 \\ & \downarrow \\ & \downarrow \end{aligned}$	ch		and	

Extended Example: Alternative Runs (2/2)

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& \text { Switch roles of } x_{3} \text { and } x_{5} \\
& z=\frac{48}{5}+\frac{11 x_{1}}{5}+\frac{x_{2}}{5}-\frac{2 x_{5}}{5} \\
& x_{4}=\frac{78}{5}+\frac{x_{1}}{5}+\frac{x_{2}}{5}+\frac{3 x_{5}}{5} \\
& x_{3}=\frac{24}{5}-\frac{2 x_{1}}{5}-\frac{2 x_{2}}{5}-\frac{x_{5}}{5} \\
& x_{6}=\frac{132}{5}-\frac{16 x_{1}}{5}-\frac{x_{2}}{5}+\frac{2 x_{3}}{5}
\end{aligned}
$$

Extended Example: Alternative Runs (2/2)

$$
\begin{aligned}
& z=\frac{48}{5}+\frac{11 x_{1}}{5}+\frac{x_{2}}{5}-\frac{2 x_{5}}{5} \\
& x_{4}=\frac{78}{5}+\frac{x_{1}}{5}+\frac{x_{2}}{5}+\frac{3 x_{5}}{5} \\
& x_{3}=\frac{24}{5}-\frac{2 x_{1}}{5}-\frac{2 x_{2}}{5}-\frac{x_{5}}{5} \\
& x_{6}=\frac{132}{5}-\frac{16 x_{1}}{5}-\frac{x_{2}}{5}+\frac{2 x_{3}}{5}
\end{aligned}
$$

Switch roles of x_{1} and x^{2}

Extended Example: Alternative Runs (2/2)

$$
\begin{aligned}
& z=\frac{48}{5}+\frac{11 x_{1}}{5}+\frac{x_{2}}{5}-\frac{2 x_{5}}{5} \\
& x_{4}=\frac{78}{5}+\frac{x_{1}}{5}+\frac{x_{2}}{5}+\frac{3 x_{5}}{5} \\
& x_{3}=\frac{24}{5}-\frac{2 x_{1}}{5}-\frac{2 x_{2}}{5}-\frac{x_{5}}{5} \\
& x_{6}=\frac{132}{5}-\frac{16 x_{1}}{5}-\frac{x_{2}}{5}+\frac{2 x_{3}}{5}
\end{aligned}
$$

Switch roles of x_{1} and x^{\prime}

$$
\begin{array}{ll}
z & = \\
\frac{111}{4} & + \\
x_{1} & = \\
\frac{33}{16} & - \\
\frac{x_{2}}{16} & + \\
\frac{x_{5}}{8} & -\frac{x_{5}}{8} \\
x_{3} & = \\
\frac{3}{2} & -\frac{11 x_{6}}{16} \\
x_{4} & \frac{5 x_{6}}{16} \\
x_{4} & = \\
\frac{69}{4} & +\frac{x_{5}}{4} \\
\hline & +\frac{x_{6}}{16} \\
\hline
\end{array}
$$

Extended Example: Alternative Runs (2/2)

$$
\begin{aligned}
& z=\frac{48}{5}+\frac{11 x_{1}}{5}+\frac{x_{2}}{5}-\frac{2 x_{5}}{5} \\
& x_{4}=\frac{78}{5}+\frac{x_{1}}{5}+\frac{x_{2}}{5}+\frac{3 x_{5}}{5} \\
& x_{3}=\frac{24}{5}-\frac{2 x_{1}}{5}-\frac{2 x_{2}}{5}-\frac{x_{5}}{5} \\
& x_{6}=\frac{132}{5}-\frac{16 x_{1}}{5}-\frac{x_{2}}{5}+\frac{2 x_{3}}{5}
\end{aligned}
$$

Switch roles of x_{1} and $x_{6} \ldots$ Switch roles of x_{2} and x_{3}

$$
\begin{aligned}
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
& x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}
\end{aligned}
$$

Extended Example: Alternative Runs (2/2)

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& \text { Switch roles of } x_{3} \text { and } x_{5} \\
& z=\frac{48}{5}+\frac{11 x_{1}}{5}+\frac{x_{2}}{5}-\frac{2 x_{5}}{5} \\
& x_{4}=\frac{78}{5}+\frac{x_{1}}{5}+\frac{x_{2}}{5}+\frac{3 x_{5}}{5} \\
& x_{3}=\frac{24}{5}-\frac{2 x_{1}}{5}-\frac{2 x_{2}}{5}-\frac{x_{5}}{5} \\
& x_{6}=\frac{132}{5}-\frac{16 x_{1}}{5}-\frac{x_{2}}{5}+\frac{2 x_{3}}{5} \\
& \text { Switch roles of } x_{1} \text { and } x_{6} \ldots \ldots \text { Switch roles of } x_{2} \text { and } x_{3} \\
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \quad z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \quad x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
& x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

The Pivot Step Formally

$\operatorname{Pivot}(N, B, A, b, c, v, l, e)$
1 // Compute the coefficients of the equation for new basic variable x_{e}.
2 let \hat{A} be a new $m \times n$ matrix
$\hat{b}_{e}=b_{l} / a_{l e}$
for each $j \in N-\{e\}$
$\hat{a}_{e j}=a_{l j} / a_{l e}$
$\hat{a}_{e l}=1 / a_{l e}$
// Compute the coefficients of the remaining constraints.
for each $i \in B-\{l\}$
$\widehat{b}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$
for each $j \in N-\{e\}$
$\hat{a}_{i j}=a_{i j}-a_{i e} \hat{a}_{e j}$
$\widehat{a}_{i l}=-a_{i e} \hat{a}_{e l}$
// Compute the objective function.
$\hat{v}=v+c_{e} \hat{b}_{e}$
for each $j \in N-\{e\}$
$\widehat{c}_{j}=c_{j}-c_{e} \hat{a}_{e j}$
$\widehat{c}_{l}=-c_{e} \hat{a}_{e l}$
// Compute new sets of basic and nonbasic variables.
$\widehat{N}=N-\{e\} \cup\{l\}$
$\hat{B}=B-\{l\} \cup\{e\}$
return $(\hat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \hat{c}, \hat{v})$

