1. Show that a language \(L \) is in \(\text{co-NP} \) if, and only if, there is a nondeterministic Turing machine \(M \) and a polynomial \(p \) such that \(M \) halts in time \(p(n) \) for all inputs of length \(x \), and \(L \) is exactly the set of strings \(x \) such that all computations of \(M \) on input \(x \) end in an accepting state.

2. Define a strong nondeterministic Turing machine as one where each computation has three possible outcomes: accept, reject or maybe. If \(M \) is such a machine, we say that it accepts \(L \), if for every \(x \in L \), every computation path of \(M \) on \(x \) ends in either accept or maybe, with at least one accept and for \(x \notin L \), every computation path of \(M \) on \(x \) ends in reject or maybe, with at least one reject.

Show that if \(L \) is decided by a strong nondeterministic Turing machine running in polynomial time, then \(L \in \text{NP} \cap \text{co-NP} \).

3. Consider the algorithm presented in the lecture which establishes that \(\text{Reachability} \) is in \(\text{SPACE}((\log n)^2) \). What is the time complexity of this algorithm?

Can you generalise the time bound to the entire complexity class? That is, give a class of functions \(F \), such that

\[
\text{SPACE}((\log n)^2) \subseteq \bigcup_{f \in F} \text{TIME}(f)
\]

4. Show that, for every nondeterministic machine \(M \) which uses \(O(\log n) \) work space, there is a machine \(R \) with three tapes (input, work and output) which works as follows. On input \(x \), \(R \) produces on its output tape a description of the configuration graph for \(M, x \), and \(R \) uses \(O(\log |x|) \) space on its work tape.

Explain why this means that if \(\text{Reachability} \) is in \(L \), then \(L = \text{NL} \).

5. Consider the language \(L \) in the alphabet \(\{a, b\} \) given by \(L = \{a^n b^n \mid n \in \mathbb{N}\} \). \(L \not\in \text{SPACE}(c) \) for any constant \(c \). Why?