The Software Development Process
A personal view

Dr Robert Brady

Brady plc

Science Park

Cambridge

r.brady@bradytrinity.com

Key reference:

 “Debugging the Development Process”

S Maguire

Microsoft Press

The three most important things in software development

1. Bugs

2. Bugs

3. Bugs

My agenda today:-

· Why are bugs inevitable?

· How do you structure a development process to get an acceptable level of bugs in practice?

How to lose $70bn
In the late 1980s, IBM lost $70 billion of stock-market value, and gave an entire market away to a previously small company called Microsoft.

According to the popular book “Big Blues”, this was, amongst other things, because it couldn’t write software effectively.

But IBM “did it right”. It followed all the standard rules taught in computer science courses at the time:

· Get the design right before you write the code

· Write complete documentation

· Get it right first time

· Use formal methods, design walk-throughs etc. to satisfy yourself that the code is bug-free

So what went wrong?
Size is important
Bytes

100b
-1kb

Typical punch-card program

(The IBM development method was

probably developed for this type of

program)

2kb-10kb

Typical software module

Typical computer science project(?)

16kb

Operating system of Sinclair Spectrum

200Kb

Our first software product – 1986

18 Mb

Human Genome – active code

(30k genes * protein size 800)

100Mb

Our current product (650,000 lines)

750Mb

Human genome - including rubbish code

(3 x 109 base-pairs)

1Gb – 2 Gb
Windows XP with associated products

100Gb

Typical hard disk

How size affects the basic assumptions
	
	Punch-card program
	2kb of code
	Large program

	Complete the design in advance
	Almost essential
	Difficult
	Too complex - not possible

	Complete the documentation in advance
	Highly desirable
	Difficult
	Too complex - not possible

	Prove it is bug-free
	Very difficult mathematical challenge
	Too complex - not possible
	Too complex - not possible

	“Right first time”
	A worthy goal
	Too complex - not possible
	Too complex - not possible

Bugs are inevitable

· 650,000 lines of code

· Suppose 1 bug escapes every 65 lines (nobody can achieve this)

· 10,000 bugs

· Good news:

· IBM research shows most bugs have mean time to failure 105 years

· Bad news

· Murphy’s law says your customer will encounter one of these rare bugs when pressing first button (because he has different usage patterns) and will get upset

What can you do about this?

· Plan beta testing etc on this basis

· Set realistic customer expectations

· But do not let this become an excuse for poor quality
Bug discovery rate in practice

[image: image1.emf]In-scope P0 and P1s found in Trinity 590/600

0

20

40

60

80

100

120

140

160

180

200

Jun-05 Jul-05

Aug-05

Sep-05 Oct-05

Nov-05

Dec-05 Jan-06 Feb-06

Mar-06 Apr-06

May-06

Jun-06 Jul-06

Aug-06

Sep-06

Identified

Fixed

Linear (Identified)

The consequences of Bug denial

Until recently, computer science courses used to teach that you must design in advance, document in advance, and write bug-free code first time. ...

… they were in denial that bugs are inevitable …

… and so were the students we used to hire …

… The students believed that management was ineffective or stupid because its policies differed from those taught by the university professor …

… and we found it “just didn’t work” to hire people who had graduated in Computer Science at a university

The “evolutionary” model

- what everyone does in practice

(whatever they call it)

This “evolutionary” model is needed where there are complex interactions between the work of different developers (or the work of the same developer over time).

A quiz

You are the manager of a small (2 person) software development/test team. They come to you with a problem and a proposed solution. Do you approve it?

Problem

· We need to implement 10 features. We have reviewed the designs, we now need to code and test them.

· Time is very tight. We will have to pull out all the stops to do it by the contracted deadline of next month

· John (the developer) is the best person to do the coding

· Richard (the test engineer) is the best person to do the testing

Proposed solution

· John and Richard work closely together to accelerate the development phase

· John codes the features and makes quick releases to Richard during development

· Richard provides testing feedback during development

· After this development phase, the software goes into the normal release cycle for testing/bugfix
If you approve the plan

· You will send a message to your developers that bugs don’t matter – you can “throw them over the wall” and someone else will find them for you

· You will accelerate developers who produce sloppy code and slow down developers who produce good code

· The process will be inefficient, eg

· the developer has a rough idea which areas will be buggy, he can home in on these

· The developer has tools (“debuggers”) to find bugs which the tester doesn’t have

· The developer will have to constantly communicate with the tester on what’s changed, this slows them both down

· The tester will be inefficient because silly bugs will stop him running his automated tests

· When you get to the original deadline

· your project will probably have all the features

· but the product probably won’t work well enough to run the automated tests, so you cannot ship

· You won’t be able to advise the customer of the new ship date, because the automated tests don’t work and they might (or might not) uncover something when they do run

· It will be too late to take corrective action
If you reject the plan (developer has to test his code before release)

· Your team will be forced to make the hard project decisions, eg

· Go back to the design stage for feature number 3 – can we implement it more simply?

· Cut feature number 6 – it’s not strictly in the specification

· Advise the customer there is a risk. Does he want a delay or does he want feature number 7 in a later release?

· Request more resources (a long shot…)

· Your team will work more efficiently

· The tester will always work on code that is basically stable (so he can develop his regression tests etc.)

· The developer will be rewarded for producing quality code, not for producing features that destabilise the product

· Your team will be able to plan the project

· If a feature is in the product then it will “basically work”

· The team (and you) can now monitor progress

· You can get test results and customer feedback early on the features you have implemented

Management make a decision to ship, with an shorter freeze-time for stabilisation

· The essential conflict in a project

 Time

Features

 Quality

	Customer personnel
	Care about

	Users
	Features

	Implementers
	Quality

	Senior management
	Time to golive

· Supplier can work for project manager who wants more features

· Then senior management say time has run out

· Ongoing £3M lawsuit, trial in March

· Tell you the result next year

Two approaches to resolving the conflict

Conventional – live with it

· Agree specifications

· Sign fixed-price contract

· Supplier instructs his project manager:

· Job # 1 is to protect the project time so the developers can build in the quality
· If customer delays or requests additions to spec, always request additional time

· Customer can hold supplier to account

Extreme Programming – another way

· Recognise there will always be additions to spec

· Sign contracts for time and materials

· Work with customer in small subprojects

· Customer can’t easily budget or hold supplier to account

· 9 Oct BBC News:

· “The UK's ID card scheme will cost £5.4bn to set up and run over the next 10 years, the Home Office says”

· What would you say with Extreme Programming? “We will see what it costs”
Some key ideas

	
	Conventional
	Extreme

	Specification
	Business Requirements
	Test cases

	Inner loop
	Program - Test
	Test - program

	Programming
	Individuals
	1 keyboard

=2 people

	Validation
	Acceptance trials etc
	Automated tests

Small Bug-fixes

Prototyping

model changes

Waterfall model changes

Integration; manual and automated tests

Review for release

Deploy

Robert Brady
Part IB Computer Science, Univ of Cambridge, October 2006
Page 1