The Pivot Step Formally

```
Pivot( \(N, B, A, b, c, v, l, e)\)
    1 // Compute the coefficients of the equation for new basic variable \(x_{e}\).
    2 let \(\hat{A}\) be a new \(m \times n\) matrix
    \(\hat{b}_{e}=b_{l} / a_{l e}\)
    for each \(j \in N-\{e\}\)
    \(\hat{a}_{e j}=a_{l j} / a_{l e}\)
    \(\hat{a}_{e l}=1 / a_{l e}\)
    // Compute the coefficients of the remaining constraints.
    for each \(i \in B-\{l\}\)
        \(\widehat{b}_{i}=b_{i}-a_{i e} \hat{b}_{e}\)
        for each \(j \in N-\{e\}\)
        \(\widehat{a}_{i j}=a_{i j}-a_{i e} \widehat{a}_{e j}\)
        \(\hat{a}_{i l}=-a_{i e} \hat{a}_{e l}\)
    // Compute the objective function.
\(\hat{v}=v+c_{e} \hat{b}_{e}\)
for each \(j \in N-\{e\}\)
    \(\widehat{c}_{j}=c_{j}-c_{e} \hat{a}_{e j}\)
\(\hat{c}_{l}=-c_{e} \hat{a}_{e l}\)
// Compute new sets of basic and nonbasic variables.
\(\widehat{N}=N-\{e\} \cup\{l\}\)
\(\widehat{B}=B-\{l\} \cup\{e\}\)
return \((\hat{N}, \widehat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})\)
```


The Pivot Step Formally

```
Pivot( \(N, B, A, b, c, v, l, e)\)
    1 // Compute the coefficients of the equation for new basic variable \(x_{e}\).
    2 let \(\hat{A}\) be a new \(m \times n\) matrix
    \(\hat{b}_{e}=b_{l} / a_{l e}\)
for each \(j \in N-\{e\}\)
\(\quad \hat{a}_{e j}=a_{l j} / a_{l e}\)
\(\hat{a}_{e l}=1 / a_{l e}\)
// Compute the coefficients of the remaining constraints.
    for each \(i \in B-\{l\}\)
        \(\widehat{b}_{i}=b_{i}-a_{i e} \hat{b}_{e}\)
        for each \(j \in N-\{e\}\)
        \(\widehat{a}_{i j}=a_{i j}-a_{i e} \widehat{a}_{e j}\)
        \(\hat{a}_{i l}=-a_{i e} \hat{a}_{e l}\)
    Rewrite "tight" equation
for enterring variable \(x_{e}\).
```

Substituting x_{e} into other equations.

The Pivot Step Formally

```
Pivot( \(N, B, A, b, c, v, l, e)\)
    1 // Compute the coefficients of the equation for new basic variable \(x_{e}\).
    2 let \(\hat{A}\) be a new \(m \times n\) matrix
```


The Pivot Step Formally

 1 // Compute the coefficients of the equation for new basic variable \(x_{e}\).
 2 let \(\hat{A}\) be a new \(m \times n\) matrix
    ```
    \(\widehat{b}_{e}=b_{l} / a_{l e}\)
    for each \(j \in N-\{e\}\)
        \(\hat{a}_{e j}=a_{l j} / a_{l e}\)
    \(\hat{a}_{e l}=1 / a_{l e}\)
// Compute the coefficients of the remaining constraints.
for each \(i \in B-\{l\}\)
    \(\widehat{b}_{i}=b_{i}-a_{i e} \hat{b}_{e}\)
    for each \(j \in N-\{e\}\)
        \(\widehat{a}_{i j}=a_{i j}-a_{i e} \hat{a}_{e j}\)
    \(\hat{a}_{i l}=-a_{i e} \hat{a}_{e l}\)
    // Compute the objective function.
\(\hat{v}=v+c_{e} \hat{b}_{e}\)
for each \(j \in N-\{e\}\)
    \(\widehat{c}_{j}=c_{j}-c_{e} \hat{a}_{e j}\)
\(\hat{c}_{l}=-c_{e} \hat{a}_{e l}\)
// Compute new sets of basic and nonbasic variables.
\(\widehat{N}=N-\{e\} \cup\{l\}\)
\(\widehat{B}=B-\{l\} \cup\{e\}\)
return \((\hat{N}, \widehat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})\)
\(\hat{c}_{l}=-c_{e} \hat{a}_{e l}\)
return \((\hat{N}, \widehat{B}, \hat{A}, \hat{b}, \widehat{c}, \hat{v})\)
```

Rewrite "tight" equation for enterring variable x_{e}.

Substituting x_{e} into other equations.

```
Pivot(N, B,A,b,c,v,l,e)
```

```
Pivot(N, B,A,b,c,v,l,e)
```

Substituting x_{e} into objective function.

The Pivot Step Formally

 1 // Compute the coefficients of the equation for new basic variable \(x_{e}\).
 2 let \(\hat{A}\) be a new \(m \times n\) matrix
 \(3 \hat{b}_{e}=b_{l} / a_{l e}\)
 for each \(j \in N-\{e\}\) Need that \(a_{l e} \neq 0\) !
 \(\hat{a}_{e j}=a_{l j} / a_{l e}\)
 $\hat{a}_{e l}=1 / a_{l e}$
Rewrite "tight" equation
for enterring variable x_{e}.
// Compute the coefficients of the remaining constraints.
for each $i \in B-\{l\}$
$\widehat{b}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$
for each $j \in N-\{e\}$
$\widehat{a}_{i j}=a_{i j}-a_{i e} \hat{a}_{e j}$
$\hat{a}_{i l}=-a_{i e} \hat{a}_{e l}$

Substituting x_{e} into other equations.

