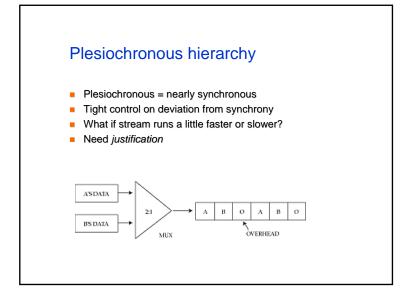
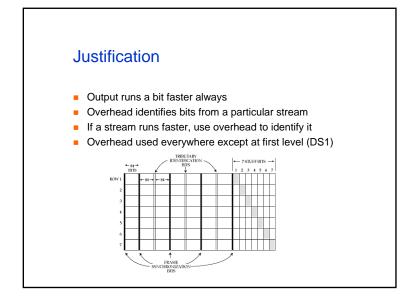
Common Protocols

An Engineering Approach to Computer Networking

The grand finale

- Previous chapters presented principles, but not protocol details
 - these change with time
 - real protocols draw many things together
- Overview of real protocols
 - standards documents are the final resort
- Three sets of protocols
 - telephone
 - Internet
 - ATM

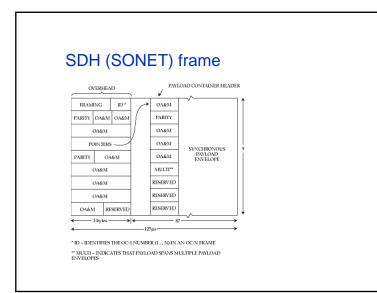

Telephone network protocols


	Data Plane	Control Plane (SS7)
Арр	Voice/Fax	ASE/ISDN-UP
		TCAP
Session		
Transport		
Network		SCCP/MTP-3
Datalink	Sonet/PDH	MTP-2
Physical	Many	MTP-1

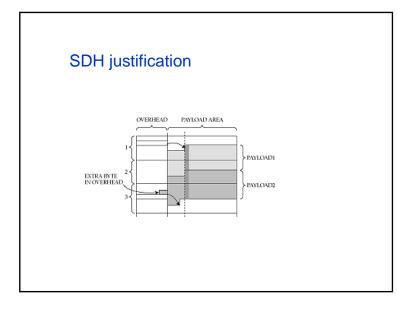
Traditional digital transmission

- Long distance trunks carry multiplexed calls
- Standard multiplexing levels
- Digital transmission hierarchy

	US and Japan		
Multiplexing level	N a m e	# calls	Rate (Mbps)
1	D S 1	2 4	1.544
2	D S 2	96	6.312
3	D S 3	672	44.736
4	D S 4	4 0 3 2	274.176


Problems with plesiochrony

- Incompatible hierarchies around the world
- Data is spread out! Hard to extract a single call
- Cannot switch bundles of calls


Synchronous Digital Hierarchy

- All levels are synchronous
- Justification uses pointers

Data Rate (Mbps)	US Name
1 51.84	OC-1
2 155.52	OC-3
3 466.56	OC-9
4 622.08	OC-12
5 933.12	OC-18
6 1244.16	OC-24
8 1866.24	OC-36
9 2488.32	OC-48
9953.28	OC-192

SDH 9 rows, 90 columns Each payload container (SPE) served in 125 microseconds One byte = 1 call All overhead is in the headers Pointers for justification if sending too fast, use a byte in the overhead, increasing sending rate if sending too slow, skip a byte and move the pointer can always locate a payload envelope, and thus a call within it => cheaper add drop mux

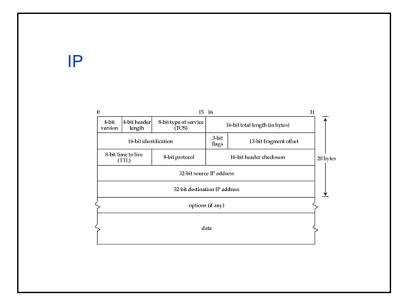
Signaling System 7 (SS7)

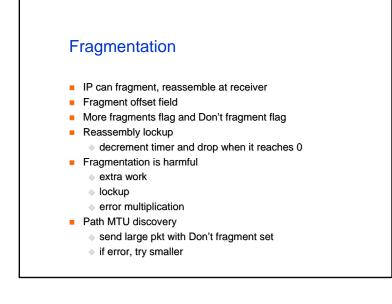
OSI layer name	SS7 layer name	Functionality	Internet example
Application	Application Service Element	Application	FTP
	Transaction Capabilities Application part	RPC	RPC
Transport	Signaling Connection Control Part	Connections, sequence numbers, segmentation and reassembly, flow control	ТСР
Network	Message Transfer Part 3 (MTP-3)	Routing	IP
Datalink	MTP-2	Framing , link-level error detection and retransmission	Ethernet
Physical	MTP-1	Physical bit transfer	Ethernet

