Advanced Algorithms

I. Course Intro and Sorting Networks

Thomas Sauerwald

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Bonus Material: Construction of an Optimal Sorting Network (non-examinable)

Counting Networks

List of Topics

- I. Sorting Networks (Sorting, Counting)
- II. Linear Programming
- III. Approximation Algorithms: Covering Problems
- IV. Approximation Algorithms via Exact Algorithms
- V. Approximation Algorithms: Travelling Salesman Problem
- VI. Approximation Algorithms: Randomisation and Rounding

- closely follow CLRS3 and use the same numberring
- however, slides will be self-contained

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Bonus Material: Construction of an Optimal Sorting Network (non-examinable)

Counting Networks

Linear Programming and Simplex

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM*

G. DANTZIG, R. FULKERSON, and S. JOHNSON
The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

Abstract

It is shown that a certain tour of 49 cities, one in each of the 48 states and Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as follows: Find the shortest route (tour) for a salesman starting from a given city, visiting each of a specified group of cities, and then returning to the original point of departure. More generally, given an n by n symmetric matrix $D=\left(d_{I J}\right)$, where $d_{I J}$ represents the 'distance' from I to J, arrange the points in a cyclic order in such a way that the sum of the $d_{I J}$ between consecutive points is minimal. Since there are only a finite number of possibilities (at most $1 / 2(n-1)!$) to consider, the problem is to devise a method of picking out the optimal arrangement which is reasonably efficient for fairly large values of n. Although algorithms have been devised for problems of similar nature, e.g., the optimal assignment problem, ${ }^{3,7,8}$ little is known about the traveling-salesman problem. We do not claim that this note alters the situation very much; what we shall do is outline a way of approaching the problem that sometimes, at least, enables one to find an optimal path and prove it so. In particular, it will be shown that a certain arrangement of 49 cities, one in each of the 48 states and Washington, D. C., is best, the $d_{I J}$ used representing road distances as taken from an atlas.

Travelling Salesman Problem: The 42 (49) Cities

1. Manchester, N. H.
2. Montpelier, Vt.
3. Detroit, Mich.
4. Cleveland, Ohio
5. Charleston, W. Va.
6. Louisville, Ky.
7. Indianapolis, Ind.
8. Chicago, Ill.
9. Milwaukee, Wis.
10. Minneapolis, Minn.
11. Pierre, S. D.
12. Bismarck, N. D.
13. Helena, Mont.
14. Seattle, Wash.
15. Portland, Ore.
16. Boise, Idaho
17. Salt Lake City, Utah
18. Carson City, Nev.
19. Los Angeles, Calif.
20. Phoenix, Ariz.
21. Santa Fe, N. M.
22. Denver, Colo.
23. Cheyenne, Wyo.
24. Omaha, Neb.
25. Des Moines, Iowa
26. Kansas City, Mo.
27. Topeka, Kans.
28. Oklahoma City, Okla.
29. Dallas, Tex.
30. Little Rock, Ark.
31. Memphis, Tenn.
32. Jackson, Miss.
33. New Orleans, La.
34. Birmingham, Ala.
35. Atlanta, Ga.
36. Jacksonville, Fla.
37. Columbia, S. C.
38. Raleigh, N. C.
39. Richmond, Va.
40. Washington, D. C.
41. Boston, Mass.
42. Portland, Me.
A. Baltimore, Md.
B. Wilmington, Del.
C. Philadelphia, Penn.
D. Newark, N. J.
E. New York, N. Y.
F. Hartford, Conn.
G. Providence, R. I.

Computing the Optimal Tour

We are going to use our own implementation of the Simplex-Algorithm along with a visulation to solve a series of linear programs in order to solve the TSP instance optimally!

There are a couple of exercises spread across the recordings to test your understanding!

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Bonus Material: Construction of an Optimal Sorting Network (non-examinable)

Counting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance

Sorting Networks

- only perform comparisons
- can only handle inputs of a fixed size
- sequence of comparisons is set in advance
- Comparisons can be performed in parallel

Allows to sort n numbers in sublinear time!

Simple concept, but surprisingly deep and complex theory!

Comparison Networks

Figure 27.1 (a) A comparator with inputs x and y and outputs x^{\prime} and y^{\prime}. (b) The same comparator, drawn as a single vertical line. Inputs $x=7, y=3$ and outputs $x^{\prime}=3, y^{\prime}=7$ are shown.

Example of a Comparison Network (Figure 27.2, CLRS2)

Example of a Comparison Network (Figure 27.2, CLRS2)

Example of a Comparison Network (Figure 27.2, CLRS2)

Example of a Comparison Network (Figure 27.2, CLRS2)

Tracing back a path must never cycle back on itself and go through the same comparator twice.

Example of a Comparison Network (Figure 27.2, CLRS2)

This network is in fact a sorting network (Exercise 1)

Example of a Comparison Network (Figure 27.2, CLRS2)

This network would not be a sorting network (Exercise 2)

Example of a Comparison Network (Figure 27.2, CLRS2)

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

Lemma 27.1

If a comparison network transforms the input $a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ into the output $b=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$, then for any monotonically increasing function f, the network transforms $f(a)=\left\langle f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{n}\right)\right\rangle$ into $f(b)=\left\langle f\left(b_{1}\right), f\left(b_{2}\right), \ldots, f\left(b_{n}\right)\right\rangle$.

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is monotonically increasing.

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

Lemma 27.1

If a comparison network transforms the input $a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ into the output $b=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$, then for any monotonically increasing function f, the network transforms $f(a)=\left\langle f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{n}\right)\right\rangle$ into $f(b)=\left\langle f\left(b_{1}\right), f\left(b_{2}\right), \ldots, f\left(b_{n}\right)\right\rangle$.

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2^{n} possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2^{n} possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let $a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ be the input with $a_{i}<a_{j}$, but the network places a_{j} before a_{i} in the output
- Define a monotonically increasing function f as:

$$
f(x)= \begin{cases}0 & \text { if } x \leq a_{i} \\ 1 & \text { if } x>a_{i}\end{cases}
$$

- Since the network places a_{j} before a_{i}, by the previous lemma $\Rightarrow f\left(a_{j}\right)$ is placed before $f\left(a_{i}\right)$
- But $f\left(a_{j}\right)=1$ and $f\left(a_{i}\right)=0$, which contradicts the assumption that the network sorts all sequences of 0's and 1's correctly

Some Basic (Recursive) Sorting Networks

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Bonus Material: Construction of an Optimal Sorting Network (non-examinable)

Counting Networks

Bitonic Sequences

Bitonic Sequence
A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

Sequences of one or two numbers are defined to be bitonic.

Examples:

- $\langle 1,4,6,8,3,2\rangle \checkmark$
- $\langle 6,9,4,2,3,5\rangle \checkmark$
- $\langle 9,8,3,2,4,6\rangle$
- $\langle 4,5,7,1,2,6\rangle$
- binary sequences: $0^{i} 1^{j} 0^{k}$, or, $1^{i} 0^{j} 1^{k}$, for $i, j, k \geq 0$.

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is compared with wire $i+n / 2$ for $i=1,2, \ldots, n / 2$.

$$
\text { We always assume that } n \text { is even. }
$$

Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0 's and 1 's, then the output satisfies the following properties:

- both the top half and the bottom half are bitonic,
- every element in the top is not larger than any element in the bottom,
- at least one half is clean.

Proof of Lemma 27.3

W.I.o.g. assume that the input is of the form $0^{i} 1^{j} 0^{k}$, for some $i, j, k \geq 0$.

Proof of Lemma 27.3

W.I.o.g. assume that the input is of the form $0^{i} 1^{j} 0^{k}$, for some $i, j, k \geq 0$.

This suggests a recursive approach, since it now suffices to sort the top and bottom half separately.

The Bitonic Sorter

(a)

(b)

Figure 27.9 The comparison network Bitonic-Sorter $[n$], shown here for $n=8$. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of Bitonic-SORTER[$n / 2$] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Recursive Formula for depth $D(n)$:
Henceforth we will always assume that n is a power of 2 .

$$
D(n)= \begin{cases}0 & \text { if } n=1 \\ D(n / 2)+1 & \text { if } n=2^{k}\end{cases}
$$

BITONIC-SORTER $[n]$ has depth $\log n$ and sorts any zero-one bitonic sequence.

Merging Networks

Merging Networks

- can merge two sorted input sequences into one sorted output sequence
- will be based on a modification of Bıtonic-Sorter[n]

Basic Idea:

- consider two given sequences $X=00000111, Y=00001111$
- concatenating X with Y^{R} (the reversal of Y) $\Rightarrow 0000011111110000$

This sequence is bitonic!
Hence in order to merge the sequences X and Y, it suffices to perform a bitonic sort on X concatenated with Y^{R}.

Construction of a Merging Network (1/2)

- Given two sorted sequences $\left\langle a_{1}, a_{2}, \ldots, a_{n / 2}\right\rangle$ and $\left\langle a_{n / 2+1}, a_{n / 2+2}, \ldots, a_{n}\right\rangle$
- We know it suffices to bitonically sort $\left\langle a_{1}, a_{2}, \ldots, a_{n / 2}, a_{n}, a_{n-1}, \ldots, a_{n / 2+1}\right\rangle$
- Recall: first half-cleaner of Bitonic-Sorter[n] compares i and $n / 2+i$
\Rightarrow First part of Merger[n] compares inputs i and $n-i+1$ for $i=1,2, \ldots, n / 2$
- Remaining part is identical to BItONIC-SORTER[n]

(a)

(b)

Figure 27.10 Comparing the first stage of Merger[n] with Half-Cleaner $[n]$, for $n=8$. (a) The first stage of MERGER[n] transforms the two monotonic input sequences $\left\langle a_{1}, a_{2}, \ldots, a_{n / 2}\right\rangle$ and $\left\langle a_{n / 2+1}, a_{n / 2+2}, \ldots, a_{n}\right\rangle$ into two bitonic sequences $\left\langle b_{1}, b_{2}, \ldots, b_{n / 2}\right\rangle$ and $\left\langle b_{n / 2+1}, b_{n / 2+2}\right.$, $\left.\ldots, b_{n}\right\rangle$. (b) The equivalent operation for $\operatorname{Half-ClEaNER}[n]$. The bitonic input sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n / 2-1}, a_{n / 2}, a_{n}, a_{n-1}, \ldots, a_{n / 2+2}, a_{n / 2+1}\right\rangle$ is transformed into the two bitonic sequences $\left\langle b_{1}, b_{2}, \ldots, b_{n / 2}\right\rangle$ and $\left\langle b_{n}, b_{n-1}, \ldots, b_{n / 2+1}\right\rangle$.

Construction of a Merging Network (2/2)

(a)

(b)

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence. The network MERGER $[n]$ can be viewed as Bitonic-SORTER $[n]$ with the first half-cleaner altered to compare inputs i and $n-i+1$ for $i=1,2, \ldots, n / 2$. Here, $n=8$. (a) The network decomposed into the first stage followed by two parallel copies of BITONIC-SORTER $[n / 2]$. (b) The same network with the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

Construction of a Sorting Network

Main Components

1. Bitonic-Sorter[n]

- sorts any bitonic sequence
- depth $\log n$

2. Merger[n]

- merges two sorted input sequences
- depth $\log n$

Batcher's Sorting Network

- Sorter $n n$ is defined recursively:
- If $n=2^{k}$, use two copies of SORTER[$\left.n / 2\right]$ to sort two subsequences of length $n / 2$ each. Then merge them using Merger $[n]$.
- If $n=1$, network consists of a single wire.

can be seen as a parallel version of merge sort

Unrolling the Recursion (Figure 27.12)

Recursion for $D(n)$:

$$
D(n)= \begin{cases}0 & \text { if } n=1 \\ D(n / 2)+\log n & \text { if } n=2^{k}\end{cases}
$$

Solution: $D(n)=\Theta\left(\log ^{2} n\right)$.

Sorter [n] has depth $\Theta\left(\log ^{2} n\right)$ and sorts any input.

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Bonus Material: Construction of an Optimal Sorting Network (non-examinable)

Counting Networks

A Glimpse at the AKS Network

Ajtai, Komlós, Szemerédi (1983)
There exists a sorting network with depth $O(\log n)$.
Quite elaborate construction, and involves huges constants.

Perfect Halver

A perfect halver is a comparison network that, given any input, places the $n / 2$ smaller keys in $b_{1}, \ldots, b_{n / 2}$ and the $n / 2$ larger keys in $b_{n / 2+1}, \ldots, b_{n}$.

Perfect halver of depth $\log n$ exist \rightsquigarrow yields sorting networks of depth $\Theta\left((\log n)^{2}\right)$.

Approximate Halver

An (n, ϵ)-approximate halver, $\epsilon<1$, is a comparison network that for every $k=1,2, \ldots, n / 2$ places at most ϵk of its k smallest keys in $b_{n / 2+1}, \ldots, b_{n}$ and at most ϵk of its k largest keys in $b_{1}, \ldots, b_{n / 2}$.

We will prove that such networks can be constructed in constant depth!

Expander Graphs

Expander Graphs

A bipartite (n, d, μ)-expander is a graph with:

- G has n vertices ($n / 2$ on each side)
- the edge-set is union of d perfect matchings
- For every subset $S \subseteq V$ being in one part,

$$
|N(S)|>\min \{\mu \cdot|S|, n / 2-|S|\}
$$

\qquad
Specific definition tailored for sorting network - many other variants exist!

L

Expander Graphs:

- probabilistic construction "easy": take d (disjoint) random matchings
- explicit construction is a deep mathematical problem with ties to number theory, group theory, combinatorics etc.
- many applications in networking, complexity theory and coding theory

From Expanders to Approximate Halvers

Existence of Approximate Halvers (non-examinable)

Proof:

- $X:=$ keys with the k smallest inputs
- $Y:=$ wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_{t}, v_{t} be their keys after the comparator Let u_{d}, v_{d} be their keys at the output (note $\left.v_{d} \in X\right)$
- Further: $u_{d} \leq u_{t} \leq v_{t} \leq v_{d} \Rightarrow u_{d} \in X$
- Since u was arbitrary:

$$
|Y|+|N(Y)| \leq k .
$$

- Since G is a bipartite (n, d, μ)-expander:

$$
\begin{aligned}
|Y|+|N(Y)| & >|Y|+\min \{\mu|Y|, n / 2-|Y|\} \\
& =\min \{(1+\mu)|Y|, n / 2\} .
\end{aligned}
$$

- Combining the two bounds above yields:

$$
(1+\mu)|Y| \leq k .
$$

- Same argument \Rightarrow at most $\epsilon \cdot k$, $\epsilon:=1 /(\mu+1)$, of the k largest input keys are
 placed in $b_{1}, \ldots, b_{n / 2}$.
- typical application of expander graphs in parallel algorithms
- Much more work needed to construct the AKS sorting network

AKS network vs. Batcher's network

Donald E. Knuth (Stanford)
"Batcher's method is much better, unless n exceeds the total memory capacity of all computers on earth!"

Richard J. Lipton (Georgia Tech)
"The AKS sorting network is galactic: it needs that n be larger than 2^{78} or so to finally be smaller than Batcher's network for n items."