```
Pivot(N,B,A,b,c,v,l,e)
```

```
Pivot(N,B,A,b,c,v,l,e)
```

 // Compute the objective function.
 $\hat{v}=v+c_{e} \hat{b}_{e}$
for each $j \in N-\{e\}$
$\widehat{c}_{j}=c_{j}-c_{e} \hat{a}_{e j}$
$\hat{c}_{l}=-c_{e} \hat{a}_{e l}$
// Compute new sets of basic and nonbasic variables.
$\hat{N}=N-\{e\} \cup\{l\}$
$\widehat{B}=B-\{l\} \cup\{e\}$
return $(\hat{N}, \widehat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to $\operatorname{Pivot}(N, B, A, b, c, v, I, e)$ in which $a_{l e} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \bar{x} denote the basic solution after the call. Then

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to $\operatorname{Pivot}(N, B, A, b, c, v, l, e)$ in which $a_{l e} \neq 0$. Let the values returned from the call be ($\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v}$), and let \bar{x} denote the basic solution after the call. Then

1. $\bar{x}_{j}=0$ for each $j \in \widehat{N}$.
2. $\bar{x}_{e}=b_{l} / a_{l e}$.
3. $\bar{x}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$ for each $i \in \widehat{B} \backslash\{e\}$.

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to $\operatorname{Pivot}(N, B, A, b, c, v, l, e)$ in which $a_{l e} \neq 0$. Let the values returned from the call be ($\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v}$), and let \bar{x} denote the basic solution after the call. Then

1. $\bar{x}_{j}=0$ for each $j \in \widehat{N}$.
2. $\bar{x}_{e}=b_{l} / a_{l e}$.
3. $\bar{x}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$ for each $i \in \widehat{B} \backslash\{e\}$.

Proof:

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to $\operatorname{Pivot}(N, B, A, b, c, v, l, e)$ in which $a_{l e} \neq 0$. Let the values returned from the call be ($\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v}$), and let \bar{x} denote the basic solution after the call. Then

1. $\bar{x}_{j}=0$ for each $j \in \widehat{N}$.
2. $\bar{x}_{e}=b_{l} / a_{l e}$.
3. $\bar{x}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$ for each $i \in \widehat{B} \backslash\{e\}$.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

$$
x_{i}=\widehat{b}_{i}-\sum_{j \in \widehat{N}} \widehat{a}_{i j} x_{j}
$$

we have $\bar{x}_{i}=\widehat{b}_{i}$ for each $i \in \widehat{B}$. Hence $\bar{x}_{e}=\widehat{b}_{e}=b_{l} / a_{l e}$.
3. After substituting into the other constraints, we have

$$
\bar{x}_{i}=\widehat{b}_{i}=b_{i}-a_{i e} \widehat{b}_{e}
$$

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to $\operatorname{Pivot}(N, B, A, b, c, v, l, e)$ in which $a_{l e} \neq 0$. Let the values returned from the call be ($\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v}$), and let \bar{x} denote the basic solution after the call. Then

1. $\bar{x}_{j}=0$ for each $j \in \widehat{N}$.
2. $\bar{x}_{e}=b_{l} / a_{l e}$.
3. $\bar{x}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$ for each $i \in \widehat{B} \backslash\{e\}$.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

$$
x_{i}=\widehat{b}_{i}-\sum_{j \in \widehat{N}} \widehat{a}_{i j} x_{j}
$$

we have $\bar{x}_{i}=\widehat{b}_{i}$ for each $i \in \widehat{B}$. Hence $\bar{x}_{e}=\widehat{b}_{e}=b_{l} / a_{l e}$.
3. After substituting into the other constraints, we have

$$
\bar{x}_{i}=\widehat{b}_{i}=b_{i}-a_{i e} \widehat{b}_{e}
$$

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

> Example before was a particularly nice one!

The formal procedure Simplex

```
\(\operatorname{Simplex}(A, b, c)\)
    \((N, B, A, b, c, v)=\operatorname{InitiaLIZE-Simplex}(A, b, c)\)
    let \(\Delta\) be a new vector of length \(m\)
    while some index \(j \in N\) has \(c_{j}>0\)
    choose an index \(e \in N\) for which \(c_{e}>0\)
    for each index \(i \in B\)
        if \(a_{i e}>0\)
            \(\Delta_{i}=b_{i} / a_{i e}\)
        else \(\Delta_{i}=\infty\)
    choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
    if \(\Delta_{l}==\infty\)
        return "unbounded"
    else \((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, e)\)
    for \(i=1\) to \(n\)
    if \(i \in B\)
        \(\bar{x}_{i}=b_{i}\)
    else \(\bar{x}_{i}=0\)
    return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
```

The formal procedure Simplex

```
\(\operatorname{Simplex}(A, b, c)\)
    \((N, B, A, b, c, v)=\operatorname{Initialize-Simplex}(A, b, c)\)
let \(\Delta\) be a new vector of length \(m\)
while some index \(j \in N\) has \(c_{j}>0\)
    choose an index \(e \in N\) for which \(c_{e}>0\)
    for each index \(i \in B\)
        if \(a_{i e}>0\)
            \(\Delta_{i}=b_{i} / a_{i e}\)
        else \(\Delta_{i}=\infty\)
    choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
    if \(\Delta_{l}==\infty\)
        return "unbounded"
    else \((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, e)\)
for \(i=1\) to \(n\)
    if \(i \in B\)
        \(\bar{x}_{i}=b_{i}\)
    else \(\bar{x}_{i}=0\)
    return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
```

Returns a slack form with a feasible basic solution (if it exists)

The formal procedure Simplex

The formal procedure Simplex

