
CPU Performance Equation

T ime for task = C ∗ T ∗ I
C =Average # Cycles per instruction
T =Time per cycle
I =Instructions per task

• Pipelining

– e.g. 3-5 pipeline steps (ARM, SA, R3000)

– Attempt to get C down to 1

– Problem: stalls due to control/data hazards

• Super-Pipelining

– e.g. 8+ pipeline steps (R4000)

– Attempt to decrease T

1

– Problem: stalls harder to avoid

• Super-Scalar

– Issue multiple instructions per clock

– Attempt to get C below 1

– Problem: finding parallelism to exploit

∗ typically Instruction Level Parallelism (ILP)

Critical Path

Clock

A

B

C

D
Setup

Margin

Period = 1/F

Clock

D Q

D Q

A
B

C
D

2

Pipelining

Data in
D Q

D Q

D Q

D Q

D Q

D Q

Synchronous global clock
signal

Another input

Yet another input

An output

Yet another output

Another output still

Large loop-free combinatorial logic function

Data in
D Q

D Q

D Q

D Q

D Q

D Q

Synchronous global clock
signal

Another input

Yet another input

An output

Yet another output

Another output still

Loop-free combinatorial logic
function - second half

Desired logic function

Desired logic function - pipelined version.

D Q

D Q

D Q

D Q

Loop-free combinatorial logic
function - first half

3

The classic RISC pipe

4 PC

Instruction
Memory

ADD

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op
PC

d
a

Branch
Test

Data
Memory

Branch target PC
Branch taken?

a

din dout

Data from ALU OP

Data to write back

Instruction
Fetch

Instruction
Decode EXecute Memory

Access
Write
Back

d

d
d
a

a a

4

IF Send out PC to I-cache. Read instruction into
IR. Increment PC.

ID Decode instruction and read registers in parallel
(possible because of fixed instruction format).
Sign extend any immediate value.

EX Calculate Effective Address for Load/Stores.
Perform ALU op for data processing instruc-
tions. Calculate branch address. Evaluate con-
dition to decide whether branch taken.

MA Access memory if load/store.
WB Write back load data or ALU result to register

file.

The cost of pipelining

• Pipeline latches add to cycle time

• Cycle time determined by slowest stage

– Try to balance each stage

• Some resources need to be duplicated to avoid some Structural Hazards

– (PC incrementer)

– Multiple register ports (2R/1W)

– Separate I&D caches

⇒ Effectiveness determined by CPI achieved

Pipelining is efficient
5

Non Load-Store Architectures

• Long pipe with multiple add and memory access stages

– Lots of logic

– Many stages unused by most instructions

• Or, multiple passes per instruction

– Tricky control logic

• Or, convert architectural instructions into multiple RISC-like internal
operations

– Good for multi-issue

– More ID stages

– Pentium Pro/II/III (µops)

– AMD x86 K7 (r-ops)

Pipelining easiest if all instructions do a similar
amount of ‘work’

6

Data Hazard Taxonomy

• WaW: write after write, out of order completion.

• WaR: write too early, overwrites data still needed.

• RaW: need to read a value that has (potentially) yet to be

written.

The first two are avoided when have sufficient registers and/or

can rename.

RaW hazards are more tricky!

7

ALU Result Forwarding

• E.g. 4 forwarding paths to avoid stalls:
a: add r1 ← r8, r9
b: add r2 ← r1, r7
c: add r3 ← r1, r2
d: add r4 ← r1, r2

4 PC

Instruction
Memory

ADD

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op
PC

d
a

Branch
Test

Data
Memory

Branch target PC
Branch taken?

a

din dout

Data from ALU OP

Data to write back

Instruction
Fetch

Instruction
Decode EXecute Memory

Access
Write
Back

d

d
d
a

a a

8

• Read after Write

• Doubled # mux inputs

• Deeper pipes → more forwarding

– R4000, 8 deep pipe

forward to next 4 instructions

Load Data Hazards

• Impossible without a stall:
lw r1 ← r9(4)

add r2 ← r1, r6

• Read after Write (RaW) hazard

• New forwarding path saves a cycle

• Re-order code to avoid stall cycle

– Possible for 60-90% of loads

• Software Interlocked

– Compiler must insert nop

9

– e.g. R2000/R3000

• Hardware Interlocked

– Save nop: better for I-stream density

– Register scoreboard

∗ track location of reg values e.g.:

∗ File, EX, MA, MUL1, MUL2, MemVoid

∗ hold back issue until RaW hazard resolved

∗ control operand routeing

– Required for all sophisticated pipelines

• More stalls for deeper pipes

– 2 stalls and 2 more forwarding paths for R4000

Longer Latency Instructions

• Mul/Div, Floating Point

• Different functional units operating in parallel with main

pipeline

• Extra problems:

– Structural hazards

∗ Unit may not be fully pipelined, eg:

· 21264 FDiv: 16cy latency, not pipelined

· 21164 FMul: 8cy latency, issue every 4cy

→ 21264 FMul: 4cy latency, fully pipelined

10

∗ Multiple Write Back stages

· more register write ports?