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Bonus Material: Construction of an Optimal Sorting Network (non-examinable)

Counting Networks

Siblings of Sorting Network

Sorting Networks

- sorts any input of size n
- special case of Comparison Networks

Switching (Shuffling) Networks

- creates a random permutation of n items
- special case of Permutation Networks

Counting Networks

- balances any stream of tokens over n wires
- special case of Balancing Networks

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
Values could represent addresses in memories or destinations on an interconnection network

Balancing Networks

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
Values could represent addresses in memories or destinations on an interconnection network

Balancing Networks

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Bitonic Counting Network

Counting Network (Formal Definition)

1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the number of tokens (ever received) on the designated input wires
2. Let $y_{1}, y_{2}, \ldots, y_{n}$ be the number of tokens (ever received) on the designated output wires
3. In a quiescent state: $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$
4. A counting network is a balancing network with the step-property:

$$
0 \leq y_{i}-y_{j} \leq 1 \text { for any } i<j
$$

Bitonic Counting Network: Take Batcher's Sorting Network and replace each comparator by a balancer.

Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} have the step property. Then:

1. We have $\sum_{i=1}^{n / 2} x_{2 i-1}=\left\lceil\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rceil$, and $\sum_{i=1}^{n / 2} x_{2 i}=\left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rfloor$
2. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, then $x_{i}=y_{i}$ for $i=1, \ldots, n$.
3. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}+1$, then $\exists!j=1,2, \ldots, n$ with $x_{j}=y_{j}+1$ and $x_{i}=y_{i}$ for $j \neq i$.

Key Lemma
Consider a MERGER[n]. Then if the inputs $x_{1}, \ldots, x_{n / 2}$ and $x_{n / 2+1}, \ldots, x_{n}$ have the step property, then so does the output y_{1}, \ldots, y_{n}.

Proof (by induction on n being a power of 2)

- Case $n=2$ is clear, since Merger[2] is a single balancer

Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} have the step property. Then:

1. We have $\sum_{i=1}^{n / 2} x_{2 i-1}=\left\lceil\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rceil$, and $\sum_{i=1}^{n / 2} x_{2 i}=\left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rfloor$
2. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, then $x_{i}=y_{i}$ for $i=1, \ldots, n$.
3. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}+1$, then $\exists!j=1,2, \ldots, n$ with $x_{j}=y_{j}+1$ and $x_{i}=y_{i}$ for $j \neq i$.

Proof (by induction on n being a power of 2)

- Case $n=2$ is clear, since Merger[2] is a single balancer
- $n>2$: Let $z_{1}, \ldots, z_{n / 2}$ and $z_{1}^{\prime}, \ldots, z_{n / 2}^{\prime}$ be the outputs of the MERGER[$n / 2$] subnetworks

Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} have the step property. Then:

1. We have $\sum_{i=1}^{n / 2} x_{2 i-1}=\left\lceil\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rceil$, and $\sum_{i=1}^{n / 2} x_{2 i}=\left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rfloor$
2. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, then $x_{i}=y_{i}$ for $i=1, \ldots, n$.
3. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}+1$, then $\exists!j=1,2, \ldots, n$ with $x_{j}=y_{j}+1$ and $x_{i}=y_{i}$ for $j \neq i$.

Proof (by induction on n being a power of 2)

- Case $n=2$ is clear, since Merger[2] is a single balancer
- $n>2$: Let $z_{1}, \ldots, z_{n / 2}$ and $z_{1}^{\prime}, \ldots, z_{n / 2}^{\prime}$ be the outputs of the MERGER[$n / 2$] subnetworks

Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} have the step property. Then:

1. We have $\sum_{i=1}^{n / 2} x_{2 i-1}=\left\lceil\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rceil$, and $\sum_{i=1}^{n / 2} x_{2 i}=\left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_{i}\right\rfloor$
2. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, then $x_{i}=y_{i}$ for $i=1, \ldots, n$.
3. If $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}+1$, then $\exists!j=1,2, \ldots, n$ with $x_{j}=y_{j}+1$ and $x_{i}=y_{i}$ for $j \neq i$.

Proof (by induction on n being a power of 2)

- Case $n=2$ is clear, since Merger[2] is a single balancer
- $n>2$: Let $z_{1}, \ldots, z_{n / 2}$ and $z_{1}^{\prime}, \ldots, z_{n / 2}^{\prime}$ be the outputs of the MERGER[$n / 2$] subnetworks
- $\mathrm{IH} \Rightarrow z_{1}, \ldots, z_{n / 2}$ and $z_{1}^{\prime}, \ldots, z_{n / 2}^{\prime}$ have the step property
- Let $Z:=\sum_{i=1}^{n / 2} z_{i}$ and $Z^{\prime}:=\sum_{i=1}^{n / 2} z_{i}^{\prime}$
- Claim: $\left|Z-Z^{\prime}\right| \leq 1\left(\right.$ since $\left.Z^{\prime}=\left\lfloor\frac{1}{2} \sum_{i=1}^{n / 2} x_{i}\right\rfloor+\left\lceil\frac{1}{2} \sum_{i=n / 2+1}^{n} X_{i}\right\rceil\right)$
- Case 1: If $Z=Z^{\prime}$, then F2 implies the output of MERGER[$\left.n\right]$ is $y_{i}=z_{1+\lfloor(i-1) / 2\rfloor}$
- Case 2: If $\left|Z-Z^{\prime}\right|=1$, F3 implies $z_{i}=z_{i}^{\prime}$ for $i=1, \ldots, n / 2$ except a unique j with $z_{j} \neq z_{j}^{\prime}$. Balancer between z_{j} and z_{j}^{\prime} will ensure that the step property holds.

Bitonic Counting Network in Action (Asychnronous Execution)

Bitonic Counting Network in Action (Asychnronous Execution)

Counting can be done as follows: Add local counter to each output wire i, to assign consecutive numbers $i, i+n, i+2 \cdot n, \ldots$

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

Consists of $\log n$ BLOCK[$n]$ networks each of which has depth $\log n$

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_{1}, a_{2}, \ldots, a_{n} \in\{0,1\}^{n}$ to S
- Define an input $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}^{n}$ to C by $x_{i}=1$ iff $a_{i}=0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires
- S corresponds to $C \Rightarrow$ all zeros will be routed to the lower wires
- By the Zero-One Principle, S is a sorting network.

S

Exercise: Consider a network which is a sorting network, but not a counting network.
Hint: Try to find a simple network with 4 wires that corresponds to a basic sequential sorting algorithm.

II. Linear Programming

Thomas Sauerwald

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

What are Linear Programs?

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising (from CLRS3)

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

Political Advertising Continued

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

2

- Possible Solution:
- \$20,000 on advertising to building roads
- \$0 on advertising to gun control
- \$4,000 on advertising to farm subsidies
- \$9,000 on advertising to a gasoline tax
- Total cost: \$33,000

What is the best possible strategy?

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- $x_{1}=$ number of thousands of dollars spent on advertising on building roads
- $x_{2}=$ number of thousands of dollars spent on advertising on gun control
- $x_{3}=$ number of thousands of dollars spent on advertising on farm subsidies
- $x_{4}=$ number of thousands of dollars spent on advertising on gasoline tax Constraints:
- $-2 x_{1}+8 x_{2}+0 x_{3}+10 x_{4} \geq 50$
- $5 x_{1}+2 x_{2}+0 x_{3}+0 x_{4} \geq 100$

Objective: Minimize $x_{1}+x_{2}+x_{3}+x_{4}$

- $3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25$

The Linear Program

_L Linear Program for the Advertising Problem

$$
\operatorname{minimize} \quad x_{1}+x_{2}+\quad x_{3}+\quad x_{4}
$$ subject to

$$
\begin{array}{rcrrrrr}
-2 x_{1} & +8 x_{2} & +0 x_{3} & + & 10 x_{4} & \geq & 50 \\
5 x_{1} & +2 x_{2} & +0 x_{3} & +0 x_{4} & \geq & 100 \\
3 x_{1} & -5 x_{2} & +10 x_{3} & - & 2 x_{4} & \geq & 25 \\
x_{1}, x_{2}, x_{3}, x_{4}
\end{array}
$$

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program

- Given $a_{1}, a_{2}, \ldots, a_{n}$ and a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear function f is defined by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

- Linear Equality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$
- Linear Inequality: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geqq b$
- Linear-Progamming Problem: either minimize or maximize a linear function subject to a set of linear constraints

A Small(er) Example

A Small(er) Example

maximize
subject to

$$
\begin{array}{ccccr}
x_{1} & + & x_{2} & & \\
& & & & 8 \\
4 x_{1} & - & x_{2} & \leq & 8 \\
2 x_{1} & + & x_{2} & \leq & 10 \\
5 x_{1} & - & 2 x_{2} & \geq & -2 \\
x_{1}, x_{2} & & \geq & 0
\end{array}
$$

Graphical Procedure: Move the line $x_{1}+x_{2}=z$ as far up as possible.

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Shortest Paths

Single-Pair Shortest Path Problem

- Given: directed graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G
$p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)$ such that
 $w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)$ is minimized.

Maximum Flow

Maximum Flow Problem

- Given: directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^{+}$ (recall $c(u, v)=0$ if $(u, v) \notin E)$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow as LP
maximize

$$
\begin{aligned}
& \sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} \\
& f_{u v} \leq c(u, v) \\
& \sum_{v \in V} f_{v u} \text { for each } u, v \in V, \\
& f_{u v} \geq \sum_{v \in V} f_{u v} \\
& \text { for each } u \in V \backslash\{s, t\}, \\
& 0 \text { for each } u, v \in V .
\end{aligned}
$$

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph $G=(V, E)$ with capacities $c: E \rightarrow \mathbb{R}^{+}$, pair of vertices $s, t \in V$, cost function $a: E \rightarrow \mathbb{R}^{+}$, flow demand of d units
- Goal: Find a flow $f: V \times V \rightarrow \mathbb{R}$ from s to t with $|f|=d$ while minimising the total cost $\sum_{(u, v) \in E} a(u, v) f_{u v}$ incurrred by the flow.

Optimal Solution with total cost:

$$
\sum_{(u, v) \in E} a(u, v) f_{u v}=(2 \cdot 2)+(5 \cdot 2)+(3 \cdot 1)+(7 \cdot 1)+(1 \cdot 3)=27
$$

(a)

(b)

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum-Cost Flow as a LP

$$
\begin{aligned}
& \text { Minimum Cost Flow as LP } \\
& \text { minimize } \quad \sum_{(u, v) \in E} a(u, v) f_{u v} \\
& \text { subject to } \\
& \qquad \begin{array}{rll}
f_{u v} & \leq c(u, v) & \\
& \text { for each } u, v \in V \text {, } \\
\sum_{v \in V} f_{v u}-\sum_{v \in V} f_{u v} & =0 & \text { for each } u \in V \backslash\{s, t\}, \\
\sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s} & =d, & \\
f_{u v} & \geq 0 & \text { for each } u, v \in V .
\end{array}
\end{aligned}
$$

Real power of Linear Programming comes from the ability to solve new problems!

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Standard and Slack Forms

Standard Form (Matrix-Vector-Notation)
maximize
subject to

$$
c^{T} x<\underbrace{}_{\text {Inner product of two vectors }}
$$

$$
\begin{aligned}
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

> Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize	$-2 x_{1}$	$+$	$3 x_{2}$		
subject to					
	χ_{1}	+	x_{2}	$=$	7
	x_{1}	-	$2 x_{2}$	\leq	4
	χ_{1}			\geq	0
		Negate objective function			
maximize	$2 x_{1}$	-	$3 x_{2}$		
subject to					
	x_{1}	+	χ_{2}	$=$	7
	x_{1}	-	$2 x_{2}$	\leq	4
	x_{1}				0

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.
maximize $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

$x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime}=7$
$x_{1}-2 x_{2}^{\prime}+2 x_{2}^{\prime \prime} \leq 4$
$x_{1}, x_{2}^{\prime} x_{2}^{\prime \prime}$
Repplace each equality
by two inequalities.

\downarrow by
maximize $2 x_{1}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime}$
subject to

$x_{1}+x_{2}^{\prime}$	-
$x_{1}+x_{2}^{\prime \prime}$	≤ 7
$x_{1}-2 x_{2}^{\prime}$	$-2 x_{2}^{\prime \prime}$
\geq	\geq
$x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime}$	

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Converting into Standard Form (5/5)

It is always possible to convert a linear program into standard form.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ be an inequality constraint
- Introduce a slack variable s by
s measures the slack between the two sides of the inequality.

$$
\begin{aligned}
& s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& s \geq 0
\end{aligned}
$$

- Denote slack variable of the i th inequality by x_{n+i}

Converting Standard Form into Slack Form (2/3)

$$
\begin{aligned}
& \text { maximize } 2 x_{1}-3 x_{2}+3 x_{3} \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& \text { maximize } 2 x_{1}-3 x_{2}+3 x_{3} \\
& \text { subject to } \\
& \begin{array}{llrlllrlr}
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + & x_{3} \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - & x_{3} \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - & 2 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & & \geq & 0 &
\end{array}
\end{aligned}
$$

Converting Standard Form into Slack Form (3/3)

maximize
subject to

$$
2 x_{1}-3 x_{2}+3 x_{3}
$$

$$
\begin{array}{rrrrrrrrr}
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + & x_{3} \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - & x_{3} \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - & 2 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & & \geq & 0 & &
\end{array}
$$

Use variable z to denote objective function and omit the nonnegativity constraints.

z	$=$			$2 x_{1}$	-	$3 x_{2}$	+	$3 x_{3}$
x_{4}	$=$	7	-	x_{1}	-	x_{2}	+	x_{3}
x_{5}	$=$	-7	+	x_{1}	+	x_{2}	-	x_{3}
x_{6}	$=$	4	-	x_{1}	+	$2 x_{2}$	-	$2 x_{3}$

This is called slack form.

Basic and Non-Basic Variables

$$
\begin{array}{llllllllr}
z & = & & 2 x_{1} & - & 3 x_{2} & + & 3 x_{3} \\
x_{4} & = & 7 & - & x_{1} & - & x_{2} & + & x_{3} \\
x_{5} & = & -7 & + & x_{1} & + & x_{2} & - & x_{3} \\
x_{6} & = & 4 & - & x_{1} & + & 2 x_{2} & - & 2 x_{3}
\end{array}
$$

Basic Variables: $B=\{4,5,6\}$
Non-Basic Variables: $N=\{1,2,3\}$

Slack Form (Formal Definition)
Slack form is given by a tuple (N, B, A, b, c, v) so that

$$
\begin{aligned}
& z=v+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } i \in B
\end{aligned}
$$

and all variables are non-negative.
Variables/Coefficients on the right hand side are indexed by B and N.

Slack Form (Example)

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Slack Form Notation

- $B=\{1,2,4\}, N=\{3,5,6\}$

$$
A=\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right)
$$

$$
b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right), \quad c=\left(\begin{array}{l}
c_{3} \\
c_{5} \\
c_{6}
\end{array}\right)=\left(\begin{array}{l}
-1 / 6 \\
-1 / 6 \\
-2 / 3
\end{array}\right)
$$

- $v=28$

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. $x-d$ and $x+d$ are feasible
- Since $A(x+d)=b$ and $A x=b \Rightarrow A d=0$
- W.I.o.g. assume $c^{T} d \geq 0$ (otherwise replace d by $-d$)
- Consider $x+\lambda d$ as a function of $\lambda \geq 0$
- Case 1: There exists j with $d_{j}<0$
- Increase λ from 0 to λ^{\prime} until a new entry of $x+\lambda d$ becomes zero
- $x+\lambda^{\prime} d$ feasible, since $A\left(x+\lambda^{\prime} d\right)=A x=b$ and $x+\lambda^{\prime} d \geq 0$
- $c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+c^{T} \lambda^{\prime} d \geq c^{T} x$

The Structure of Optimal Solutions

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. $A x=b$. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. $x-d$ and $x+d$ are feasible
- Since $A(x+d)=b$ and $A x=b \Rightarrow A d=0$
- W.l.o.g. assume $c^{T} d \geq 0$ (otherwise replace d by $-d$)
- Consider $x+\lambda d$ as a function of $\lambda \geq 0$
- Case 2: For all $j, d_{j} \geq 0$
- $x+\lambda d$ is feasible for all $\lambda \geq 0: A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$
- If $\lambda \rightarrow \infty$, then $c^{T}(x+\lambda d) \rightarrow \infty$
\Rightarrow This contradicts the assumption that there exists an
 optimal solution.