```
\(\operatorname{Simplex}(A, b, c)\)
    \((N, B, A, b, c, v)=\operatorname{Initialize}-\operatorname{Simplex}(A, b, c)\)
2 let \(\Delta\) be a new vector of length \(m\)
3 , while some index \(\bar{j} \in \bar{N}\) has \(\bar{c}_{j}>\overline{0}\)
4 1 choose an index \(e \in N\) for which \(c_{e}>0\)
    for each index \(i \in B\)
        if \(a_{i e}>0\)
            \(\Delta_{i}=b_{i} / a_{i e}\)
        else \(\Delta_{i}=\infty\)
    choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
    if \(\Delta_{l}==\infty\)
        return "unbounded"
    else \((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, e)\) ।
    for \(\bar{i} \overline{=} \overline{1} \overline{\mathbf{t}}{ }^{-} n\)
    if \(i \in B\)
        \(\bar{x}_{i}=b_{i}\)
    else \(\bar{x}_{i}=0\)
    return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
```


The formal procedure Simplex

```
\(\operatorname{Simplex}(A, b, c)\)
    \((N, B, A, b, c, v)=\operatorname{Initialize}-\operatorname{Simplex}(A, b, c)\)
    let \(\Delta\) be a new vector of length \(m\)
    while some index \(j \in N\) has \(c_{j}>0\)
    choose an index \(e \in N\) for which \(c_{e}>0\)
    for each index \(i \in B\)
        if \(a_{i e}>0\)
            \(\Delta_{i}=b_{i} / a_{i e}\)
        else \(\Delta_{i}=\infty\)
    choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
    if \(\Delta_{l}==\infty\)
        return "unbounded"
    else \((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, e)\)
    \(\overline{\mathbf{f o r}} \bar{i}=\overline{1} \overline{\mathbf{t}} \bar{n} n\)
    if \(i \in B\)
        \(\bar{x}_{i}=b_{i}\)
    else \(\bar{x}_{i}=0\)
    return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
```


Main Loop:

- terminates if all coefficients in objective function are negative
- Line 4 picks enterring variable x_{e} with negative coefficient
- Lines 6-9 pick the tightest constraint, associated with x_{1}
- Line 11 returns "unbounded" if there are no constraints
- Line 12 calls Pivot, switching roles of x_{l} and x_{e}

The formal procedure Simplex

```
\(\operatorname{Simplex}(A, b, c)\)
\(\left.1 \quad(N, B, A, b, c, \nu)=\operatorname{Initialize-Simplex}(A, b, c) \quad \begin{array}{c}\text { Returns a slack form with a } \\ 2 \\ \text { let } \Delta \text { be a new vector of length } m\end{array}\right) . \begin{gathered}\text { feasible basic solution (if it exists) }\end{gathered}\)
2 let \(\Delta\) be a new vector of length \(m\) -
3 , while some index \(j \in N\) has \(c_{j}>0\)
4 choose an index \(e \in N\) for which \(c_{e}>0\)
5 for each index \(i \in B\)
        if \(a_{i e}>0\)
            \(\Delta_{i}=b_{i} / a_{i e}\)
        else \(\Delta_{i}=\infty\)
    choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
    if \(\Delta_{l}==\infty\)
        return "unbounded"
    else \((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, e)\)
    for \(i=\overline{1} \overline{\mathbf{t}}{ }^{-} n\)
    if \(i \in B\)
        \(\bar{x}_{i}=b_{i}\)
    else \(\bar{x}_{i}=0\)
    return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
Return corresponding solution.
```


The formal procedure Simplex

