Circuits

A circuit is a directed graph $G = (V, E)$, with $V = \{1, \ldots, n\}$ together with a labeling: $l : V \rightarrow \{\text{true}, \text{false}, \land, \lor, \neg\}$, satisfying:

- If there is an edge (i, j), then $i < j$;
- Every node in V has indegree at most 2.
- A node v has
 - indegree 0 iff $l(v) \in \{\text{true}, \text{false}\}$;
 - indegree 1 iff $l(v) = \neg$;
 - indegree 2 iff $l(v) \in \{\lor, \land\}$

The value of the expression is given by the value at node n.

CVP

A circuit is a more compact way of representing a Boolean expression.

Identical subexpressions need not be repeated.

CVP - the circuit value problem is, given a circuit, determine the value of the result node n.

CVP is solvable in polynomial time, by the algorithm which examines the nodes in increasing order, assigning a value true or false to each node.

Composites

Consider the decision problem (or language) Composite defined by:

$$\{x \mid x \text{ is not prime}\}$$

This is the complement of the language Prime.

Is $\text{Composite} \in \text{P}$?

Clearly, the answer is yes if, and only if, $\text{Prime} \in \text{P}$.

Hamiltonian Graphs

Given a graph $G = (V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is $\text{HAM} \in \text{P}$?
Examples

The first of these graphs is not Hamiltonian, but the second one is.

Polynomial Verification

The problems Composite, SAT and HAM have something in common.

In each case, there is a search space of possible solutions.

- the factors of \(x \); a truth assignment to the variables of \(\varphi \); a list of the vertices of \(G \).

The number of possible solutions is exponential in the length of the input.

Given a potential solution, it is easy to check whether or not it is a solution.

Verifiers

A verifier \(V \) for a language \(L \) is an algorithm such that

\[
L = \{ x \mid (x, c) \text{ is accepted by } V \text{ for some } c \}
\]

If \(V \) runs in time polynomial in the length of \(x \), then we say that

\(L \) is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.

Nondeterministic Complexity Classes

We have already defined \(\text{TIME}(f(n)) \) and \(\text{SPACE}(f(n)) \).

\(\text{NTIME}(f(n)) \) is defined as the class of those languages \(L \) which are accepted by a nondeterministic Turing machine \(M \), such that for every \(x \in L \), there is an accepting computation of \(M \) on \(x \) of length at most \(f(n) \).

\[
\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k)
\]
For a language in $\text{NTIME}(f(n))$, the height of the tree is bounded by $f(n)$ when the input is of length n.

NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a non-deterministic algorithm that accepts L:

1. input x of length n
2. non-deterministically guess c of length $\leq p(n)$
3. run V on (x,c)

We can think of non-deterministic algorithms in the generate-and-test paradigm:

Where the generate component is non-deterministic and the verify component is deterministic.