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm: Introduction

 Simplex Algorithm- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0 , and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease \quad In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Extended Example: Conversion into Slack Form

Extended Example: Iteration 1

Extended Example: Iteration 1

Increasing the value of x_{1} would increase the objective value.

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-2 x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-2 x_{2}-2 x_{3}
\end{aligned}
$$

The third constraint is the tightest and limits how much we can increase x_{1}.

Switch roles of x_{1} and x_{6} :

- Solving for x_{1} yields:

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

- Substitute this into x_{1} in the other three equations

Extended Example: Iteration 2

Increasing the value of x_{3} would increase the objective value.

$$
\begin{aligned}
& x=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& z=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{1}=9-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \\
& x_{5}=6-1
\end{aligned}
$$

Basic solution: $\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=(9,0,0,21,6,0)$ with objective value 27

Extended Example: Iteration 2

$$
\begin{aligned}
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}
\end{aligned}
$$

The third constraint is the tightest and limits how much we can increase x_{3}.

Switch roles of x_{3} and x_{5} :

- Solving for x_{3} yields:

$$
x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}-\frac{x_{6}}{8} .
$$

- Substitute this into x_{3} in the other three equations

Extended Example: Iteration 3

Increasing the value of x_{2} would increase the objective value.

$$
\begin{aligned}
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
& x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}
\end{aligned}
$$

Basic solution: $\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=\left(\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0,0\right)$ with objective value $\frac{111}{4}=27.75$

Extended Example: Iteration 3

$$
\begin{aligned}
z & =\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
x_{1} & =\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
x_{3} & =\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
x_{4} & =\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}
\end{aligned}
$$

The second constraint is the tightest and limits how much we can increase x_{2}.

Switch roles of x_{2} and x_{3} :

- Solving for x_{2} yields:

$$
x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} .
$$

- Substitute this into x_{2} in the other three equations

Extended Example: Iteration 4

All coefficients are negative, and hence this basic solution is optimal!

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Basic solution: $\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{6}}\right)=(8,4,0,18,0,0)$ with objective value 28

Extended Example: Visualization of Simplex

Exercise: How many basic solutions (including non-feasible ones) are there?

Extended Example: Alternative Runs (1/2)

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& \text { Switch roles of } x_{2} \text { and } x_{5} \\
& z=12+2 x_{1}-\frac{x_{3}}{2}-\frac{x_{5}}{2} \\
& x_{2}=12-x_{1}-\frac{5 x_{3}}{2}-\frac{x_{5}}{2} \\
& x_{4}=18-x_{2}-\frac{x_{3}}{2}+\frac{x_{5}}{2} \\
& x_{6}=24-3 x_{1}+\frac{x_{3}}{2}+\frac{x_{5}}{2} \\
& \text { Switch roles of } x_{1} \text { and } x_{6} \\
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2}
\end{aligned}
$$

Extended Example: Alternative Runs (2/2)

$$
\begin{aligned}
& z=\frac{48}{5}+\frac{11 x_{1}}{5}+\frac{x_{2}}{5}-\frac{2 x_{5}}{5} \\
& x_{4}=\frac{78}{5}+\frac{x_{1}}{5}+\frac{x_{2}}{5}+\frac{3 x_{5}}{5} \\
& x_{3}=\frac{24}{5}-\frac{2 x_{1}}{5}-\frac{2 x_{2}}{5}-\frac{x_{5}}{5} \\
& x_{6}=\frac{132}{5}-\frac{16 x_{1}}{5}-\frac{x_{2}}{5}+\frac{2 x_{3}}{5} \\
& \text { Switch roles of } x_{1} \text { and } x_{6} \ldots \ldots \text { Switch roles of } x_{2} \text { and } x_{3} \\
& \begin{array}{llllllllllll}
\\
z & = & \frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} & z & =28 & -\frac{x_{3}}{6} & - & \frac{x_{5}}{6} & - & \frac{2 x_{6}}{3} \\
x_{1} & = & \frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} & x_{1} & =8 & +\frac{x_{3}}{6} & +\frac{x_{5}}{6} & - & \frac{x_{6}}{3} \\
x_{3} & = & \frac{3}{2}-\frac{3 x_{2}}{8}- & \frac{x_{5}}{4}+\frac{x_{6}}{8} & x_{2} & =4 & -\frac{8 x_{3}}{3} & -\frac{2 x_{5}}{3} & +\frac{x_{6}}{3} \\
x_{4} & = & \frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}- & \frac{x_{6}}{16} & x_{4} & =18 & -\frac{x_{3}}{2}+\frac{x_{5}}{2} &
\end{array}
\end{aligned}
$$

The Pivot Step Formally

$\operatorname{Pivot}(N, B, A, b, c, v, l, e)$
1 // Compute the coefficients of the equation for new basic variable x_{e}.
let \hat{A} be a new $m \times n$ matrix
$\hat{b}_{e}=b_{l} / a_{l e}$
for each $j \in N-\{e\} \quad$ Need that $a_{l e} \neq 0$!
$\hat{a}_{e j}=a_{l j} / a_{l e}$
$\hat{a}_{e l}=1 / a_{l e}$

Rewrite "tight" equation for enterring variable x_{e}.
// Compute the coefficients of the remaining constraints.
for each $i \in B-\{l\}$
$\widehat{b}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$
for each $j \in N-\{e\}$
$\hat{a}_{i j}=a_{i j}-a_{i e} \hat{a}_{e j}$
$\widehat{a}_{i l}=-a_{i e} \hat{a}_{e l}$

Substituting x_{e} into other equations.
// Compute the objective function.
$\hat{v}=v+c_{e} \hat{b}_{e}$
for each $j \in N-\{e\}$
$\widehat{c}_{j}=c_{j}-c_{e} \hat{a}_{e j}$
$\widehat{c}_{l}=-c_{e} \hat{a}_{e l}$
Substituting x_{e} into objective function.
// Compute new sets of basic and nonbasic variables.
$\widehat{N}=N-\{e\} \cup\{l\}$
$\widehat{B}=B-\{l\} \cup\{e\}$
return $(\hat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to $\operatorname{Pivot}(N, B, A, b, c, v, l, e)$ in which $a_{l e} \neq 0$. Let the values returned from the call be ($\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v}$), and let \bar{x} denote the basic solution after the call. Then

1. $\bar{x}_{j}=0$ for each $j \in \widehat{N}$.
2. $\bar{x}_{e}=b_{l} / a_{l e}$.
3. $\bar{x}_{i}=b_{i}-a_{i e} \widehat{b}_{e}$ for each $i \in \widehat{B} \backslash\{e\}$.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

$$
x_{i}=\widehat{b}_{i}-\sum_{j \in \widehat{N}} \widehat{a}_{i j} x_{j}
$$

we have $\bar{x}_{i}=\widehat{b}_{i}$ for each $i \in \widehat{B}$. Hence $\bar{x}_{e}=\widehat{b}_{e}=b_{l} / a_{l e}$.
3. After substituting into the other constraints, we have

$$
\bar{x}_{i}=\widehat{b}_{i}=b_{i}-a_{i e} \widehat{b}_{e}
$$

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

> Example before was a particularly nice one!

The formal procedure Simplex

```
\(\operatorname{Simplex}(A, b, c)\)
    \((N, B, A, b, c, v)=\operatorname{Initialize-Simplex}(A, b, c)\)
2 let \(\Delta\) be_a new vector of length \(\underline{m}\)
, while some index \(j \in \bar{N}\) has \(c_{j}>\overline{0}\)
4 - choose an index \(e \in N\) for which \(c_{e}>0\)
5 for each index \(i \in B\)
        if \(a_{i e}>0\)
        \(\Delta_{i}=b_{i} / a_{i e}\)
        else \(\Delta_{i}=\infty\)
    choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
    if \(\Delta_{l}==\infty\)
        return "unbounded"
    else \((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, e)\) ।
\(\overline{\text { for }} \bar{i} \overline{=} \overline{1} \overline{\text { to }}{ }^{-} n\)
    if \(i \in B\)
        \(\bar{x}_{i}=b_{i}\)
    else \(\bar{x}_{i}=0\)
return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)

\section*{The formal procedure Simplex}
```

Simplex (A,b,c)
(N,B,A,b,c,\nu)=\operatorname{Initialize-Simplex (A,b,c)}
let }\Delta\mathrm{ be a new vector of length m
while some index j\inN has }\mp@subsup{c}{j}{}>
choose an index e\inN for which ce}\mp@subsup{c}{e}{}>
for each index }i\in
if }\mp@subsup{a}{ie}{}>
\Deltai}=\mp@subsup{b}{i}{}/\mp@subsup{a}{ie}{
else }\mp@subsup{\Delta}{i}{}=
choose an index l\inB that minimizes }\mp@subsup{\Delta}{i}{
if }\mp@subsup{\Delta}{l}{}==
1 1 . r e t u r n ~ " m n b o u n d e d " ~

```

Proof is based on the following three-part loop invariant:
1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
2. for each \(i \in B\), we have \(b_{i} \geq 0\),
3. the basic solution associated with the (current) slack form is feasible.

\section*{Lemma 29.2}

Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if SImplex returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

\section*{Termination}

Degeneracy: One iteration of SIMPLEx leaves the objective value unchanged.
\[
\begin{array}{lllllll}
z & = & x_{1} & + & x_{2} & + & x_{3} \\
x_{4} & = & 8 & x_{1} & - & x_{2} & \\
x_{5} & = & & & & x_{2} & - \\
x_{3}
\end{array}
\]
\[
\text { Pivot with } x_{1} \text { entering and } x_{4} \text { leaving }
\]
\[
\begin{array}{rlllll}
z & =8 & & +x_{3} & - & x_{4} \\
x_{1} & =8-x_{2} & & & -x_{4}
\end{array}
\]
\[
x_{5}=x_{2}-x_{3}
\]

Cycling: If additionally slack form at two \(\quad\) Pivot with \(x_{3}\) entering and \(x_{5}\) leaving iterations are identical, SIMPLEX fails to terminate! \(\downarrow\)
\begin{tabular}{llllllll}
\(z\) & \(=8\) & + & \(x_{2}\) & - & \(x_{4}\) & - & \(x_{5}\) \\
\(x_{1}\) & \(=8\) & - & \(x_{2}\) & - & \(x_{4}\) & & \\
\(x_{3}\) & \(=\) & & \(x_{2}\) & & & & \\
\(x_{5}\)
\end{tabular}


Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

\section*{Termination and Running Time}

It is theoretically possible, but very rare in practice.
Cycling: SIMPLEX may fail to terminate.

\section*{Anti-Cycling Strategies}
1. Bland's rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each \(b_{i}\) by \(\hat{b}_{i}=b_{i}+\epsilon_{i}\), where \(\epsilon_{i} \gg \epsilon_{i+1}\) are all small.

\section*{Lemma 29.7}

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most \(\binom{n+m}{m}\) iterations.

Every set \(B\) of basic variables uniquely determines a slack form, and there are at most \(\binom{n+m}{m}\) unique slack forms.

Outline

\section*{Introduction}

\section*{Formulating Problems as Linear Programs}

\section*{Standard and Slack Forms}

\section*{Simplex Algorithm}

Finding an Initial Solution

\section*{Finding an Initial Solution}


\section*{Geometric Illustration}


\section*{Formulating an Auxiliary Linear Program}
maximize \(\quad \sum_{j=1}^{n} c_{j} x_{j}\)
subject to
\[
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
\]

\section*{Formulating an Auxiliary Linear Program}
maximize \(\quad-x_{0}\)
subject to
\[
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
\]

\section*{Lemma 29.11}

Let \(L_{\text {aux }}\) be the auxiliary LP of a linear program \(L\) in standard form. Then \(L\) is feasible if and only if the optimal objective value of \(L_{a u x}\) is 0 .

\section*{Proof.}
- " \(\Rightarrow\) ": Suppose \(L\) has a feasible solution \(\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
- \(\bar{x}_{0}=0\) combined with \(\bar{x}\) is a feasible solution to \(L_{\text {aux }}\) with objective value 0 .
- Since \(\bar{x}_{0} \geq 0\) and the objective is to maximize \(-x_{0}\), this is optimal for \(L_{\text {aux }}\)
- " \(\Leftarrow\) ": Suppose that the optimal objective value of \(L_{a u x}\) is 0
- Then \(\bar{x}_{0}=0\), and the remaining solution values ( \(\left.\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\) satisfy \(L\).

\section*{Initialize-Simplex}

\section*{Initialize-Simplex \((A, b, c)\)}
\[
\begin{aligned}
& \text { Test solution with } N=\{1,2, \ldots, n\}, B=\{n+1, n+ \\
& 2, \ldots, n+m\}, \bar{x}_{i}=b_{i} \text { for } i \in B, \bar{x}_{i}=0 \text { otherwise. }
\end{aligned}
\]
let \(k\) be the index of the minimum \(b_{i}\)
```