```
\(\operatorname{Simplex}(A, b, c)\)
\((N, B, A, b, c, v)=\operatorname{Initialize}-\operatorname{Simplex}(A, b, c)\)
let \(\Delta\) be a new vector of length \(m\)
, while some index \(j \in N\) has \(c_{j}>0\)
    choose an index \(e \in N\) for which \(c_{e}>0\)
    for each index \(i \in B\)
        if \(a_{i e}>0\)
            \(\Delta_{i}=b_{i} / a_{i e}\)
        else \(\Delta_{i}=\infty\)
    choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
    if \(\Delta_{l}==\infty\)
        return "unbounded"
    else \((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, e)\) ।
for \(\bar{i}=\overline{1} \overline{\mathbf{t}}{ }^{-} n\)
    if \(i \in B\)
        \(\bar{x}_{i}=b_{i}\)
    else \(\bar{x}_{i}=0\)
    return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
```


Lemma 29.2

Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if SImplex returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

The formal procedure Simplex

Proof is based on the following three-part loop invariant:

Lemma 29.2
Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if SImplex returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

The formal procedure Simplex

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by Initialize-Simplex,
2. for each $i \in B$, we have $b_{i} \geq 0$,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2
Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if Simplex returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$
\begin{array}{lllllll}
z & = & x_{1} & + & x_{2} & + & x_{3} \\
x_{4} & = & 8 & - & x_{1} & - & x_{2} \\
& & \\
x_{5} & = & & & & x_{2} & - \\
x_{3}
\end{array}
$$

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$
\begin{array}{llllllll}
z & = & & x_{1} & + & x_{2} & + & x_{3} \\
x_{4} & = & 8 & - & x_{1} & - & x_{2} & \\
x_{5} & = & & & & x_{2} & -x_{3} \\
& & & & \text { Pivot with } x_{1} \text { entering and } x_{4} \text { leaving }
\end{array}
$$

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$
\begin{aligned}
& z=x_{1}+x_{2}+x_{3} \\
& x_{4}=8-x_{1}-x_{2} \\
& x_{5}=\quad x_{2}-x_{3} \\
& \text { Pivot with } x_{1} \text { entering and } x_{4} \text { leaving } \\
& z=8+x_{3}-x_{4} \\
& \begin{array}{c}
x_{1} \\
x_{2}
\end{array}-x_{2}-x_{4} \\
& x_{5}=\quad x_{2}-x_{3}
\end{aligned}
$$

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$
\begin{aligned}
& z=x_{1}+x_{2}+x_{3} \\
& x_{4}=8-x_{1}-x_{2} \\
& x_{5}=\quad x_{2}-x_{3} \\
& \text { Pivot with } x_{1} \text { entering and } x_{4} \text { leaving } \\
& z=8+x_{3}-x_{4} \\
& x_{1}=8-x_{2} \quad-x_{4} \\
& x_{5}=x_{2}-x_{3} \\
& \text { Pivot with } x_{3} \text { entering and } x_{5} \text { leaving } \\
& z=8+x_{2}-x_{4}-x_{5} \\
& x_{1}=8-x_{2}-x_{4} \\
& \begin{array}{clll}
x_{3} & = & x_{2} & -x_{5}
\end{array}
\end{aligned}
$$

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$
\begin{array}{lllllll}
z & =8 & + & x_{2} & - & x_{4} & - \\
x_{5} \\
x_{1} & =8 & - & x_{2} & - & x_{4} & \\
x_{3} & = & & x_{2} & & & - \\
x_{5}
\end{array}
$$

Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

Termination and Running Time

Cycling: Simplex may fail to terminate.

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_{i} by $\widehat{b}_{i}=b_{i}+\epsilon_{i}$, where $\epsilon_{i} \gg \epsilon_{i+1}$ are all small.

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_{i} by $\widehat{b}_{i}=b_{i}+\epsilon_{i}$, where $\epsilon_{i} \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Termination and Running Time

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_{i} by $\widehat{b}_{i}=b_{i}+\epsilon_{i}$, where $\epsilon_{i} \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set B of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Finding an Initial Solution

| $\operatorname{maximize}$ | $2 x_{1}$ | - | x_{2} | |
| :--- | :---: | :---: | :---: | :---: |
| subject to | | | | |
| | $2 x_{1}$ | - | x_{2} | \leq |
| | x_{1} | - | $5 x_{2}$ | \leq |
| | x_{1}, x_{2} | | | |
| | | \geq | 0 | |

Finding an Initial Solution

Finding an Initial Solution

Geometric Illustration

maximize $2 x_{1}-x_{2}$

subject to

$$
\begin{array}{rllr}
2 x_{1}- & x_{2} & \leq & 2 \\
x_{1}- & 5 x_{2} & \leq & -4 \\
x_{1}, x_{2} & & \geq & 0
\end{array}
$$

Geometric Illustration

maximize $2 x_{1}-x_{2}$

subject to

$$
\begin{array}{rllr}
2 x_{1} & - & x_{2} & \leq \\
x_{1} & - & 5 x_{2} & \leq \\
x_{1}, x_{2} & & \geq \\
x_{1} & 0
\end{array}
$$

Geometric Illustration

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & \text { for } i=1,2, \ldots, m, \\
x_{j} & \geq 0 & \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11
Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{a u x}$ is 0 .

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $\quad-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11
Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{a u x}$ is 0 .

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $\quad-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11

Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{a u x}$ is 0 .

Proof.

- " \Rightarrow ": Suppose L has a feasible solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $\quad-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11

Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{\text {aux }}$ is 0 .

Proof.

- " \Rightarrow ": Suppose L has a feasible solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$
- $\bar{x}_{0}=0$ combined with \bar{x} is a feasible solution to $L_{\text {aux }}$ with objective value 0 .

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $\quad-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11

Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{a u x}$ is 0 .

Proof.

- " \Rightarrow ": Suppose L has a feasible solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$
- $\bar{x}_{0}=0$ combined with \bar{x} is a feasible solution to $L_{\text {aux }}$ with objective value 0 .
- Since $\bar{x}_{0} \geq 0$ and the objective is to maximize $-x_{0}$, this is optimal for $L_{\text {aux }}$

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $\quad-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11
Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{a u x}$ is 0 .

Proof.

- " \Rightarrow ": Suppose L has a feasible solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$
- $\bar{x}_{0}=0$ combined with \bar{x} is a feasible solution to $L_{\text {aux }}$ with objective value 0 .
- Since $\bar{x}_{0} \geq 0$ and the objective is to maximize $-x_{0}$, this is optimal for $L_{\text {aux }}$
- " \Leftarrow ": Suppose that the optimal objective value of $L_{a u x}$ is 0

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11
Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{a u x}$ is 0 .

Proof.

- " \Rightarrow ": Suppose L has a feasible solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$
- $\bar{x}_{0}=0$ combined with \bar{x} is a feasible solution to $L_{\text {aux }}$ with objective value 0 .
- Since $\bar{x}_{0} \geq 0$ and the objective is to maximize $-x_{0}$, this is optimal for $L_{\text {aux }}$
- " \Leftarrow ": Suppose that the optimal objective value of $L_{a u x}$ is 0
- Then $\bar{x}_{0}=0$, and the remaining solution values ($\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}$) satisfy L.

Formulating an Auxiliary Linear Program

maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

Formulating an Auxiliary Linear Program

maximize $-x_{0}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

Lemma 29.11
Let $L_{\text {aux }}$ be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of $L_{a u x}$ is 0 .

Proof.

- " \Rightarrow ": Suppose L has a feasible solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$
- $\bar{x}_{0}=0$ combined with \bar{x} is a feasible solution to $L_{\text {aux }}$ with objective value 0 .
- Since $\bar{x}_{0} \geq 0$ and the objective is to maximize $-x_{0}$, this is optimal for $L_{\text {aux }}$
- " \Leftarrow ": Suppose that the optimal objective value of $L_{a u x}$ is 0
- Then $\bar{x}_{0}=0$, and the remaining solution values $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$ satisfy L.

Initialize-Simplex

Initialize-Simplex (A, b, c)

