Reduction

If a Boolean expression ϕ in 3CNF has n variables, and m clauses, we construct for each variable v the following gadget.

![Diagram of a gadget for a variable]

In addition, for every clause c, we have two elements x_c and y_c. If the literal v occurs in c, we include the triple (x_c, y_c, z_{vc}) in M.

Similarly, if $\neg v$ occurs in c, we include the triple (x_c, y_c, z_{vc}) in M.

Finally, we include extra dummy elements in X and Y to make the numbers match up.

Exact Set Covering

Two other well-known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with $3n$ elements, and a collection $S = \{S_1, \ldots, S_m\}$ of three-element subsets of U, is there a sub-collection containing exactly n of these sets whose union is all of U?

The reduction from 3DM simply takes $U = X \cup Y \cup Z$, and S to be the collection of three-element subsets resulting from M.

Set Covering

More generally, we have the **Set Covering** problem:

Given a set U, a collection of $S = \{S_1, \ldots, S_m\}$ subsets of U and an integer budget B, is there a collection of B sets in S whose union is U?
Knapsack

Knapsack is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems **NP**-complete.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i.

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?

Reduction

The proof that **Knapsack** is **NP**-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U = \{1, \ldots, 3n\}$ and a collection of 3-element subsets of U, $S = \{S_1, \ldots, S_m\}$.

We map this to an instance of **Knapsack** with m elements each corresponding to one of the S_i, and having weight and value

$$\sum_{j \in S_i} (m + 1)^j$$

and set the target weight and value both to

$$\sum_{j=0}^{3n-1} (m + 1)^j$$

Scheduling

Some examples of the kinds of scheduling tasks that have been proved **NP**-complete include:

Timetable Design

Given a set H of *work periods*, a set W of *workers* each with an associated subset of H (available periods), a set T of *tasks* and an assignment $r : W \times T \to \mathbb{N}$ of *required work*, is there a mapping $f : W \times T \times H \to \{0, 1\}$ which completes all tasks?

Sequencing with Deadlines

Given a set T of *tasks* and for each task a *length* $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set T of *tasks*, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?
Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It’s a single instance, does asymptotic complexity matter?
- What’s the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?