if $b_{k} \geq 0 \quad / /$ is the initial basic solution feasible?

```
    3 return \((\{1,2, \ldots, n\},\{n+1, n+2, \ldots, n+m\}, A, b, c, 0)\)
    4 form \(L_{\text {aux }}\) by adding - \(x_{0}\) to the left-hand side of each constraint
    and setting the objective function to \(-x_{0}\)
let \((N, B, A, b, c, v)\) be the resulting slack form for \(L_{\text {aux }}\)
\(l=n+k\)
\(/ / L_{\text {aux }}\) has \(n+1\) nonbasic variables and \(m\) basic variables.
\((N, B, A, b, c, v)=\operatorname{Pivot}(N, B, A, b, c, v, l, 0) \quad \begin{array}{r}\ell \text { will be the leaving variable so } \\ \text { that } x_{\ell} \text { has the most negative value. }\end{array}\)
Pivot step with \(x_{\ell}\) leaving and \(x_{0}\) entering.
// The basic solution is now feasible for \(L_{\text {aux }}\).
iterate the while loop of lines 3-12 of Simplex until an optimal solution
    to \(L_{\text {aux }}\) is found
if the optimal solution to \(L_{\text {aux }}\) sets \(\bar{x}_{0}\) to 0
    if \(\bar{x}_{0}\) is basic
        perform one (degenerate) pivot to make it nonbasic
        This pivot step does not change
    the value of any variable.
    from the final slack form of \(L_{\text {aux }}\), remove \(x_{0}\) from the constraints and
        restore the original objective function of \(L\), but replace each basic
        variable in this objective function by the right-hand side of its
        associated constraint
    return the modified final slack form
else return "infeasible"

\section*{Example of Initialize-Simplex (1/3)}


\section*{Example of Initialize-Simplex (2/3)}


Basic solution \((4,0,0,6,0)\) is feasible! Pivot with \(x_{2}\) entering and \(x_{0}\) leaving
\[
\begin{aligned}
& z=\frac{4}{5}-\frac{x_{0}}{5}+\frac{x_{1}}{5}+\frac{x_{4}}{5} \\
& x_{2}=\frac{4 x_{0}}{5}-\frac{9 x_{1}}{5}+\frac{x_{4}}{5} \\
& x_{3}=\frac{14}{5}+\frac{1}{2}
\end{aligned}
\]

Optimal solution has \(x_{0}=0\), hence the initial problem was feasible!

\section*{Example of Initialize-Simplex (3/3)}


\section*{Lemma 29.12}

If a linear program \(L\) has no feasible solution, then INITIALIZE-Simplex returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

\section*{Fundamental Theorem of Linear Programming}

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or

3 . is unbounded.

If \(L\) is infeasible, SIMPLEX returns "infeasible". If \(L\) is unbounded, SImplex returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

\section*{Workflow for Solving Linear Programs}


\section*{Linear Programming and Simplex: Summary and Outlook}

\section*{Linear Programming}
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

\section*{Simplex Algorithm}
- In practice: usually terminates in polynomial time, i.e., \(O(m+n)\)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

_ Polynomial-Time Algorithms
- Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)


\section*{Test your Understanding}


Which of the following statements are true?
1. In each iteration of the Simplex algorithm, the objective function increases.
2. There exist linear programs that have exactly two optimal solutions.
3. There exist linear programs that have infinitely many optimal solutions.
4. The Simplex algorithm always runs in worst-case polynomial time.

\title{
III. Approximation Algorithms: Covering Problems
}

Thomas Sauerwald

\section*{Outline}

\author{
Introduction
}

Vertex Cover

The Set-Covering Problem

\section*{Motivation}

Many fundamental problems are NP-complete, yet they are too important to be abandoned.

> Examples: Hamilton, 3-SAT, Vertex-Cover, Knapsack,. . .

Strategies to cope with NP-complete problems
1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory.
2. Isolate important special cases which can be solved in polynomial-time.
3. Develop algorithms which find near-optimal solutions in polynomial-time.

We will call these approximation algorithms.

\section*{Performance Ratios for Approximation Algorithms}

Approximation Ratio
An algorithm for a problem has approximation ratio \(\rho(n)\), if for any input of size \(n\), the cost \(C\) of the returned solution and optimal cost \(C^{*}\) satisfy:
\[
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n) .
\]
- Maximization problem: \(\frac{c^{*}}{c} \geq 1\)
- Minimization problem: \(\frac{C}{C^{*}} \geq 1\) This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.
Approximation Schemes
An approximation scheme is an approximation algorithm, which given any input and \(\epsilon>0\), is a \((1+\epsilon)\)-approximation algorithm.
- It is a polynomial-time approximation scheme (PTAS) if for any fixed \(\epsilon>0\), the runtime is polynomial in \(n\). For example, \(O\left(n^{2 / \epsilon}\right)\).
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both \(1 / \epsilon\) and \(n\). For example, \(O\left((1 / \epsilon)^{2} \cdot n^{3}\right)\).

Outline

\section*{Introduction}

\section*{Vertex Cover}

\section*{The Set-Covering Problem}

\section*{The Vertex-Cover Problem}

\section*{We are covering edges by picking vertices!}

\section*{Vertex Cover Problem}
- Given: Undirected graph \(G=(V, E)\)
- Goal: Find a minimum-cardinality subset \(V^{\prime} \subseteq V\) such that if \((u, v) \in E(G)\), then \(u \in V^{\prime}\) or \(v \in V^{\prime}\).

This is an NP-hard problem.


\section*{Applications:}
- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Perform all tasks with the minimal amount of resources
- Extensions: weighted vertices or hypergraphs ( \(\rightsquigarrow\) Set-Covering Problem)


Exercise: Be creative and design your own algorithm for VERTEX-COVER!

\section*{An Approximation Algorithm based on Greedy}

\section*{Approx-Vertex-Cover ( \(G\) )}
\(C=\emptyset\)
\(2 \quad E^{\prime}=G . E\)
3 while \(E^{\prime} \neq \emptyset\)
4 let \((u, \nu)\) be an arbitrary edge of \(E^{\prime}\)
\(5 \quad C=C \cup\{u, \nu\}\)
6 remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
7 return \(C\)


\section*{An Approximation Algorithm based on Greedy}
```

Approx-VERTEX-Cover(G)

```
```

$C=\emptyset$
$E^{\prime}=G . E$
while $E^{\prime} \neq \emptyset$
let (u, v) be an arbitrary edge of E^{\prime}
$C=C \cup\{u, \nu\}$
remove from E^{\prime} every edge incident on either u or v
return C

```

Edges removed from \(E^{\prime}\) :


APPROX-VERTEX-COVER produces a set of size 6.

\section*{An Approximation Algorithm based on Greedy}

\section*{Approx-Vertex-Cover ( \(G\) )}
\(C=\emptyset\)
\(2 \quad E^{\prime}=G . E\)
3 while \(E^{\prime} \neq \emptyset\)
4 let \((u, \nu)\) be an arbitrary edge of \(E^{\prime}\)
\(5 \quad C=C \cup\{u, \nu\}\)
6 remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
7 return \(C\)


\section*{Analysis of Greedy for Vertex Cover}

Approx-Vertex-Cover ( \(G\) )
\(C=\emptyset\)
\(E^{\prime}=G . E\)
while \(E^{\prime} \neq \emptyset\)
let \((u, v)\) be an arbitrary edge of \(E^{\prime}\)
\(C=C \cup\{u, \nu\}\) remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
return \(C\)
We can bound the size of the returned solution without knowing the (size of an) optimal solution!
Theorem 35.1
APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

\section*{Proof:}
- Running time is \(O(V+E)\) (using adjacency lists to represent \(E^{\prime}\) )
- Let \(A \subseteq E\) denote the set of edges picked in line 4
- Key Observation: \(A\) is a set of vertex-disjoint edges, i.e., \(A\) is a matching
\(\Rightarrow\) Every optimal cover \(C^{*}\) must include at least one endpoint: \(\left|C^{*}\right| \geq|A|\)
- Every edge in \(A\) contributes 2 vertices to \(|C|\) :
\[
|C|=2|A| \leq 2\left|C^{*}\right| .
\]

\section*{Solving Special Cases}

Strategies to cope with NP-complete problems
1. If inputs are small, an algorithm with exponential running time may be satisfactory.
2. Isolate important special cases which can be solved in polynomial-time.
3. Develop algorithms which find near-optimal solutions in polynomial-time.



\section*{Vertex Cover on Trees}


There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

\section*{Solving Vertex Cover on Trees}

There exists an optimal vertex cover which does not include any leaves.

Vertex-Cover-Trees(G)
1: \(C=\emptyset\)
2: while \(\exists\) leaves in \(G\)
3: \(\quad\) Add all parents to \(C\)
4: Remove all leaves and their parents from \(G\)
5: return \(C\)
Clear: Running time is \(O(V)\), and the returned solution is a vertex cover.
Solution is also optimal. (Use inductively the existence of an optimal vertex cover without leaves)

\section*{Execution on a Small Example}


Vertex-Cover-Trees(G)
1: \(C=\emptyset\)
2: while \(\exists\) leaves in \(G\)
3: \(\quad\) Add all parents to \(C\)
4: Remove all leaves and their parents from \(G\)
5: return \(C\)

\section*{Execution on a Small Example}


Vertex-Cover-Trees(G)
1: \(C=\emptyset\)
2: while \(\exists\) leaves in \(G\)
3: \(\quad\) Add all parents to \(C\)
4: Remove all leaves and their parents from \(G\)
5: return \(C\)

\section*{Execution on a Small Example}


Vertex-Cover-Trees(G)
1: \(C=\emptyset\)
while \(\exists\) leaves in \(G\)
Add all parents to \(C\)
4: Remove all leaves and their parents from \(G\)
5: return \(C\)

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

\section*{Exact Algorithms}

\section*{Such algorithms are called exact algorithms.}

Strategies to cope with NP-complete problems \(\square\)
1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
2. Isolate important special case which can be solved in polynomial-time.
3. Develop algorithms which find near-optimal solutions in polynomial-time.

Focus on instances where the minimum vertex cover is small, that is, less or equal than some given integer \(k\).

Simple Brute-Force Search would take \(\approx\binom{n}{k}=\Theta\left(n^{k}\right)\) time.

\section*{Towards a more efficient Search}

\section*{Substructure Lemma}

Consider a graph \(G=(V, E)\), edge \(\{u, v\} \in E(G)\) and integer \(k \geq 1\). Let \(G_{u}\) be the graph obtained by deleting \(u\) and its incident edges ( \(G_{v}\) is defined similarly). Then \(G\) has a vertex cover of size \(k\) if and only if \(G_{u}\) or \(G_{v}\) (or both) have a vertex cover of size \(k-1\).

\section*{Proof:}

\section*{Reminiscent of Dynamic Programming.}
\(\Leftarrow\) Assume \(G_{u}\) has a vertex cover \(C_{u}\) of size \(k-1\).
Adding \(u\) yields a vertex cover of \(G\) which is of size \(k\)
\(\Rightarrow\) Assume \(G\) has a vertex cover \(C\) of size \(k\), which contains, say \(u\).
Removing \(u\) from \(C\) yields a vertex cover of \(G_{u}\) which is of size \(k-1\).


\section*{A More Efficient Search Algorithm}
```

Vertex-Cover-Search(G,k)
1: if E=\emptyset return \emptyset
2: if }k=0\mathrm{ and }E\not=\emptyset\mathrm{ return }
3: Pick an arbitrary edge (u,v) \inE
4: S S = Vertex-Cover-Search(}\mp@subsup{G}{u}{},k-1
5: }\mp@subsup{S}{2}{}=\operatorname{Vertex-Cover-Search(}\mp@subsup{G}{v}{},k-1
6: if S}\mp@subsup{S}{1}{}\not=\perp\mathrm{ return }\mp@subsup{S}{1}{}\cup{u
if S2}\not=\perp\mathrm{ return }\mp@subsup{S}{2}{}\cup{v
return }
Correctness follows by the Substructure Lemma and induction.

```

\section*{Running time:}
- Depth \(k\), branching factor \(2 \Rightarrow\) total number of calls is \(O\left(2^{k}\right)\)
- \(O(E)\) worst-case time for one call (computing \(G_{u}\) or \(G_{v}\) could take \(\Theta(E)\) !)
- Total runtime: \(O\left(2^{k} \cdot E\right)\).
exponential in \(k\), but much better than \(\Theta\left(n^{k}\right)(\) i.e., still polynomial for \(k=O(\log n)\) )

Outline

\section*{Introduction}

Vertex Cover

The Set-Covering Problem

\section*{The Set-Covering Problem}


Remarks:
- generalisation of the vertex-cover problem and hence also NP-hard.
- models resource allocation problems, e.g., wireless coverage

\section*{Greedy}

Strategy: Pick the set \(S\) that covers the largest number of uncovered elements.
\(\operatorname{Greedy-Set-Cover}(X, \mathcal{F})\)
\(1 \quad U=X\)
\(2 \leftharpoonup=\emptyset\)
3 while \(U \neq \emptyset\)
\(4 \quad\) select an \(S \in \mathcal{F}\) that maximizes \(|S \cap U|\)
\(5 \quad U=U-S\)
\(6 \quad \leftharpoonup=と \cup\{S\}\)
7 return \(\bigodot\)


Greedy chooses \(S_{1}, S_{4}, S_{5}\) and \(S_{3}\) (or \(S_{6}\) ), which is a cover of size 4.

\section*{Greedy}

Strategy: Pick the set \(S\) that covers the largest number of uncovered elements.
\(\operatorname{Greedy-Set-Cover}(X, \mathcal{F})\)
\(1 \quad U=X\)
\(2 \zeta=\emptyset\)
3 while \(U \neq \emptyset\)
\(4 \quad\) select an \(S \in \mathscr{F}\) that maximizes \(|S \cap U|\)
\(5 \quad U=U-S\)
\(6 \quad \leftharpoonup=と \cup\{S\}\)
7 return \(\bigodot\)

Can be easily implemented to run in time polynomial in \(|X|\) and \(|\mathcal{F}|\)


Optimal cover is \(\mathcal{C}=\left\{S_{3}, S_{4}, S_{5}\right\}\)

How good is the approximation ratio?

\section*{Approximation Ratio of Greedy}

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time \(\rho(n)\)-algorithm, where
\[
\begin{array}{r}
\rho(n)=H(\max \{|S|: S \in \mathcal{F}\}) \leq \ln (n)+1 . \\
H(k):=\sum_{i=1}^{k} \frac{1}{i} \leq \ln (k)+1
\end{array}
\]

Idea: Distribute cost of 1 for each added set over newly covered elements.

\section*{Definition of cost}

If an element \(x\) is covered for the first time by set \(S_{i}\) in iteration \(i\), then
\[
c_{x}:=\frac{1}{\left|S_{i} \backslash\left(S_{1} \cup S_{2} \cup \cdots \cup S_{i-1}\right)\right|}
\]

Notice that in the mathematical analysis, \(S_{i}\) is the set chosen in iteration \(i\) - not to be confused with the sets \(S_{1}, S_{2}, \ldots, S_{6}\) in the example.

Illustration of Costs for Greedy picking \(S_{1}, S_{4}, S_{5}\) and \(S_{3}\)


\section*{Proof of Theorem 35.4 (1/2)}

Definition of cost
If \(x\) is covered for the first time by a set \(S_{i}\), then \(c_{x}:=\frac{1}{\left|S_{i} \backslash\left(S_{1} \cup S_{2} \cup \cdots \cup S_{i-1}\right)\right|}\).

\section*{Proof.}
- Each step of the algorithm assigns one unit of cost, so
\[
\begin{equation*}
|\mathcal{C}|=\sum_{x \in X} c_{X} \tag{1}
\end{equation*}
\]
- Each element \(x \in X\) is in at least one set in the optimal cover \(\mathcal{C}^{*}\), so
\[
\begin{equation*}
\sum_{S \in \mathcal{C}^{*}} \sum_{x \in S} c_{x} \geq \sum_{x \in X} c_{x} \tag{2}
\end{equation*}
\]
- Combining 1 and 2 gives
\[
|\mathcal{C}| \leq \sum_{S \in \mathcal{C}^{*}} \sum_{x \in S} c_{x} \leq \sum_{S \in \mathcal{C}^{*}} H(|S|) \leq\left|\mathcal{C}^{*}\right| \cdot H(\max \{|S|: S \in \mathcal{F}\})
\]

Key Inequality: \(\sum_{x \in S} c_{x} \leq H(|S|)\).

\section*{Proof of Theorem 35.4 (2/2)}

Proof of the Key Inequality \(\sum_{x \in S} c_{x} \leq H(|S|)\)
\[
\text { Remaining uncovered elements in } S
\]
- For any \(S \in \mathcal{F}\) and \(i=1,2, \ldots,|\mathcal{C}|=k\) let \(u_{i}:=\left|S \backslash\left(S_{1} \cup S_{2} \cup \cdots \cup S_{i}\right)\right|\)
\(\Rightarrow|S|=u_{0} \geq u_{1} \geq \cdots \geq u_{|\mathcal{C}|}=0\) and \(u_{i-1}-u_{i}\) counts the items in \(S\) covered first time by \(S_{i}\).
\(\Rightarrow\)
\[
\sum_{x \in S} c_{x}=\sum_{i=1}^{k}\left(u_{i-1}-u_{i}\right) \cdot \frac{1}{\left|S_{i} \backslash\left(S_{1} \cup S_{2} \cup \cdots \cup S_{i-1}\right)\right|}
\]
- Further, by definition of the Greedy-Set-Cover:
\[
\left|S_{i} \backslash\left(S_{1} \cup S_{2} \cup \cdots \cup S_{i-1}\right)\right| \geq\left|S \backslash\left(S_{1} \cup S_{2} \cup \cdots \cup S_{i-1}\right)\right|=u_{i-1} .
\]
- Combining the last inequalities gives:
\[
\begin{aligned}
\sum_{x \in S} c_{x} \leq \sum_{i=1}^{k}\left(u_{i-1}-u_{i}\right) \cdot \frac{1}{u_{i-1}} & =\sum_{i=1}^{k} \sum_{j=u_{i}+1}^{u_{i-1}} \frac{1}{u_{i-1}} \\
& \leq \sum_{i=1}^{k} \sum_{j=u_{i}+1}^{u_{i-1}} \frac{1}{j} \\
& =\sum_{i=1}^{k}\left(H\left(u_{i-1}\right)-H\left(u_{i}\right)\right)=H\left(u_{0}\right)-H\left(u_{k}\right)=H(|S|)
\end{aligned}
\]

\section*{Set-Covering Problem (Summary)}

The same approach also gives an approximation ratio of \(O(\ln (n))\) if there exists a cost function \(c: \mathcal{F} \rightarrow \mathbb{R}^{+}\)
Theorem 35.4
GREEDY-SET-COVER is a polynomial-time \(\rho(n)\)-algorithm, where
\[
\rho(n)=H(\max \{|S|: S \in \mathcal{F}\}) \leq \ln (n)+1 .
\]
- Is the bound on the approximation ratio in Theorem 35.4 tight?
- Is there a better algorithm?

Lower Bound
Unless \(\mathrm{P}=\mathrm{NP}\), there is no \(c \cdot \ln (n)\) polynomial-time approximation algorithm for some constant \(0<c<1\).

\section*{Example where the solution of Greedy is bad}

\section*{Instance}
- Given any integer \(k \geq 3\)
- There are \(n=2^{k+1}-2\) elements overall (so \(k \approx \log _{2} n\) )
- Sets \(S_{1}, S_{2}, \ldots, S_{k}\) are pairwise disjoint and each set contains \(2,4, \ldots, 2^{k}\) elements
- Sets \(T_{1}, T_{2}\) are disjoint and each set contains half of the elements of each set \(S_{1}, S_{2}, \ldots, S_{k}\)
\[
k=4, n=30:
\]


\section*{Example where the solution of Greedy is bad}

\section*{Instance}
- Given any integer \(k \geq 3\)
- There are \(n=2^{k+1}-2\) elements overall (so \(k \approx \log _{2} n\) )
- Sets \(S_{1}, S_{2}, \ldots, S_{k}\) are pairwise disjoint and each set contains \(2,4, \ldots, 2^{k}\) elements
- Sets \(T_{1}, T_{2}\) are disjoint and each set contains half of the elements of each set \(S_{1}, S_{2}, \ldots, S_{k}\)
\[
k=4, n=30:
\]


Solution of Greedy consists of \(k\) sets.

\section*{Example where the solution of Greedy is bad}

\section*{Instance}
- Given any integer \(k \geq 3\)
- There are \(n=2^{k+1}-2\) elements overall (so \(k \approx \log _{2} n\) )
- Sets \(S_{1}, S_{2}, \ldots, S_{k}\) are pairwise disjoint and each set contains \(2,4, \ldots, 2^{k}\) elements
- Sets \(T_{1}, T_{2}\) are disjoint and each set contains half of the elements of each set \(S_{1}, S_{2}, \ldots, S_{k}\)
\[
k=4, n=30:
\]


Optimum consists of 2 sets.


Exercise: Consider the vertex cover problem, restricted to a graph where every vertex has exactly 3 neighbours. Which approximation ratio can we obtain?
1. 1 (i.e., I can solve it exactly!!!)
2. 2
3. \(11 / 6=2-1 / 6\)
4. \(H(n) \leq \log (n)\)

\title{
IV. Approximation Algorithms via Exact Algorithms
}

\author{
Thomas Sauerwald
}

\section*{Outline}

\section*{The Subset-Sum Problem}

\section*{Parallel Machine Scheduling}

\section*{Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)}

\section*{The Subset-Sum Problem}

\section*{The Subset-Sum Problem}
- Given: Set of positive integers \(S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\) and positive integer \(t\)
- Goal: Find a subset \(S^{\prime} \subseteq S\) which maximizes \(\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t\).


\section*{The Subset-Sum Problem}

\section*{The Subset-Sum Problem}
- Given: Set of positive integers \(S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\) and positive integer \(t\)
- Goal: Find a subset \(S^{\prime} \subseteq S\) which maximizes \(\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t\).


\section*{An Exact (Exponential-Time) Algorithm}

\section*{Dynamic Progamming: Compute bottom-up all possible sums \(\leq t\)}


\section*{Example:}
- \(S=\{1,4,5\}, t=10\)
- \(L_{0}=\langle 0\rangle\)
- \(L_{1}=\langle 0,1\rangle\)
- \(L_{2}=\langle 0,1,4,5\rangle\)
- \(L_{3}=\langle 0,1,4,5,6,9,10\rangle\)

\section*{An Exact (Exponential-Time) Algorithm}

\section*{Dynamic Progamming: Compute bottom-up all possible sums \(\leq t\)}
```