```
let \(k\) be the index of the minimum \(b_{i}\)
if \(b_{k} \geq 0 \quad / /\) is the initial basic solution feasible?
    return \((\{1,2, \ldots, n\},\{n+1, n+2, \ldots, n+m\}, A, b, c, 0)\)
form \(L_{\text {aux }}\) by adding - \(x_{0}\) to the left-hand side of each constraint
    and setting the objective function to \(-x_{0}\)
let ( \(N, B, A, b, c, \nu\) ) be the resulting slack form for \(L_{\text {aux }}\)
\(l=n+k\)
// \(L_{\text {aux }}\) has \(n+1\) nonbasic variables and \(m\) basic variables.
\((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0)\)
// The basic solution is now feasible for \(L_{\text {aux }}\).
iterate the while loop of lines 3-12 of Simplex until an optimal solution
    to \(L_{\text {aux }}\) is found
if the optimal solution to \(L_{\text {aux }}\) sets \(\bar{x}_{0}\) to 0
    if \(\bar{x}_{0}\) is basic
        perform one (degenerate) pivot to make it nonbasic
    from the final slack form of \(L_{\text {aux }}\), remove \(x_{0}\) from the constraints and
        restore the original objective function of \(L\), but replace each basic
        variable in this objective function by the right-hand side of its
        associated constraint
    return the modified final slack form
else return "infeasible"
```


InitiALIZE-SimpLex

Initialize-Simplex (A, b, c)

let k be the index of the minimum b_{i}

$$
\begin{aligned}
& \text { Test solution with } N=\{1,2, \ldots, n\}, B=\{n+1, n+ \\
& 2, \ldots, n+m\}, \bar{x}_{i}=b_{i} \text { for } i \in B, \bar{x}_{i}=0 \text { otherwise. }
\end{aligned}
$$

```
if \(b_{k} \geq 0 \quad / /\) is the initial basic solution feasible?
```

 return \((\{1,2, \ldots, n\},\{n+1, n+2, \ldots, n+m\}, A, b, c, 0)\)
 form $L_{\text {aux }}$ by adding $-x_{0}$ to the left-hand side of each constraint
and setting the objective function to $-x_{0}$
let (N, B, A, b, c, v) be the resulting slack form for $L_{\text {aux }}$
$l=n+k$
// $L_{\text {aux }}$ has $n+1$ nonbasic variables and m basic variables.
$(N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0)$
// The basic solution is now feasible for $L_{\text {aux }}$.
iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
to $L_{\text {aux }}$ is found
if the optimal solution to $L_{\text {aux }}$ sets \bar{x}_{0} to 0
if \bar{x}_{0} is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of $L_{\text {aux }}$, remove x_{0} from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return "infeasible"

InitiALIZe-SimpLex

Initialize-Simplex (A, b, c)

$$
\begin{aligned}
& \text { Test solution with } N=\{1,2, \ldots, n\}, B=\{n+1, n+ \\
& 2, \ldots, n+m\}, \bar{x}_{i}=b_{i} \text { for } i \in B, \bar{x}_{i}=0 \text { otherwise. }
\end{aligned}
$$

let k be the index of the minimum b_{i}

```
if \(b_{k} \geq 0 \quad / /\) is the initial basic solution feasible?
    return \((\{1,2, \ldots, n\},\{n+1, n+2, \ldots, n+m\}, A, b, c, 0)\)
```

form $L_{\text {aux }}$ by adding - x_{0} to the left-hand side of each constraint
and setting the objective function to $-x_{0}$
let (N, B, A, b, c, v) be the resulting slack form for $L_{\text {aux }}$
$l=n+k$
// $L_{\text {aux }}$ has $n+1$ nonbasic variables and m basic variables.
$(N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0)$
// The basic solution is now feasible for $L_{\text {aux }}$.
iterate the while loop of lines 3-12 of Simplex until an optimal solution
to $L_{\text {aux }}$ is found
if the optimal solution to $L_{\text {aux }}$ sets \bar{x}_{0} to 0
if \bar{x}_{0} is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of $L_{\text {aux }}$, remove x_{0} from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return "infeasible"

Initialize-Simplex

Initialize-Simplex (A, b, c)

$$
\begin{aligned}
& \text { Test solution with } N=\{1,2, \ldots, n\}, B=\{n+1, n+ \\
& 2, \ldots, n+m\}, \bar{x}_{i}=b_{i} \text { for } i \in B, \bar{x}_{i}=0 \text { otherwise. }
\end{aligned}
$$

let k be the index of the minimum b_{i}

```
if \(b_{k} \geq 0 \quad / /\) is the initial basic solution feasible?
```

 return \((\{1,2, \ldots, n\},\{n+1, n+2, \ldots, n+m\}, A, b, c, 0)\)
 form $L_{\text {aux }}$ by adding $-x_{0}$ to the left-hand side of each constraint
and setting the objective function to $-x_{0}$
let (N, B, A, b, c, v) be the resulting slack form for $L_{\text {aux }}$
$l=n+k$$\quad\left\{\begin{array}{r}\ell \text { will be the leaving variable so } \\ \text { that } x_{\ell} \text { has the most negative value. }\end{array}\right.$
// $L_{\text {aux }}$ has $n+1$ nonbasic variables and m basic variables.
$(N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0) \quad$ Pivot step with x_{ℓ} leaving and x_{0} entering.
// The basic solution is now feasible for $L_{\text {aux }}$.
iterate the while loop of lines 3-12 of Simplex until an optimal solution
to $L_{\text {aux }}$ is found
if the optimal solution to $L_{\text {aux }}$ sets \bar{x}_{0} to 0
if \bar{x}_{0} is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of $L_{\text {aux }}$, remove x_{0} from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return "infeasible"

Initialize-Simplex

Initialize-Simplex (A, b, c)

$$
\begin{aligned}
& \text { Test solution with } N=\{1,2, \ldots, n\}, B=\{n+1, n+ \\
& 2, \ldots, n+m\}, \bar{x}_{i}=b_{i} \text { for } i \in B, \bar{x}_{i}=0 \text { otherwise. }
\end{aligned}
$$

let k be the index of the minimum b_{i}