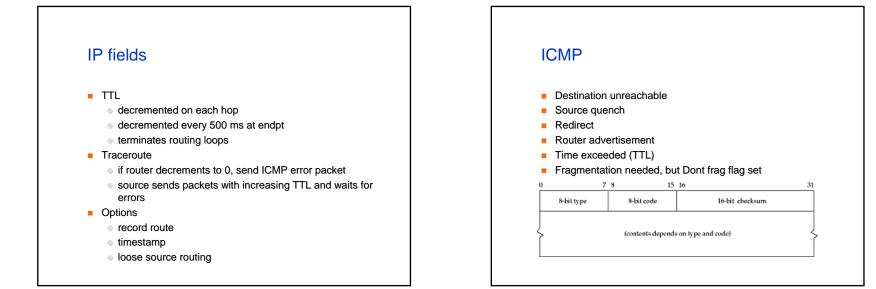
SS7 example

Call forwarding

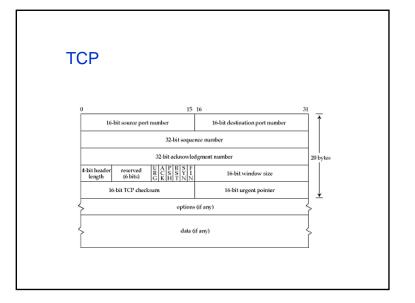
- To register
 - call special number
 - connects to ASE
 - authenticates user, stores forwarding number in database
- On call arrival
 - call setup protocol checks database for forwarding number
 - if number present, reroutes call
- SS7 provides all the services necessary for communication and coordination between registry ASE, database, and call setup entity


MTP Header BACKWARD INDICATOR BIT FLAGS BACK SEQ # FORWARD INDICATOR BIT LENGTH FWD SEQ # HEADER 4 SERVICE INFO DPC DPC OPC OPC SLS DATA CHECKSUM CHECKSUM TRAILER < FLAG


Internet stack


	Data Plane	Control Plane
Арр	HTTP	RSVP/OSPF
Session	Sockets/Streams	
Transport	TCP/UDP	
Network	IP	IP/ICMP
Datalink	Many	Many
Physical	Many	Many

IP


- Unreliable
- Best effort
- End-to-end
- IP on everything- interconnect the world

Fields

- Port numbers
- Sequence and ack number
- Header length
- Window size
 - 16 bits => 64 Kbytes (more with scaling)
 - receiver controls the window size
 - if zero, need sender persistence
 - silly window syndrome
- Checksum
- Urgent pointer
- Options
 - max segment size

HTTP

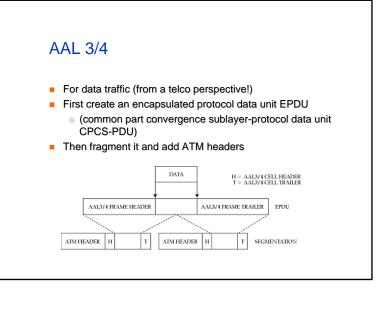
- Request response
- Protocol is simple, browser is complex
- Address space encapsulation
- Request types
 - GET
 - HEAD
 - POST
- Response
 - status
 - headers
 - body

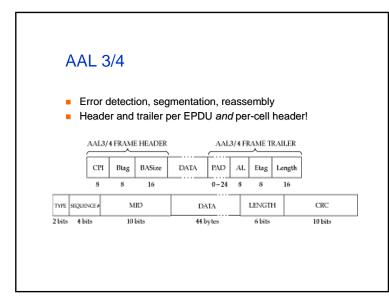
ATM sta	CK		
	Data Plane	Control Plane	
Application		UNI/PNNI	
Application		Q.2931	
Session			
Transport		SSCOP	
Network	AAL1-5	S-AAL (AAL5)	
Data Link	ATM	ATM	
Physical	Many	Many	

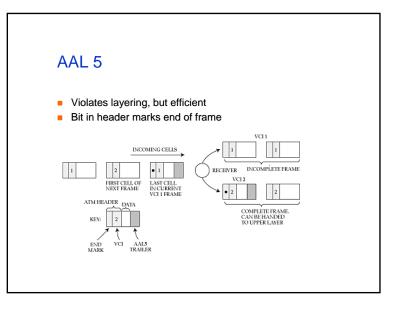
ATM

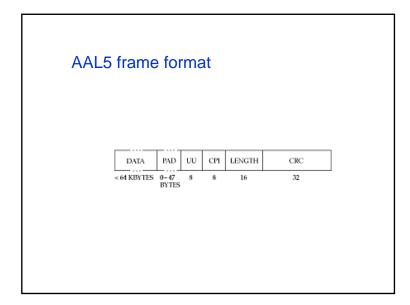
- Connection-oriented
- In-sequence
- Unreliable
- Quality of service assured