ExACT-SUBSET-SUM (S,t)

```
\(1 \quad n=|S|\)
\(2 \quad L_{0}=\langle 0\rangle\)
3 for \(i=1\) to \(n\)
4
5 remove from \(L_{i}\) every element th can be shown by induction on \(n\)

6 return the largest
- Correctness: \(L_{n}\) contains all sums of \(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\)
- Runtime: \(O\left(2^{1}+2^{2}+\cdots+2^{n}\right)=O\left(2^{n}\right)\)

There are \(2^{i}\) subsets of \(\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}\).
Better runtime if \(t\) and/or \(\left|L_{i}\right|\) are small.

\section*{Towards a FPTAS}

Idea: Don't need to maintain two values in \(L\) which are close to each other.

Trimming a List
- Given a trimming parameter \(0<\delta<1\)
- Trimming \(L\) yields smaller sublist \(L^{\prime}\) so that for every \(y \in L: \exists z \in L^{\prime}\) :
\[
\frac{y}{1+\delta} \leq z \leq y
\]
- \(L=\langle 10,11,12,15,20,21,22,23,24,29\rangle\)
- \(\delta=0.1\)
\(\operatorname{Trim}(L, \delta)\)
\[
\text { - } L^{\prime}=\langle 10,12,15,20,23,29\rangle
\]
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted append \(y_{i}\) onto the end of \(L^{\prime}\)
last \(=y_{i}\)
return \(L^{\prime}\)
TRIM works in time \(\Theta(m)\), if \(L\) is given in sorted order.

\section*{Illustration of the Trim Operation}
```

$\operatorname{Trim}(L, \delta)$
let m be the length of L
$L^{\prime}=\left\langle y_{1}\right\rangle$
last $=y_{1}$
for $i=2$ to m
if $y_{i}>$ last $\cdot(1+\delta) \quad / / y_{i} \geq$ last because L is sorted
append y_{i} onto the end of L^{\prime}
last $=y_{i}$
return L^{\prime}
$\delta=0.1$
After the initialization (lines 1-3)
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
i i
$L^{\prime}=\langle 10\rangle$

```

\section*{Illustration of the Trim Operation}
```

$\operatorname{Trim}(L, \delta)$
let m be the length of L
$L^{\prime}=\left\langle y_{1}\right\rangle$
last $=y_{1}$
for $i=2$ to m
if $y_{i}>$ last $\cdot(1+\delta) \quad / / y_{i} \geq$ last because L is sorted
append y_{i} onto the end of L^{\prime}
last $=y_{i}$
return L^{\prime}

```
\[
\delta=0.1
\]
\[
\text { The returned list } L^{\prime}
\]
\[
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
\]
\[
L^{\prime}=\langle 10,12,15,20,23,29\rangle
\]

\section*{The FPTAS}

Approx-Subset-Sum ( \(S, t, \epsilon\) )
\(1 \quad n=|S|\)
\(2 L_{0}=\langle 0\rangle\)
3 for \(i=1\) to \(n\)
\begin{tabular}{|ll|}
4 & \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\) \\
\hline 5 & \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\) \\
\hline 6 & remove from \(L_{i}\) every element that is greater than \(t\) \\
\hline
\end{tabular}
7 let \(z^{*}\) be the largest value in \(L_{n}\)
8 return \(z^{*}\)
Repeated application of TRIM to make sure \(L_{i}\) 's remain short.

Exact-Subset-Sum \((S, t)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
\(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
remove from \(L_{i}\) every element that is greater than \(t\)
return the largest element in \(L_{n}\)
- We must bound the inaccuracy introduced by repeated trimming
- We must show that the algorithm is polynomial time

Solution is a careful choice of \(\delta!\)

\section*{Running through an Example (CLRS3)}
```

