CNF

A Boolean expression is in *conjunctive normal form* if it is the conjunction of a set of *clauses*, each of which is the disjunction of a set of *literals*, each of these being either a *variable* or the *negation* of a variable.

For any Boolean expression ϕ, there is an equivalent expression ψ in conjunctive normal form.

ψ can be exponentially longer than ϕ.

However, *CNF-SAT*, the collection of satisfiable CNF expressions, is NP-complete.

3SAT

A Boolean expression is in *3CNF* if it is in conjunctive normal form and each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in 3CNF that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from CNF-SAT to 3SAT.

Composing Reductions

Polynomial time reductions are clearly closed under composition. So, if $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then we also have $L_1 \leq_P L_3$.

Note, this is also true of \leq_L, though less obvious.

If we show, for some problem A in NP that

$\text{SAT} \leq_P A$

or

$\text{3SAT} \leq_P A$

it follows that A is also NP-complete.

Independent Set

Given a graph $G = (V, E)$, a subset $X \subseteq V$ of the vertices is said to be an *independent set*, if there are no edges (u, v) for $u, v \in X$.

The natural algorithmic problem is, given a graph, find the largest independent set.

To turn this optimisation problem into a decision problem, we define IND as:

The set of pairs (G, K), where G is a graph, and K is an integer, such that G contains an independent set with K or more vertices.

IND is clearly in NP. We now show it is NP-complete.
Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression \(\phi \) in 3CNF with \(m \) clauses is mapped by the reduction to the pair \((G, m)\), where \(G \) is the graph obtained from \(\phi \) as follows:

- \(G \) contains \(m \) triangles, one for each clause of \(\phi \), with each node representing one of the literals in the clause.
- Additionally, there is an edge between two nodes in different triangles if they represent literals where one is the negation of the other.

Example

\[
(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_2 \lor \neg x_1)
\]

Clique

Given a graph \(G = (V, E) \), a subset \(X \subseteq V \) of the vertices is called a *clique*, if for every \(u, v \in X \), \((u, v)\) is an edge.

As with IND, we can define a decision problem version:

CLIQUE is defined as:

- The set of pairs \((G, K)\), where \(G \) is a graph, and \(K \) is an integer, such that \(G \) contains a clique with \(K \) or more vertices.

Clique 2

CLIQUE is in NP by the algorithm which *guesses* a clique and then verifies it.

CLIQUE is NP-complete, since \(\text{IND} \leq_p \text{CLIQUE} \) by the reduction that maps the pair \((G, K)\) to \((\bar{G}, K)\), where \(\bar{G} \) is the complement graph of \(G \).