```
if \(b_{k} \geq 0 \quad / /\) is the initial basic solution feasible?
```

 return \((\{1,2, \ldots, n\},\{n+1, n+2, \ldots, n+m\}, A, b, c, 0)\)
 form $L_{\text {aux }}$ by adding - x_{0} to the left-hand side of each constraint
and setting the objective function to $-x_{0}$
let (N, B, A, b, c, v) be the resulting slack form for $L_{\text {aux }}$
$l=n+k$
// $L_{\text {aux }}$ has $n+1$ nonbasic variables and m basic variables.
$(N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0)$
// The basic solution is now feasible for L $\begin{array}{r}\ell \text { will be the leaving variable so } \\ \text { that } x_{\ell} \text { has the most negative value. }\end{array}$
let (N, B, A, b, c, v) be the resulting slack form for $L_{\text {aux }}$
$l=n+k$
$/ / L_{\text {aux }}$ has $n+1$ nonbasic variables and m basic variables.
$(N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0)$
Pivot step with x_{ℓ} leaving and x_{0} entering.
let (N, B, A, b, c, v) be the resulting slack form for $L_{\text {aux }}$
$l=n+k$
$/ / L_{\text {aux }}$ has $n+1$ nonbasic variables and m basic variables.
$(N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0)$
Pivot step with x_{ℓ} leaving and x_{0} entering.
// The basic solution is now feasible for $L_{\text {aux }}$.
iterate the while loop of lines 3-12 of Simplex until an optimal solution
to $L_{\text {aux }}$ is found
if the optimal solution to $L_{\text {aux }}$ sets \bar{x}_{0} to 0
if \bar{x}_{0} is basic
perform one (degenerate) pivot to make it nonbasic
This pivot step does not change
the value of any variable.
from the final slack form of $L_{\text {aux }}$, remove x_{0} from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return "infeasible"

Example of Initialize-Simplex (1/3)

$$
\begin{array}{lcccc}
\operatorname{maximize} & 2 x_{1} & - & x_{2} & \\
\text { subject to } & & & & \\
& 2 x_{1} & - & x_{2} & \leq \\
& x_{1} & - & 5 x_{2} & \leq \\
& x_{1}, x_{2} & & \geq \\
& & \geq
\end{array}
$$

Example of Initialize-Simplex (1/3)

\[

\]

Example of Initialize-Simplex (1/3)

Example of Initialize-Simplex (1/3)

maximize $2 x_{1}-x_{2}$
subject to

$$
\begin{array}{rllr}
2 x_{1} & - & x_{2} & \leq \\
x_{1}- & 5 x_{2} & \leq & -4 \\
x_{1}, x_{2} & & \geq
\end{array}
$$

Formulating the auxiliary linear program
maximize
$-\quad x_{0}$
subject to

$$
\begin{array}{rlrlll}
2 x_{1} & - & x_{2} & - & x_{0} & \leq \\
x_{1} & - & 5 x_{2} & - & x_{0} & \leq \\
x_{1}, & x_{2}, x_{0} & & & 4 \\
& & \geq & 0 \\
& \text { Converting into slack form } \\
& & & &
\end{array}
$$

Example of Initialize-Simplex (1/3)

maximize $2 x_{1}-x_{2}$
subject to

$$
\begin{array}{rlrr}
2 x_{1} & - & x_{2} & \leq \\
x_{1} & - & 2 \\
x_{1}, x_{2} & & \geq & -4 \\
& & \geq
\end{array}
$$

Formulating the auxiliary linear program
maximize $-x_{0}$
subject to

$$
\begin{aligned}
& \begin{array}{c}
2 x_{1}-x_{2}-x_{0} \\
x_{1}-5 x_{2}-x_{0} \\
x_{1}, x_{2}, x_{0}
\end{array} \\
& \text { Converting into slack form } \\
& \begin{array}{llllllll}
z & = & & & & & & \\
x_{0} \\
x_{3} & = & 2 & - & 2 x_{1} & + & x_{2} & + \\
x_{4} & = & -4 & - & x_{1} & + & 5 x_{2} & + \\
x_{0}
\end{array}
\end{aligned}
$$

Example of Initialize-Simplex (1/3)

Example of Initialize-Simplex (2/3)

$$
\begin{array}{rlrlllll}
z & = & & & & & & x_{0} \\
x_{3} & = & 2 & - & 2 x_{1} & + & x_{2} & + \\
x_{4} & = & -4 & - & x_{1} & + & 5 x_{2} & + \\
x_{0}
\end{array}
$$

Example of Initialize-Simplex (2/3)

$$
\begin{array}{llllllll}
z & = & & & & - & x_{0} \\
x_{3} & = & 2 & - & 2 x_{1} & + & x_{2} & + \\
x_{0} \\
x_{4} & = & -4 & - & x_{1} & + & 5 x_{2} & + \\
& & & x_{0}
\end{array}
$$

Example of Initialize-Simplex (2/3)

$$
\begin{aligned}
& \begin{array}{l}
z=2-2 x_{1}+x_{2}+x_{0} \\
x_{3}=2
\end{array} \\
& x_{4}=-4-x_{1}+5 x_{2}+x_{0} \\
& \text { Pivot with } x_{0} \text { entering and } x_{4} \text { leaving } \\
& \begin{array}{llrllllll}
z & = & -4 & - & x_{1} & + & 5 x_{2} & - & x_{4} \\
x_{0} & = & 4 & + & x_{1} & - & 5 x_{2} & + & x_{4} \\
x_{3} & = & 6 & - & x_{1} & - & 4 x_{2} & + & x_{4}
\end{array}
\end{aligned}
$$

Example of Initialize-Simplex (2/3)

$$
\begin{aligned}
& \begin{array}{llllllll}
z & = & & & & & & x_{0} \\
x_{3} & = & 2 & - & 2 x_{1} & + & x_{2} & + \\
x_{4} & = & -4 & x_{0} \\
& & & x_{1} & + & 5 x_{2} & + & x_{0} \\
& & & & & \\
& & & &
\end{array} \\
& \begin{array}{rlrllll}
z & = & -4 & - & x_{1} & +5 x_{2} & - \\
x_{0} \\
x_{0} & = & 4 & + & x_{1} & -5 x_{2} & + \\
x_{3} & = & x_{4} \\
\end{array}
\end{aligned}
$$

Basic solution $(4,0,0,6,0)$ is feasible!

Example of Initialize-Simplex (2/3)

Basic solution $(4,0,0,6,0)$ is feasible! Pivot with x_{2} entering and x_{0} leaving

Example of Initialize-Simplex (2/3)

$$
\begin{aligned}
& \begin{array}{llllllll}
z & = & & & & & & x_{0} \\
x_{3} & = & 2 & - & 2 x_{1} & + & x_{2} & + \\
x_{4} & = & -4 & - & x_{1} & + & 5 x_{2} & + \\
& & & x_{0} \\
& & & & & \\
& & & &
\end{array} \\