Approx-Subset-Sum (S, t, ϵ)
$n=|S|$
$L_{0}=\langle 0\rangle$
for $i=1$ to n
$L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
$L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)$
remove from L_{i} every element that is greater than t
let z^{*} be the largest value in L_{n}
return z^{*}

```
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
- line 2: \(L_{0}=\langle 0\rangle\)
- line 4: \(L_{1}=\langle 0,104\rangle\)
- line 5: \(L_{1}=\{0,104\}\)
- line 6: \(L_{1}=\langle 0,104\rangle\)
- line 4: \(L_{2}=\langle 0,102,104,206\rangle\)
- line 5: \(L_{2}=\langle 0,102,206\rangle\)
- line 6: \(L_{2}=\langle 0,102,206\rangle\)
- line 4: \(L_{3}=\langle 0,102,201,206,303,407\rangle\)
- line 5: \(L_{3}=\langle 0,102,201,303,407\rangle\)
- line 6: \(L_{3}=\langle 0,102,201,303\rangle\)
- line 4: \(L_{4}=\langle 0,101,102,201,203,302,303,404\rangle\)
- line 5: \(L_{4}=\langle 0,101,201,302,404\rangle\)
- line 6: \(L_{4}=\langle 0,101,201,302\rangle\)

Returned solution \(z^{*}=302\), which is \(2 \%\) within the optimum \(307=104+102+101\)

\section*{Reminder: Performance Ratios for Approximation Algorithms}

Approximation Ratio
An algorithm for a problem has approximation ratio \(\rho(n)\), if for any input of size \(n\), the cost \(C\) of the returned solution and optimal cost \(C^{*}\) satisfy:
\[
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n)
\]

For many problems: tradeoff between runtime and approximation ratio.
Approximation Schemes
An approximation scheme is an approximation algorithm, which given any input and \(\epsilon>0\), is a \((1+\epsilon)\)-approximation algorithm.
- It is a polynomial-time approximation scheme (PTAS) if for any fixed \(\epsilon>0\), the runtime is polynomial in \(n\). For example, \(O\left(n^{2 / \epsilon}\right)\).
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both \(1 / \epsilon\) and \(n\). For example, \(O\left((1 / \epsilon)^{2} \cdot n^{3}\right)\).

\section*{Analysis of Approx-Subset-Sum}

\section*{Theorem 35.8}

APPROX-SUBSET-Sum is a FPTAS for the subset-sum problem.

\section*{Proof (Approximation Ratio):}
- Returned solution \(z^{*}\) is a valid solution \(\checkmark\)
- Let \(y^{*}\) denote an optimal solution
- For every possible sum \(y \leq t\) of \(x_{1}, \ldots, x_{i}\), there exists an element \(z \in L_{i}^{\prime}\) s.t.:
\[
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
\]

Can be shown by induction on \(i\)
\[
\frac{y^{*}}{z} \leq\left(1+\frac{\epsilon}{2 n}\right)^{n}
\]
and now using the fact that \(\left(1+\frac{\epsilon / 2}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e^{\epsilon / 2}\) yields
\[
\begin{aligned}
\frac{y^{*}}{z} & \leq e^{\epsilon / 2} \text { Taylor approximation of } e \\
& \leq 1+\epsilon / 2+(\epsilon / 2)^{2} \leq 1+\epsilon
\end{aligned}
\]

\section*{Analysis of Approx-Subset-Sum}

\section*{Theorem 35.8}

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\section*{Proof (Running Time):}
- Strategy: Derive a bound on \(\left|L_{i}\right|\) (running time is linear in \(\left.\left|L_{i}\right|\right)\)
- After trimming, two successive elements \(z\) and \(z^{\prime}\) satisfy \(z^{\prime} / z \geq 1+\epsilon /(2 n)\)
\(\Rightarrow\) Possible Values after trimming are 0,1 , and up to \(\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor\) additional values. Hence,
\[
\begin{aligned}
\log _{1+\epsilon /(2 n)} t+2 & =\frac{\ln t}{\ln (1+\epsilon /(2 n))}+2 \\
& \leq \frac{2 n(1+\epsilon /(2 n)) \ln t}{\epsilon}+2 \\
\text { For } x>-1, \ln (1+x) \geq \frac{x}{1+x} & <\frac{3 n \ln t}{\epsilon}+2
\end{aligned}
\]
- This bound on \(\left|L_{i}\right|\) is polynomial in the size of the input and in \(1 / \epsilon\).

Need \(\log (t)\) bits to represent \(t\) and \(n\) bits to represent \(S\)

\section*{Concluding Remarks}

\section*{The Subset-Sum Problem}
- Given: Set of positive integers \(S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\) and positive integer \(t\)
- Goal: Find a subset \(S^{\prime} \subseteq S\) which maximizes \(\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t\).

Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\section*{A more general problem than Subset-Sum}
- Given: Items \(i=1,2, \ldots, n\) with weights \(w_{i}\) and values \(v_{i}\), and integer \(t\)
- Goal: Find a subset \(S^{\prime} \subseteq S\) which
1. maximizes \(\sum_{i \in S^{\prime}} v_{i}\)
2. satisfies \(\sum_{i \in S^{\prime}} w_{i} \leq t\)

Algorithm very similar to APPROX-SUBSET-SUM
Theorem
There is a FPTAS for the Knapsack problem.

\section*{Outline}

\section*{The Subset-Sum Problem}

\section*{Parallel Machine Scheduling}

\section*{Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)}

\section*{Parallel Machine Scheduling}

\section*{Machine Scheduling Problem}
- Given: \(n\) jobs \(J_{1}, J_{2}, \ldots, J_{n}\) with processing times \(p_{1}, p_{2}, \ldots, p_{n}\), and \(m\) identical machines \(M_{1}, M_{2}, \ldots, M_{m}\)
- Goal: Schedule the jobs on the machines minimizing the makespan \(C_{\text {max }}=\max _{1 \leq j \leq n} C_{j}\), where \(C_{k}\) is the completion time of job \(J_{k}\).
- \(J_{1}: p_{1}=2\)
- \(J_{2}: p_{2}=12\)
- \(J_{3}: p_{3}=6\)
- \(J_{4}: p_{4}=4\)


\section*{Parallel Machine Scheduling}

\section*{Machine Scheduling Problem}
- Given: \(n\) jobs \(J_{1}, J_{2}, \ldots, J_{n}\) with processing times \(p_{1}, p_{2}, \ldots, p_{n}\), and \(m\) identical machines \(M_{1}, M_{2}, \ldots, M_{m}\)
- Goal: Schedule the jobs on the machines minimizing the makespan \(C_{\max }=\max _{1 \leq j \leq n} C_{j}\), where \(C_{k}\) is the completion time of job \(J_{k}\).


\section*{NP-Completeness of Parallel Machine Scheduling}

\section*{Lemma}

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from Number-Partitioning.


Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.
LIST SchEdULING \(\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)\)
1: while there exists an unassigned job
2: \(\quad\) Schedule job on the machine with the least load
How good is this most basic Greedy Approach?

\section*{List Scheduling Analysis (Observations)}

Ex 35-5 a.\&b.
a. The optimal makespan is at least as large as the greatest processing time, that is,
\[
C_{\max }^{*} \geq \max _{1 \leq k \leq n} p_{k}
\]
b. The optimal makespan is at least as large as the average machine load, that is,
\[
C_{\max }^{*} \geq \frac{1}{m} \sum_{k=1}^{n} p_{k}
\]

\section*{Proof:}
b. The total processing times of all \(n\) jobs equals \(\sum_{k=1}^{n} p_{k}\)
\(\Rightarrow\) One machine must have a load of at least \(\frac{1}{m} \cdot \sum_{k=1}^{n} p_{k}\)

\section*{List Scheduling Analysis (Final Step)}

\section*{Ex 35-5 d. (Graham 1966)}

For the schedule returned by the greedy algorithm it holds that
\[
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k} .
\]

Hence list scheduling is a poly-time 2-approximation algorithm.

\section*{Proof:}
- Let \(J_{i}\) be the last job scheduled on machine \(M_{j}\) with \(C_{\text {max }}=C_{j}\)
- When \(J_{i}\) was scheduled to machine \(M_{j}, C_{j}\) - \(p_{i} \leq C_{k}\) for all \(1 \leq k \leq m\)
- Averaging over \(k\) yields:
\[
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{m} C_{k}=\frac{1}{m} \sum_{k=1}^{n} p_{k} \quad \Rightarrow \quad C_{j} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k} \leq 2 \cdot C_{\max }^{*}
\]


\section*{Improving Greedy}

The problem of the List-Scheduling Approach were the large jobs
Analysis can be shown to be almost tight. Is there a better algorithm?

Least Processing Time \(\left(\mathcal{~}_{1}, J_{2}, \ldots, J_{n}, m\right)\)
1: Sort jobs decreasingly in their processing times
2: for \(i=1\) to \(m\)
3:
\[
C_{i}=0
\]
\(S_{i}=\emptyset\)
5: end for
6: for \(j=1\) to \(n\)
7: \(\quad i=\operatorname{argmin}_{1 \leq k \leq m} C_{k}\)
8: \(\quad S_{i}=S_{i} \cup\{\bar{j}\}, C_{i}=C_{i}+p_{j}\)
9: end for
10: return \(S_{1}, \ldots, S_{m}\)

\section*{Runtime:}
- O( \(n \log n\) ) for sorting
- \(O(n \log m)\) for extracting (and re-inserting) the minimum (use priority queue).

\section*{Analysis of Improved Greedy}

\section*{Graham 1966}

The LPT algorithm has an approximation ratio of \(4 / 3-1 /(3 m)\).

\section*{This can be shown to be tight (see next slide).}

\section*{Proof (of approximation ratio \(3 / 2\) ).}
- Observation 1: If there are at most \(m\) jobs, then the solution is optimal.
- Observation 2: If there are more than \(m\) jobs, then \(C_{\max }^{*} \geq 2 \cdot p_{m+1}\).
- As in the analysis for list scheduling, we have
\[
C_{\max }=C_{j}=\left(C_{j}-p_{i}\right)+p_{i} \leq C_{\max }^{*}+\frac{1}{2} C_{\max }^{*}=\frac{3}{2} C_{\max }
\]

2
This is for the case \(i \geq m+1\) (otherwise, an even stronger inequality holds)


\section*{Tightness of the Bound for LPT}

\section*{Graham 1966}

The LPT algorithm has an approximation ratio of \(4 / 3-1 /(3 m)\).

\section*{Proof of an instance which shows tightness:}
- \(m\) machines and \(n=2 m+1\) jobs:
- two of length \(2 m-1,2 m-2, \ldots, m\) and one extra job of length \(m\)
\[
m=5, n=11:
\]
\(M_{5}\)
\(M_{4}\)
\(M_{3}\)
\(M_{2}\)
\(M_{1}\)

\(\begin{array}{lllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20\end{array}\)

\section*{Tightness of the Bound for LPT}

\section*{Graham 1966}

The LPT algorithm has an approximation ratio of \(4 / 3-1 /(3 m)\).

\section*{Proof of an instance which shows tightness:}
- \(m\) machines and \(n=2 m+1\) jobs:
- two of length \(2 m-1,2 m-2, \ldots, m\) and one extra job of length \(m\)
\[
m=5, n=11: \quad \text { LPT gives } C_{\max }=19
\]


\section*{Tightness of the Bound for LPT}

\section*{Graham 1966}

The LPT algorithm has an approximation ratio of \(4 / 3-1 /(3 m)\).

\section*{Proof of an instance which shows tightness:}
\[
\frac{19}{15}=\frac{20}{15}-\frac{1}{15}
\]
- \(m\) machines and \(n=2 m+1\) jobs:
- two of length \(2 m-1,2 m-2, \ldots, m\) and one extra job of length \(m\)
\[
m=5, n=11: \quad \text { LPT gives } C_{\max }=19
\]

Optimum is \(C_{\max }^{*}=15\)


\section*{Conclusion}

\section*{Graham 1966}

List scheduling has an approximation ratio of 2.

\section*{Graham 1966}

The LPT algorithm has an approximation ratio of \(4 / 3-1 /(3 m)\).

Theorem (Hochbaum, Shmoys'87)
There exists a PTAS for Parallel Machine Scheduling which runs in time \(O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)\), where \(P:=\sum_{k=1}^{n} p_{k}\).

Can we find a FPTAS (for polynomially bounded processing times)? No!

Because for sufficiently small approximation ratio \(1+\epsilon\), the computed solution has to be optimal, and Parallel Machine Scheduling is strongly NP-hard.


Exercise (easy): Run the LPT algorithm on three machines and jobs having processing times \(\{3,4,4,3,5,3,5\}\). Which allocation do you get?
1. \([3,3,5],[4,5],[4,3]\)
2. \([5,3],[5,4],[4,3,3]\)
3. \([3,3,3],[5,4],[5,4]\)

\section*{Outline}

\section*{The Subset-Sum Problem}

\section*{Parallel Machine Scheduling}

Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

\section*{A PTAS for Parallel Machine Scheduling}

Basic Idea: For \((1+\epsilon)\)-approximation, don't have to work with exact \(p_{k}\) 's.

Subroutine \(\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)\)
1: Either: Return a solution with \(C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}\)
2: Or: Return there is no solution with makespan \(<T\)
Key Lemma
We will prove this on the next slides.
Subroutine can be implemented in time \(n^{O\left(1 / \epsilon^{2}\right)}\).

\section*{Theorem (Hochbaum, Shmoys'87)}

There exists a PTAS for Parallel Machine Scheduling which runs in time \(O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)\), where \(P:=\sum_{k=1}^{n} p_{k}\).
polynomial in the size of the input \(\quad\) Since \(0 \leq C_{\max }^{*} \leq P\) and \(C_{\text {max }}^{*}\) is integral, Proof (using Key Lemma): binary search terminates after \(O(\log P)\) steps.
\[
\operatorname{PTAS}\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)
\]

1: Do binary search to find smallest \(T\) s.t. \(C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}\).
2: Return solution computed by \(\operatorname{SUBROUTINE}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)\)

\section*{Implementation of Subroutine}
\(\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)\)
1: Either: Return a solution with \(C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}\)
2: Or: Return there is no solution with makespan \(<T\)

\section*{Observation}

Divide jobs into two groups: \(J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}\) and \(J_{\text {large }}=[n] \backslash J_{\text {small }}\). Given a solution for \(J_{\text {large }}\) only with makespan \((1+\epsilon) \cdot T\), then greedily placing \(J_{\text {small }}\) yields a solution with makespan \((1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}\).

\section*{Proof:}
- Let \(M_{j}\) be the machine with largest load
- If there are no jobs from \(J_{\text {small }}\), then makespan is at most \((1+\epsilon) \cdot T\).
- Otherwise, let \(i \in J_{\text {small }}\) be the last job added to \(M_{j}\).
\[
\begin{aligned}
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \Rightarrow C_{j} & \leq p_{i}+\frac{1}{m} \sum_{k=1}^{n} p_{k} \\
& \leq \epsilon \cdot T+C_{\max }^{*} \\
& \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}
\end{aligned}
\]

\section*{Proof of Key Lemma (non-examinable)}

\section*{Use Dynamic Programming to schedule \(J_{\text {large }}\) with makespan \((1+\epsilon) \cdot T\).}
- Let \(b\) be the smallest integer with \(1 / b \leq \epsilon\). Define processing times \(p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}\)
\(\Rightarrow\) Every \(p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}\) for \(\alpha=b, b+1, \ldots, b^{2} \underbrace{\text { Can assume there are no jobs with } p_{j} \geq T!}\)
- Let \(\mathcal{C}\) be all \(\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)\) with \(\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T .\left\{\begin{array}{c}\text { Assignments to one machine } \\ \text { with mate }\end{array}\right.\)
- Let \(f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)\) be the minimum number of machines required to schedule all jobs with makespan \(\leq T\) :

Assign some jobs to one machine, and then use as few machines as possible for the rest.
\(f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)=1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right)\).


\section*{Proof of Key Lemma (non-examinable)}

\section*{Use Dynamic Programming to schedule \(J_{\text {large }}\) with makespan \((1+\epsilon) \cdot T\).}
- Let \(b\) be the smallest integer with \(1 / b \leq \epsilon\). Define processing times \(p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}\)
\(\Rightarrow\) Every \(p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}\) for \(\alpha=b, b+1, \ldots, b^{2}\)
- Let \(\mathcal{C}\) be all \(\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)\) with \(\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T\).
- Let \(f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)\) be the minimum number of machines required to schedule all jobs with makespan \(\leq T\) :
\[
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & =1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
\end{aligned}
\]
- Number of table entries is at most \(n^{b^{2}}\), hence filling all entries takes \(n^{O\left(b^{2}\right)}\)
- If \(f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) \leq m\) (for the jobs with \(p^{\prime}\) ), then return yes, otherwise no.
- As every machine is assigned at most \(b\) jobs \(\left(p_{i}^{\prime} \geq \frac{T}{b}\right)\) and the makespan is \(\leq T\),
\[
\begin{aligned}
C_{\max } & \leq T+b \cdot \max _{i \in J_{\text {large }}}\left(p_{i}-p_{i}^{\prime}\right) \\
& \leq T+b \cdot \frac{T}{b^{2}} \leq(1+\epsilon) \cdot T .
\end{aligned}
\]

\title{
V. Approx. Algorithms: Travelling Salesman Problem
}

Thomas Sauerwald

Outline

\section*{Introduction}

\section*{General TSP}

\section*{Metric TSP}

\section*{33 city contest (1964)}


\section*{532 cities (1987 [Padberg, Rinaldi])}


\section*{13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])}


\section*{The Traveling Salesman Problem (TSP)}

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

\section*{Formal Definition}
- Given: A complete undirected graph \(G=(V, E)\) with nonnegative integer cost \(c(u, v)\) for each edge \((u, v) \in E\)
- Goal: Find a hamiltonian cycle of \(G\) with minimum cost.

Solution space consists of at most \(n\) ! possible tours!
Actually the right number is \((n-1)!/ 2\)


3
\[
2+4+1+1=8
\]

Special Instances
- Metric TSP: costs satisfy triangle inequality: \(\{N P\) hard (Ex. 35.2-2)
\[
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w)
\]
- Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

\section*{History of the TSP problem (1954)}

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

\section*{The Dantzig-Fulkerson-Johnson Method}
1. Create a linear program (variable \(x(u, v)=1\) iff tour goes between \(u\) and \(v\) )
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)


\section*{The Dantzig-Fulkerson-Johnson Method}
1. Create a linear program (variable \(x(u, v)=1\) iff tour goes between \(u\) and \(v\) )
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)


Outline

\section*{Introduction}

\section*{General TSP}

\section*{Metric TSP}

\section*{Hardness of Approximation}

\section*{Theorem 35.3}

If \(\mathrm{P} \neq \mathrm{NP}\), then for any constant \(\rho \geq 1\), there is no polynomial-time approximation algorithm with approximation ratio \(\rho\) for the general TSP.

\section*{Idea: Reduction from the hamiltonian-cycle problem.}

\section*{Proof:}
- Let \(G=(V, E)\) be an instance of the hamiltonian-cycle problem
- Let \(G^{\prime}=\left(V, E^{\prime}\right)\) be a complete graph with costs for each \((u, v) \in E^{\prime}\) :
\[
c(u, v)=\left\{\begin{array}{ll}
1 & \text { if }(u, v) \in E, \\
\rho|V|+1 & \text { otherwise }
\end{array}, \begin{array}{c}
\text { Large weight will render } \\
\text { this edge useless! }
\end{array}\right.
\]
\(G=(V, E)\)


\section*{Hardness of Approximation}

\section*{Theorem 35.3}

If \(\mathrm{P} \neq \mathrm{NP}\), then for any constant \(\rho \geq 1\), there is no polynomial-time approximation algorithm with approximation ratio \(\rho\) for the general TSP.

\section*{Idea: Reduction from the hamiltonian-cycle problem.}

\section*{Proof:}
- Let \(G=(V, E)\) be an instance of the hamiltonian-cycle problem
- Let \(G^{\prime}=\left(V, E^{\prime}\right)\) be a complete graph with costs for each \((u, v) \in E^{\prime}\) :
\[
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
\]
- If \(G\) has a hamiltonian cycle \(H\), then \(\left(G^{\prime}, c\right)\) contains a tour of cost \(|V|\)
\[
G=(V, E)
\]


\section*{Hardness of Approximation}

\section*{Theorem 35.3}

If \(P \neq N P\), then for any constant \(\rho \geq 1\), there is no polynomial-time approximation algorithm with approximation ratio \(\rho\) for the general TSP.

\section*{Idea: Reduction from the hamiltonian-cycle problem.}

\section*{Proof:}
- Let \(G=(V, E)\) be an instance of the hamiltonian-cycle problem
- Let \(G^{\prime}=\left(V, E^{\prime}\right)\) be a complete graph with costs for each \((u, v) \in E^{\prime}\) :
\[
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
\]
- If \(G\) has a hamiltonian cycle \(H\), then \(\left(G^{\prime}, c\right)\) contains a tour of cost \(|V|\)
- If \(G\) does not have a hamiltonian cycle, then any tour \(T\) must use some edge \(\notin E\),
\[
\Rightarrow \quad c(T) \geq(\rho|V|+1)+(|V|-1)=(\rho+1)|V| .
\]
- Gap of \(\rho+1\) between tours which are using only edges in \(G\) and those which don't
- \(\rho\)-Approximation of TSP in \(G^{\prime}\) computes hamiltonian cycle in \(G\) (if one exists)
\[
G=(V, E)
\]


\section*{Proof of Theorem 35.3 from a higher perspective}


Outline

\section*{Introduction}

\section*{General TSP}

\section*{Metric TSP}

\section*{Metric TSP (TSP Problem with the Triangle Inequality)}

\section*{Idea: First compute an MST, and then create a tour based on the tree.}

Approx-Tsp-TOUR(G, \(c\) )
1: select a vertex \(r \in G . V\) to be a "root" vertex
2: compute a minimum spanning tree \(T_{\text {min }}\) for \(G\) from root \(r\)
3: using MST-PRIM \((G, c, r)\)
4: let \(H\) be a list of vertices, ordered according to when they are first visited
5: \(\quad\) in a preorder walk of \(T_{\text {min }}\)
6: return the hamiltonian cycle \(H\)
Runtime is dominated by MST-PRIM, which is \(\Theta\left(V^{2}\right)\).

Remember: In the Metric-TSP problem, \(G\) is a complete graph.

\section*{Run of Approx-Tsp-Tour}

1. Compute MST \(T_{\text {min }}\)

\section*{Run of Approx-Tsp-Tour}

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Perform preorder walk on MST \(T_{\text {min }}\)

\section*{Run of Approx-Tsp-Tour}

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Perform preorder walk on MST \(T_{\text {min }} \checkmark\)
3. Return list of vertices according to the preorder tree walk

\section*{Run of Approx-Tsp-Tour}

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Perform preorder walk on MST \(T_{\text {min }} \checkmark\)
3. Return list of vertices according to the preorder tree walk \(\checkmark\)

\section*{Run of Approx-Tsp-Tour}

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Perform preorder walk on MST \(T_{\text {min }} \checkmark\)
3. Return list of vertices according to the preorder tree walk \(\checkmark\)

\section*{Run of Approx-Tsp-Tour}

This is the optimal solution (cost \(\approx 14.715\) ).

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Perform preorder walk on MST \(T_{\min } \checkmark\)
3. Return list of vertices according to the preorder tree walk \(\checkmark\)

\section*{Approximate Solution: Objective 921}


\section*{Optimal Solution: Objective 699}


\section*{Proof of the Approximation Ratio}

\section*{Theorem 35.2}

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

\section*{Proof:}
- Consider the optimal tour \(H^{*}\) and remove an arbitrary edge
\(\Rightarrow\) yields a spanning tree \(T\) and \(c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)\) exploiting that all edge costs are non-negative!


\section*{Proof of the Approximation Ratio}

\section*{Theorem 35.2}

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

\section*{Proof:}
- Consider the optimal tour \(H^{*}\) and remove an arbitrary edge
\(\Rightarrow\) yields a spanning tree \(T\) and \(c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)\)
- Let \(W\) be the full walk of the minimum spanning tree \(T_{\text {min }}\) (including repeated visits)
\(\Rightarrow\) Full walk traverses every edge exactly twice, so
\[
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
\]

\[
\text { Walk } W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)
\]

optimal solution \(H^{*}\)

\section*{Proof of the Approximation Ratio}

\section*{Theorem 35.2}

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

\section*{Proof:}
- Consider the optimal tour \(H^{*}\) and remove an arbitrary edge
\(\Rightarrow\) yields a spanning tree \(T\) and \(c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)\)
- Let \(W\) be the full walk of the minimum spanning tree \(T_{\text {min }}\) (including repeated visits)
\(\Rightarrow\) Full walk traverses every edge exactly twice, so
\[
c(W)=2 c\left(T_{\text {min }}\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
\]
exploiting triangle inequality!
- Deleting duplicate vertices from \(W\) yields a tour \(H\) with smaller cost:
\[
c(H) \leq c(W) \leq 2 c\left(H^{*}\right)
\]


Walk \(W=(a, b, c, \not p, h, \not b, \notin, d, e, f, \notin, g, \notin, \not \subset, a) \quad\) optimal solution \(H^{*}\)

\section*{Christofides Algorithm}

\section*{Theorem 35.2}

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

\section*{Can we get a better approximation ratio?}

\section*{Christofides( \(G, c\) )}
: select a vertex \(r \in G . V\) to be a "root" vertex
compute a minimum spanning tree \(T_{\text {min }}\) for \(G\) from root \(r\)
3: using MST-PRIM(G, \(c, r\) )
4: compute a perfect matching \(M_{\text {min }}\) with minimum weight in the complete graph
5: \(\quad\) over the odd-degree vertices in \(T_{\text {min }}\)
6: let \(H\) be a list of vertices, ordered according to when they are first visited
: \(\quad\) in a Eulearian circuit of \(T_{\text {min }} \cup M_{\text {min }}\)
return the hamiltonian cycle \(H\)
Theorem (Christofides'76)
There is a polynomial-time \(\frac{3}{2}\)-approximation algorithm for the travelling salesman problem with the triangle inequality.

\section*{Run of Christofides}


\section*{Run of Christofides}

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Add a minimum-weight perfect matching \(M_{\text {min }}\) of the odd vertices in \(T_{\min } \checkmark\)

\section*{Run of Christofides}

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Add a minimum-weight perfect matching \(M_{\text {min }}\) of the odd vertices in \(T_{\min } \checkmark\)
3. Find an Eulerian Circuit in \(T_{\text {m }} \cup M_{\text {min }} \checkmark\)

All vertices in \(T_{\text {min }} \cup M_{\text {min }}\) have even degree!

\section*{Run of Christofides}

Solution has cost \(\approx 15.54\) - within \(10 \%\) of the optimum!

1. Compute MST \(T_{\text {min }} \checkmark\)
2. Add a minimum-weight perfect matching \(M_{\text {min }}\) of the odd vertices in \(T_{\min } \checkmark\)
3. Find an Eulerian Circuit in \(T_{\text {min }} \cup M_{\text {min }} \checkmark\)
4. Transform the Circuit into a Hamiltonian Cycle \(\checkmark\)

\section*{Proof of the Approximation Ratio}

\section*{Theorem (Christofides'76)}

There is a polynomial-time \(\frac{3}{2}\)-approximation algorithm for the travelling salesman problem with the triangle inequality.

\section*{Proof (Approximation Ratio):}

\section*{Proof is quite similar to the previous analysis}
- As before, let \(H^{*}\) denote the optimal tour
- The Eulerian Circuit \(W\) uses each edge of the minimum spanning tree \(T_{\text {min }}\) and the minimum-weight matching \(M_{\text {min }}\) exactly once:
\[
\begin{equation*}
c(W)=c\left(T_{\min }\right)+c\left(M_{\min }\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
\]
- Let \(H_{o d d}^{*}\) be an optimal tour on the odd-degree vertices in \(T_{\text {min }}\)
- Taking edges alternately, we obtain two matchings \(M_{1}\) and \(M_{2}\) such that \(c\left(M_{1}\right)+c\left(M_{2}\right)=c\left(H_{o d d}^{*}\right)\)
- By shortcutting and the triangle inequality,
\[
\begin{equation*}
c\left(M_{\min }\right) \leq \frac{1}{2} c\left(H_{o d d}{ }^{*}\right) \leq \frac{1}{2} c\left(H^{*}\right) \tag{2}
\end{equation*}
\]
- Combining 1 with 2 yields
\[
c(W) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \leq c\left(H^{*}\right)+\frac{1}{2} c\left(H^{*}\right)=\frac{3}{2} c\left(H^{*}\right)
\]

\section*{Concluding Remarks}

\section*{Theorem (Christofides'76)}

There is a polynomial-time \(\frac{3}{2}\)-approximation algorithm for the travelling salesman problem with the triangle inequality.
still the best algorithm for the metric TSP problem(!)
Theorem (Arora'96, Mitchell'96)
There is a PTAS for the Euclidean TSP Problem.

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991



Exercise: Prove that the approximation ratio of APPROX-TSP-TOUR satisfies \(\rho(n)<2\).
Hint: Consider the effect of the shortcutting, but note that edge costs might be zero!

\title{
VI. Approx. Algorithms: Randomisation and Rounding
}

\author{
Thomas Sauerwald
}

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

\section*{Conclusion}

\section*{Performance Ratios for Randomised Approximation Algorithms}

\section*{Approximation Ratio}

A randomised algorithm for a problem has approximation ratio \(\rho(n)\), if for any input of size \(n\), the expected cost \(C\) of the returned solution and optimal cost \(C^{*}\) satisfy:
\[
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n)
\]

Call such an algorithm randomised \(\rho(n)\)-approximation algorithm.
extends in the natural way to randomised algorithms
Approximation Schemes
An approximation scheme is an approximation algorithm, which given any input and \(\epsilon>0\), is a \((1+\epsilon)\)-approximation algorithm.
- It is a polynomial-time approximation scheme (PTAS) if for any fixed \(\epsilon>0\), the runtime is polynomial in \(n\). For example, \(O\left(n^{2 / \epsilon}\right)\).
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both \(1 / \epsilon\) and \(n\). For example, \(O\left((1 / \epsilon)^{2} \cdot n^{3}\right)\).

Outline

\section*{Randomised Approximation}

\section*{MAX-3-CNF}

\section*{Weighted Vertex Cover}

\section*{Weighted Set Cover}

\section*{MAX-CNF}

\section*{Conclusion}

\section*{MAX-3-CNF Satisfiability}

Assume that no literal (including its negation) appears more than once in the same clause.

\section*{MAX-3-CNF Satisfiability}
- Given: 3-CNF formula, e.g.: \(\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots\)
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:
\[
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
\]
\[
x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0 \text { and } x_{5}=1 \text { satisfies } 3 \text { (out of } 4 \text { clauses) }
\]

Idea: What about assigning each variable uniformly and independently at random?

\section*{Analysis}

\section*{Theorem 35.6}

Given an instance of MAX-3-CNF with \(n\) variables \(x_{1}, x_{2}, \ldots, x_{n}\) and \(m\) clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

\section*{Proof:}
- For every clause \(i=1,2, \ldots, m\), define a random variable:
\[
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
\]
- Since each literal (including its negation) appears at most once in clause \(i\),
\[
\begin{aligned}
& & \operatorname{Pr} \text { [clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
\]
- Let \(Y:=\sum_{i=1}^{m} Y_{i}\) be the number of satisfied clauses. Then,
\[
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} \cdot m
\]

Linearity of Expectations

\section*{Interesting Implications}

\section*{Theorem 35.6}

Given an instance of MAX-3-CNF with \(n\) variables \(x_{1}, x_{2}, \ldots, x_{n}\) and \(m\) clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least \(\frac{7}{8}\) of all clauses.

There is \(\omega \in \Omega\) such that \(Y(\omega) \geq \mathbf{E}[Y]\)

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary
Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Follows from the previous Corollary.

\section*{Expected Approximation Ratio}

\section*{Theorem 35.6}

Given an instance of MAX-3-CNF with \(n\) variables \(x_{1}, x_{2}, \ldots, x_{n}\) and \(m\) clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy \((7 / 8) \cdot m\) clauses is at least \(1 /(8 m)\)
\[
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right] .
\]
\(Y\) is defined as in the previous proof.

One of the two conditional expectations is at least \(\mathbf{E}[Y]\) !
Greedy-3-CNF \((\phi, n, m)\)
for \(j=1,2, \ldots, n\)
Compute \(\mathrm{E}\left[Y \mid x_{1}=v_{1} \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]\)
Compute \(\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=0\right]\)
4: Let \(x_{j}=v_{j}\) so that the conditional expectation is maximized
5: return the assignment \(v_{1}, v_{2}, \ldots, v_{n}\)

\section*{Analysis of Greedy-3-CNF \((\phi, n, m)\)}

\section*{This algorithm is deterministic.}

GREEDY-3-CNF \((\phi, n, m)\) is a polynomial-time 8/7-approximation.

\section*{Proof:}
- Step 1: polynomial-time algorithm
- In iteration \(j=1,2, \ldots, n, Y=Y(\phi)\) averages over \(2^{n-j+1}\) assignments
- A smarter way is to use linearity of (conditional) expectations:
\(\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]\)
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration \(j=1,2, \ldots, n\),
\[
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
\]
\[
\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m
\]

\section*{Run of Greedy-3-CNF \((\varphi, n, m)\)}
\(\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\)
\(\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)\)


Run of Greedy-3-CNF \((\varphi, n, m)\)
\[
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
\]


\section*{Run of Greedy-3-CNF \((\varphi, n, m)\)}
\(1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)\)


\section*{Run of Greedy-3-CNF \((\varphi, n, m)\)}
\(1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1\)


\section*{Run of Greedy-3-CNF \((\varphi, n, m)\)}
\(1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1\)


\section*{Run of Greedy-3-CNF \((\varphi, n, m)\)}
\(\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\) \(\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)\)


\section*{MAX-3-CNF: Concluding Remarks}

Theorem 35.6
Given an instance of MAX-3-CNF with \(n\) variables \(x_{1}, x_{2}, \ldots, x_{n}\) and \(m\) clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem
GREEDY-3-CNF \((\phi, n, m)\) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)
For any \(\epsilon>0\), there is no polynomial time 8/7- \(\boldsymbol{\epsilon}\) approximation algorithm of MAX3-CNF unless \(P=N P\).

Essentially there is nothing smarter than just guessing!

Outline

\section*{Randomised Approximation}

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

\section*{Conclusion}

\section*{The Weighted Vertex-Cover Problem}

\section*{Vertex Cover Problem}
- Given: Undirected, vertex-weighted graph \(G=(V, E)\)
- Goal: Find a minimum-weight subset \(V^{\prime} \subseteq V\) such that if \((u, v) \in E(G)\), then \(u \in V^{\prime}\) or \(v \in V^{\prime}\).

This is (still) an NP-hard problem.


\section*{Applications:}
- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

\section*{The Greedy Approach from (Unweighted) Vertex Cover}
```