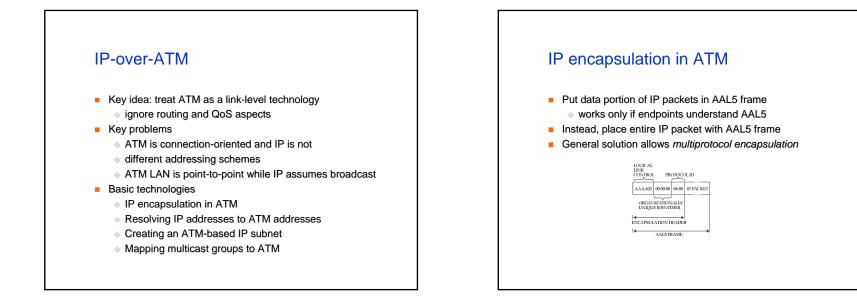
87654	3	2 1		
GFC/VPI*	VPI			
VPI	VCI			
VCI				
VCI	РТ	CLP		
HEC				
*GFC IN UNI & VPI IN NNI				

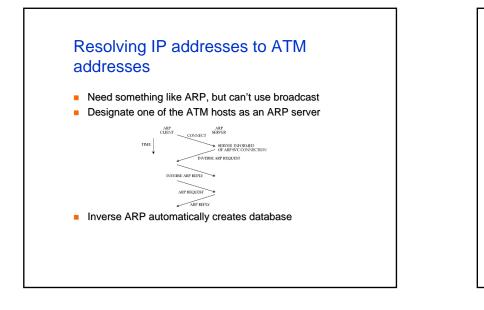

Virtual paths


- High order bits of VCI
- All VCIs in a VP share path and resource reservation
- Saves table space in switches
 - faster lookup
- Avoids signaling
- May waste resources
- Dynamic renegotiation of VP capacity may help
- Set of virtual paths defines a virtual private network

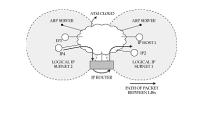

AAL

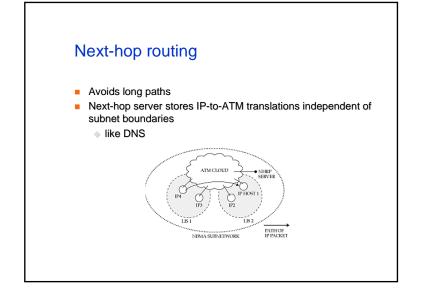

- Was supposed to provide "rest of stack"
- Scaled back
- 4 versions: 1, 2, 3/4, 5
- Only 1, 3/4 and 5 important in practice

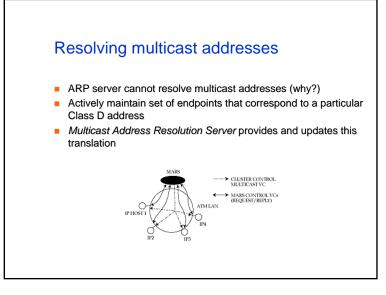




SSCOP


- Reliable transport for signaling messages
- Functionality similar to TCP
 - error control (described below)
 - flow control (static window)
- Four packet types
 - sequenced data / poll / stat / ustat
- No acks!
- Sender polls, receiver sends status
 - includes cumulative ack and window size
- If out of order, sends unsolicited status (ustat)
- Key variable is poll interval





Creating an ATM-based IP subnet

- IP assumes free availability of bandwidth within a subnet
- If all hosts on ATM are on same IP subnet, broadcast reaches all => congestion
- Partition into logical IP subnets
 - at the cost of longer paths between ATM-attached hosts

LAN emulation

- If destination is on same LAN, can use ATM underneath datalink layer
- Need to translate from MAC address to ATM address
- Also need to emulate broadcast for Ethernet/FDDI

AT TRANSPORT

Cells in Frame (CIF)

- Solutions so far require expensive ATM host-adapter card
- Can we reuse Ethernet card?
- Encapsulate AAL5 frame in Ethernet header on point-to-point Ethernet link
- CIF-Attachment Device at other end decapsulates and injects the frame into an ATM network
- Software on end-system thinks that it has a local host adapter
- Shim between ATM stack and Ethernet driver inserts CIF header with VCI and ATM cell header
 - may need to fragment AAL5 frame
 - can also forward partial frames
- Cheaper
 - also gives endpoints QoS guarantees, unlike LANE

Holding time problem

- After resolution, open an ATM connection, and send IP packet
- When to close it?
- Locality
 - more packets likely
 - hold the connection for a while to avoid next call setup
 - but pay per-second holding time cost
- Optimal solution depends on pricing policy and packet arrival characteristics
- Measurement-based heuristic works nearly optimally
 - create the inter-arrival time histogram
 - expect future arrivals to conform to measured distribution
 - close connection if expected cost exceeds expected benefit