& \begin{array}{rlrlllll}
z & = & -4 & - & x_{1} & +5 x_{2} & - & x_{4} \\
x_{0} & = & 4 & + & x_{1} & -5 x_{2} & + & x_{4} \\
x_{3} & = & 6 & - & x_{1} & - & 4 x_{2} & + \\
x_{4}
\end{array}
\end{aligned}
$$

Basic solution $(4,0,0,6,0)$ is feasible!
Pivot with x_{2} entering and x_{0} leaving

$$
\begin{aligned}
z & = \\
x_{2} & =\frac{4}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
x_{3} & =\frac{14}{5}+\frac{4 x_{0}}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5}
\end{aligned}
$$

Example of Initialize-Simplex (2/3)

Basic solution $(4,0,0,6,0)$ is feasible! Pivot with x_{2} entering and x_{0} leaving

$$
\begin{aligned}
& z=\frac{4}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
& x_{2}=\frac{4 x_{0}}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5} \\
& x_{3}=\frac{14}{5}+\frac{4}{2}
\end{aligned}
$$

Optimal solution has $x_{0}=0$, hence the initial problem was feasible!

Example of Initialize-Simplex (3/3)

$$
\begin{aligned}
z & = \\
x_{2} & =\frac{4}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
x_{3} & =\frac{14}{5}+\frac{4 x_{0}}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5}
\end{aligned}
$$

Example of Initialize-Simplex (3/3)

$$
\begin{array}{lll}
z= & -x_{0} \\
x_{2}= & \frac{4}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
x_{3}=\frac{14}{5}+\frac{4 x_{0}}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5} \\
& & \begin{array}{l}
\text { Set } x_{0}=0 \text { and express objective function } \\
\\
\end{array} \\
& \text { by non-basic variables }
\end{array}
$$

Example of Initialize-Simplex (3/3)

$$
\begin{aligned}
& \begin{array}{c}
z=4-\frac{x_{0}}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
x_{2}=\frac{94}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5} \\
x_{3}=\frac{14}{5}+\frac{4 x_{0}}{5}
\end{array} \\
& \underbrace{2 x_{1}-x_{2}=2 x_{1}-\left(\frac{4}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5}\right)} \\
& \text { by non-basic variables } \\
& \begin{array}{l}
z=-\frac{4}{5}+\frac{9 x_{1}}{5}-\frac{x_{4}}{5} \\
x_{2}=\frac{4}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
x_{3}=\frac{14}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5}
\end{array}
\end{aligned}
$$

Example of Initialize-Simplex (3/3)

Example of Initialize-Simplex (3/3)

$$
\begin{array}{llll}
z & = & - & x_{0} \\
x_{2} & = & \frac{4}{5} & -\frac{x_{0}}{5} \\
x_{3} & =\frac{14}{5} & +\frac{4 x_{0}}{5} & -\frac{x_{1}}{5} \\
\frac{9 x_{1}}{5} & +\frac{x_{4}}{5} \\
\frac{x_{4}}{5}
\end{array}
$$

Set $x_{0}=0$ and express objective function by non-basic variables

$$
\begin{aligned}
& z=-\frac{4}{5}+\frac{9 x_{1}}{5}-\frac{x_{4}}{5} \\
& x_{2}=\frac{4}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
& x_{3}=\frac{14}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5}
\end{aligned}
$$

Basic solution $\left(0, \frac{4}{5}, \frac{14}{5}, 0\right)$, which is feasible!

Lemma 29.12

If a linear program L has no feasible solution, then Initialize-Simplex returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)

Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

If L is infeasible, Simplex returns "infeasible". If L is unbounded, Simplex returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,
2. is infeasible, or

3 . is unbounded.

If L is infeasible, Simplex returns "infeasible". If L is unbounded, Simplex returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

Workflow for Solving Linear Programs

Linear Programming and Simplex: Summary and Outlook

Linear Programming

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., $O(m+n)$

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., $O(m+n)$
- In theory: even with anti-cycling may need exponential time

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., $O(m+n)$
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which

makes SIMPLEX a polynomial-time algorithm?

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., $O(m+n)$
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which

makes SIMPLEX a polynomial-time algorithm?
Polynomial-Time Algorithms

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., $O(m+n)$
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

_ Polynomial-Time Algorithms
erses the interior of the feasible set of solutions (not just vertices!)

Linear Programming and Simplex: Summary and Outlook

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., $O(m+n)$
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

_ Polynomial-Time Algorithms
erses the interior of the feasible set of solutions (not just vertices!)

Test your Understanding

Which of the following statements are true?

1. In each iteration of the Simplex algorithm, the objective function increases.
2. There exist linear programs that have exactly two optimal solutions.
3. There exist linear programs that have infinitely many optimal solutions.
4. The Simplex algorithm always runs in worst-case polynomial time.