APprox-VERTEX-COVER (G)
$C=\emptyset$
$E^{\prime}=G . E$
while $E^{\prime} \neq \emptyset$
let (u, v) be an arbitrary edge of E^{\prime}
$C=C \cup\{u, v\}$
remove from E^{\prime} every edge incident on either u or v
return C

```


Computed solution has weight 101

\section*{The Greedy Approach from (Unweighted) Vertex Cover}
```

APprox-VERTEX-COVER (G)
$C=\emptyset$
$E^{\prime}=G . E$
while $E^{\prime} \neq \emptyset$
4 let (u, v) be an arbitrary edge of E^{\prime}
$5 \quad C=C \cup\{u, v\}$
6 remove from E^{\prime} every edge incident on either u or v
return C

```


\section*{Invoking an (Integer) Linear Program}

Idea: Round the solution of an associated linear program.

0-1 Integer Program
\[
\begin{array}{llll}
\text { minimize } & \sum_{v \in V} w(v) x(v) & & \\
\text { subject to } & x(u)+x(v) & \geq 1 & \\
& x(v) & \in\{0,1\} & \text { for each }(u, v) \in E \\
& x(v) \\
& x \in V
\end{array}
\]
optimum is a lower bound on the optimal weight of a minimum weight-cover.
minimize
\[
\sum_{v \in V} w(v) x(v)
\]
subject to
\[
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \in E \\
x(v) & \in[0,1] & & \text { for each } v \in V
\end{aligned}
\]

Rounding Rule: if \(x(v) \geq 1 / 2\) then round up, otherwise round down.

\section*{The Algorithm}
```

APPROX-MIN-WEIGHT-VC(G,w)
C=\emptyset
compute }\overline{x}\mathrm{ , an optimal solution to the linear program
for each v}\in
if \overline{x}(v)\geq1/2
C=C\cup{v}
return C

```

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.
is polynomial-time because we can solve the linear program in polynomial time

\section*{Example of Approx-Min-Weight-VC}


\section*{Approximation Ratio}

\section*{Proof (Approximation Ratio is 2 and Correctness):}
- Let \(C^{*}\) be an optimal solution to the minimum-weight vertex cover problem
- Let \(z^{*}\) be the value of an optimal solution to the linear program, so
\[
z^{*} \leq w\left(C^{*}\right)
\]
- Step 1: The computed set \(C\) covers all vertices:
- Consider any edge ( \(u, v\) ) \(\in E\) which imposes the constraint \(x(u)+x(v) \geq 1\)
\(\Rightarrow\) at least one of \(\bar{x}(u)\) and \(\bar{x}(v)\) is at least \(1 / 2 \Rightarrow C\) covers edge \((u, v)\)
- Step 2: The computed set \(C\) satisfies \(w(C) \leq 2 z^{*}\) :
\[
w\left(C^{*}\right) \geq z^{*}=\sum_{v \in V} w(v) \bar{x}(v) \geq \sum_{v \in V: \bar{x}(v) \geq 1 / 2} w(v) \cdot \frac{1}{2}=\frac{1}{2} w(C)
\]


Outline

\section*{Randomised Approximation}

MAX-3-CNF

Weighted Vertex Cover

\author{
Weighted Set Cover
}

MAX-CNF

\section*{Conclusion}


\section*{Remarks:}

\(c: \begin{array}{lllll}2 & 3 & 3 & 5 & 1\end{array}\)2
- generalisation of the weighted vertex-cover problem
- models resource allocation problems

\section*{Setting up an Integer Program}


Exercise: Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)

\section*{Setting up an Integer Program}

0-1 Integer Program
minimize
subject to
\[
\sum_{S \in \mathcal{F}} c(S) y(S)
\]
\[
\sum_{S \in \mathcal{F}: x \in S} y(S) \geq 1 \quad \text { for each } x \in X
\]
\[
y(S) \in\{0,1\} \quad \text { for each } S \in \mathcal{F}
\]

Linear Program
minimize
\[
\sum_{S \in \mathcal{F}} c(S) y(S)
\]
subject to
\[
\begin{aligned}
\sum_{S \in \mathcal{F}: x \in S} y(S) & \geq 1 & & \text { for each } x \in X \\
y(S) & \in[0,1] & & \text { for each } S \in \mathcal{F}
\end{aligned}
\]

\section*{Back to the Example}


The strategy employed for Vertex-Cover would take all 6 sets!
Even worse: If all \(y\) 's were below \(1 / 2\), we would not even return a valid cover!

\section*{Randomised Rounding}
\begin{tabular}{ccccccc} 
& \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & \(S_{4}\) & \(S_{5}\) & \(S_{6}\) \\
\(c:\) & 2 & 3 & 3 & 5 & 1 & 2 \\
\(y():\). & \(1 / 2\) & \(1 / 2\) & \(1 / 2\) & \(1 / 2\) & 1 & \(1 / 2\)
\end{tabular}

Idea: Interpret the \(y\)-values as probabilities for picking the respective set.

Randomised Rounding
- Let \(\mathcal{C} \subseteq \mathcal{F}\) be a random set with each set \(S\) being included independently with probability \(y(S)\).
- More precisely, if \(y\) denotes the optimal solution of the LP, then we compute an integral solution \(\bar{y}\) by:
\[
\bar{y}(S)=\left\{\begin{array}{ll}
1 & \text { with probability } y(S) \\
0 & \text { otherwise. }
\end{array} \quad \text { for all } S \in \mathcal{F} .\right.
\]
- Therefore, \(\mathbf{E}[\bar{y}(S)]=y(S)\).

\section*{Randomised Rounding}
\begin{tabular}{ccccccc} 
& \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & \(S_{4}\) & \(S_{5}\) & \(S_{6}\) \\
\(c:\) & 2 & 3 & 3 & 5 & 1 & 2 \\
\(y():\). & \(1 / 2\) & \(1 / 2\) & \(1 / 2\) & \(1 / 2\) & 1 & \(1 / 2\)
\end{tabular}

Idea: Interpret the \(y\)-values as probabilities for picking the respective set.
- The expected cost satisfies
\[
\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)
\]
- The probability that an element \(x \in X\) is covered satisfies
\[
\operatorname{Pr}\left[x \in \bigcup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}
\]

\section*{Proof of Lemma}

\section*{Lemma}

Let \(\mathcal{C} \subseteq \mathcal{F}\) be a random subset with each set \(S\) being included independently with probability \(y(S)\).
- The expected cost satisfies \(\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)\).
- The probability that \(x\) is covered satisfies \(\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}\).

\section*{Proof:}
- Step 1: The expected cost of the random set \(\mathcal{C}\)
\[
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
\]
- Step 2: The probability for an element to be (not) covered
\[
\begin{aligned}
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-y(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)} y \text { solves the LP! } \\
& =e^{-\sum_{S \in \mathcal{F}: x \in S} y(S)} \leq e^{-1}
\end{aligned}
\]

\section*{The Final Step}

\section*{Lemma}

Let \(\mathcal{C} \subseteq \mathcal{F}\) be a random subset with each set \(S\) being included independently with probability \(y(S)\).
- The expected cost satisfies \(\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)\).
- The probability that \(x\) is covered satisfies \(\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}\).

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of \(\Omega(\log n)\) random sets \(\mathcal{C}\).

Weighted Set Cover-LP \((X, \mathcal{F}, c)\)
1: compute \(y\), an optimal solution to the linear program
2: \(\mathcal{C}=\emptyset\)
3: repeat \(2 \ln n\) times
4: \(\quad\) for each \(S \in \mathcal{F}\)
5: \(\quad\) let \(\mathcal{C}=\mathcal{C} \cup\{S\}\) with probability \(y(S)\)
6: return \(\mathcal{C}\)

\section*{Analysis of Weighted Set Cover-LP}

\section*{Theorem}
- With probability at least \(1-\frac{1}{n}\), the returned set \(\mathcal{C}\) is a valid cover of \(X\).
- The expected approximation ratio is \(2 \ln (n)\).

\section*{Proof:}
- Step 1: The probability that \(\mathcal{C}\) is a cover
- By previous Lemma, an element \(x \in X\) is covered in one of the \(2 \ln n\) iterations with probability at least \(1-\frac{1}{e}\), so that
\[
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
\]
- This implies for the event that all elements are covered:
\[
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
\]
\(\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}\).
- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is \(\sum_{S \in \mathcal{F}} c(S) \cdot y(S)\).
- Linearity \(\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\)

\section*{Analysis of Weighted Set Cover-LP}

\section*{Theorem}
- With probability at least \(1-\frac{1}{n}\), the returned set \(\mathcal{C}\) is a valid cover of \(X\).
- The expected approximation ratio is \(2 \ln (n)\).
\[
\text { By Markov's inequality, } \operatorname{Pr}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
\]

Hence with probability at least \(1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}\), probability could be further solution is within a factor of \(4 \ln (n)\) of the optimum. increased by repeating

\section*{Typical Approach for Designing Approximation Algorithms based on LPs}

Outline

\section*{Randomised Approximation}

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

\section*{MAX-CNF}

\section*{Conclusion}

\section*{MAX-CNF}

\section*{Recall:}

MAX-3-CNF Satisfiability
- Given: 3-CNF formula, e.g.: \(\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots\)
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

\section*{MAX-CNF Satisfiability (MAX-SAT)}
- Given: CNF formula, e.g.: \(\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \ldots\)
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?
- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches

\section*{Approach 1: Guessing the Assignment}

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause \(i\) which has length \(\ell\),
\[
\operatorname{Pr}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
\]

In particular, the guessing algorithm is a randomised 2-approximation.

\section*{Proof:}
- First statement as in the proof of Theorem 35.6. For clause \(i\) not to be satisfied, all \(\ell\) occurring variables must be set to a specific value.
- As before, let \(Y:=\sum_{i=1}^{m} Y_{i}\) be the number of satisfied clauses. Then,
\[
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m} \frac{1}{2}=\frac{1}{2} \cdot m
\]

\section*{Approach 2: Guessing with a "Hunch" (Randomised Rounding)}

First solve a linear program and use fractional values for a biased coin flip.

\section*{The same as randomised rounding!}

0-1 Integer Program


These auxiliary variables are used to reflect whether a clause is satisfied or not
subject to \(\sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}\left(1-y_{j}\right) \geq z_{i} \quad\) for each \(i=1,2, \ldots, m\)
\[
\begin{aligned}
& z_{i} \in\{0,1\} \text { for each } i=1,2, \ldots, m \\
& y_{j} \in\{0,1\} \text { for each } j=1,2, \ldots, n
\end{aligned}
\]
- In the corresponding \(L P\) each \(\in\{0,1\}\) is replaced by \(\in[0,1]\)
- Let \(\left(y^{*}, z^{*}\right)\) be the optimal solution of the LP
- Obtain an integer solution \(y\) through randomised rounding of \(y^{*}\)

\section*{Analysis of Randomised Rounding}

\section*{Lemma}

For any clause \(i\) of length \(\ell\),
\[
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
\]

\section*{Proof of Lemma (1/2):}
- Assume w.l.o.g. all literals in clause \(i\) appear non-negated (otherwise replace every occurrence of \(x_{j}\) by \(\overline{x_{j}}\) in the whole formula)
- Further, by relabelling assume \(C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)\)
\(\Rightarrow \operatorname{Pr}[\) clause \(i\) is satisfied \(]=1-\prod_{j=1}^{\ell} \operatorname{Pr}\left[y_{j}\right.\) is false \(]=1-\prod_{j=1}^{\ell}\left(1-y_{j}^{*}\right)\)
\[
\begin{aligned}
\left.\begin{array}{l}
\text { Arithmetic vs. geometric mean: } \\
\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}} .
\end{array}\right\} & \geq 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-y_{j}^{*}\right)}{\ell}\right)^{\ell} \\
& =1-\left(1-\frac{\sum_{j=1}^{\ell} y_{j}^{*}}{\ell}\right)^{\ell} \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell} .
\end{aligned}
\]

\section*{Analysis of Randomised Rounding}

\section*{Lemma}

For any clause \(i\) of length \(\ell\),
\[
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
\]

\section*{Proof of Lemma (2/2):}
- So far we have shown:
\[
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
\]
- For any \(\ell \geq 1\), define \(g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}\). This is a concave function with \(g(0)=0\) and \(g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}\).
\[
\Rightarrow \quad g(z) \geq \beta_{\ell} \cdot z \quad \text { for any } z \in[0,1]
\]
- Therefore, \(\operatorname{Pr}[\) clause \(i\) is satisfied \(] \geq \beta_{\ell} \cdot z_{i}^{*}\).


\section*{Analysis of Randomised Rounding}

\section*{Lemma}

For any clause \(i\) of length \(\ell\),
\[
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
\]

\section*{Theorem}

Randomised Rounding yields a \(1 /(1-1 / e) \approx 1.5820\) randomised approximation algorithm for MAX-CNF.

\section*{Proof of Theorem:}
- For any clause \(i=1,2, \ldots, m\), let \(\ell_{i}\) be the corresponding length.
- Then the expected number of satisfied clauses is:
\(\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot z_{i}^{*} \geq \sum_{i=1}^{m}\left(1-\frac{1}{e}\right) \cdot z_{i}^{*} \geq\left(1-\frac{1}{e}\right) \cdot\) OPT
By Lemma \(\quad\) Since \((1-1 / x)^{x} \leq 1 / e \quad \begin{gathered}\text { LP solution at least } \\ \text { as good as optimum }\end{gathered}\)

\section*{Approach 3: Hybrid Algorithm}

\section*{Summary}
- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches
\(\operatorname{HybRid}-M A X-C N F(\varphi, n, m)\)
1: Let \(b \in\{0,1\}\) be the flip of a fair coin
2: If \(b=0\) then perform random guessing
3: If \(b=1\) then perform randomised rounding
4: return the computed solution


Algorithm sets each variable \(x_{i}\) to TRUE with prob. \(\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot y_{i}^{*}\). Note, however, that variables are not independently assigned!

\section*{Analysis of Hybrid Algorithm}

\section*{Theorem}
\(\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)\) is a randomised 4/3-approx. algorithm.

\section*{Proof:}
- It suffices to prove that clause \(i\) is satisfied with probability at least \(3 / 4 \cdot z_{i}^{*}\)
- For any clause \(i\) of length \(\ell\) :
- Algorithm 1 satisfies it with probability \(1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}\).
- Algorithm 2 satisfies it with probability \(\beta_{\ell} \cdot z_{i}^{*}\).
- HYBRID-MAX-CNF \((\varphi, n, m)\) satisfies it with probability \(\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}\).
- Note \(\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4\) for \(\ell \in\{1,2\}\), and for \(\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4\) (see figure)
- \(\Rightarrow\) HYBRID-MAX-CNF \((\varphi, n, m)\) satisfies it with prob. at least \(3 / 4 \cdot z_{i}^{*}\)


\section*{MAX-CNF Conclusion}

\section*{Summary}
- Since \(\alpha_{2}=\beta_{2}=3 / 4\), we cannot achieve a better approximation ratio than \(4 / 3\) by combining Algorithm \(1 \& 2\) in a different way
- The \(4 / 3\)-approximation algorithm can be easily derandomised
- Idea: use the conditional expectation trick for both Algorithm \(1 \& 2\) and output the better solution
- The \(4 / 3\)-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!


Exercise (easy): Consider any minimsation problem, where \(x\) is the optimal cost of the LP relaxation, \(y\) is the optimal cost of the IP and \(z\) is the solution obtained by rounding up the LP solution. Which of the follwing statements are true?
1. \(x \leq y \leq z\),
2. \(y \leq x \leq z\),
3. \(y \leq z \leq x\).


Exercise (trickier): Consider a version of the SET-COVER problem, where each element \(x \in X\) has to be covered by at least two subsets. Design and analyse an efficient approximation algorithm. Hint: You may use the result that if \(X_{1}, X_{2}, \ldots, X_{n}\) are independent Bernoulli random variables with \(X:=\sum_{i=1}^{n} X_{i}, \mathbf{E}[X] \geq 2\), then
\[
\operatorname{Pr}[X \geq 2] \geq 1 / 4 \cdot\left(1-e^{-1}\right)
\]

Outline

\section*{Randomised Approximation}

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion

\section*{Spectrum of Approximations}


FPTAS PTAS APX log-APX poly-APX

\section*{Topics Covered}
I. Sorting and Counting Networks
- 0/1-Sorting Principle, Bitonic Sorting, Batcher's Sorting Network

Bonus Material: A Glimpse at the AKS network
- Balancing Networks, Counting Network Construction, Counting vs. Sorting
II. Linear Programming
- Geometry of Linear Programs, Applications of Linear Programming
- Simplex Algorithm, Finding a Feasible Initial Solution
- Fundamental Theorem of Linear Programming
III. Approximation Algorithms: Covering Problems
- Intro to Approximation Algorithms, Definition of PTAS and FPTAS
" (Unweighted) Vertex-Cover: 2-approx. based on Greedy
" (Unweighted) Set-Cover: \(O(\log n)\)-approx. based on Greedy
IV. Approximation Algorithms via Exact Algorithms
- Subset-Sum: FPTAS based on Trimming and Dynamic Programming
- Scheduling: 2-approx. based on Simple Greedy, 4/3-approx. using LPT Bonus Material: A PTAS for Machine Scheduling based on Rounding and Dynamic Programming
V. The Travelling Salesman Problem
- Inapproximability of the General TSP problem
- Metric TSP: 2-approx. based on MST, 3/2-approx. based on MST + matching

\section*{VI. Approximation Algorithms: Rounding and Randomisation}
- MAX3-CNF: 8/7-approx. based on Guessing, Derandomisation with Greedy
" (Weighted) Vertex-Cover: 2-approx. based on Deterministic Rounding
- (Weighted) Set-Cover: \(O(\log n)\)-approx. based on Randomised Rounding
- MAX-CNF: 4/3-approx. based on Guessing + Randomised Rounding

\section*{Thank you and Best Wishes for the Exam!}```