· or, schedule pipeline bubble

– Read after Write hazards more likely

∗ compiler instruction scheduling

– Instruction complete out of order

∗ Write after Write hazards possible

∗ Dealing with interrupts/exceptions

• Use scoreboard to determine when safe to issue

• Often hard to insert stalls after ID stage

– synthesize NOPs in ID to create bubble

– ‘replay trap’ : junk & refetch

Exceptions and Pipelining
User SWI/trap ID Precise (easy)
Illegal Instruction ID Precise (easy)
MMU TLB miss IF/MA Precise required
Unaligned Access MA Precise required
Arithmetic EX 1..N Imprecise possible

• Exceptions detected past the point of in-order execution

can be tricky

– FP overflow

– Int overflow from Mul/Div

• Exact arithmetic exceptions

– Appears to stop on faulting instruction

– Need exact PC

∗ care with branch delay slots

11

– Roll back state/In-order commit (PPro)

• Imprecise arithmetic exceptions

– Exception raised many cycles later

– Alpha: Trap Barriers

– PPC: Serialise mode

– IA-64: Poison (NaT) bits on registers

∗ instructions propagate poison

∗ explicit collection with ’branch if poison’

Interrupts

• Interrupts are asynchronous

• Need bounded latency

– Real-time applications

– Shadow registers avoid spilling state

∗ Alpha, ARM

• Some CISC instructions may need to be interruptible

– Resume vs. Restart

∗ eg. overlapping memcpy

– Update operands to reflect progress

∗ VAX MOVC

12

Control Flow Instructions

• Absolute jumps

– To an absolute address
(usually calculated by linker)

– Immediate / Register modes

– usage: function pointers, procedure call/return into other
compilation modules, shared libraries, switch/case statements

– Unconditional - but perhaps computed

– Also subroutine return

• PC Relative branches

– Signed immediate offset

– Limited range on RISC

∗ Typically same compilation module (calculated by compiler)

– Conditional

13

Jump to Subroutine often has hardware stack support.

– Save PC of following instruction into:

∗ CISC: stack

∗ most RISC: special register

∗ ALPHA: nominated register

∗ IA-64: nominated Branch Reg

ARM neatly optimised RLA save along with data register

saving.

Modern CPUs want to know which registers are (likely) to

be holding an RLA.

Conditional Branches

• Conditional branch types

– most: Test condition code flags

∗ Z, C, N, V

∗ Bxx label

– Alpha/MIPS: Test bits in named reg

∗ msb (sign), lsb, ‘zero’

∗ Bxx Ra, label

– some: Compare two registers and branch

∗ Bxx Ra, Rb, label

∗ (PA-RISC, MIPS, some CISC)

14

– IA-64: Test one of 64 single bit predicate regs

• Conditional branch stats (for MIPS and SPEC92)

– 15% of executed instructions

∗ 73% forward (if/else)

∗ 27% backward (loops)

– 67% of branches are taken

∗ 60% forward taken

∗ 85% backward taken (loops)

Control Hazards

• ‘classic’ evaluates conditional branches in EX

– Identify branch in ID, and stall until outcome known

– Or better, assume not taken and abort if wrong

→ 2 stall taken-branch penalty

• If evaluating branch is simple, replicate h/w to allow early

decision

– Branch on condition code

– Alpha/MIPS: Test bits in named reg

∗ Special ‘zero’ bit stored with each reg

– Hard if Bxx Ra, Rb, label

15

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op

Data
Memory

a

din dout

Data from ALU OP

Data to write back
Instruction

Fetch
Instruction

Decode EXecute Memory
Access

Write
Back

d

d
d
a

a a ADD

Branch
Test4 PC

Instruction
Memory

ADD

d
a

Control Hazards (2)

• Evaluate branches in ID (when possible)

⇒ Only 1 cycle stall if test value ready

(Set flags/reg well before branch)

– Bad if every instruction sets flags (CISC)

– Helps if setting CC optional (SPARC/ARM)

– Good if multiple CC regs (PPC/IA-64), or none

(Alpha/MIPS)

• Branch delay slots avoided the taken branch stall on early

MIPS

– Always execute following instruction

16

– Can’t be another branch

– Compiler fills slot ∼60% of the time

– Branches with optional slots: avoid nop

• Modern CPUs typically have more stages before EX, due to

complicated issue-control logic, thus implying a greater

taken-branch cost

• Stalls hurt more on a multi-issue machine. Also, fewer

cycles between branch instructions

Control hazards can cripple multi-issue CPUs

Static Branch Prediction

• Speculation should not change semantics!

• Simple prediction

– e.g. predict backward as taken, forward not

• Branch instructions with hints

– Branch likely/unlikely

∗ strong/weak hint varients

– Use Feedback Directed Optimization (FDO)

– Fetch I-stream based on hint

• Delayed branch instrs with hints and annulment

– If hint that branch taken is correct then execute slot instruction else
don’t

– e.g. new MIPS, PA-RISC

– Compiler able to fill delay slot more easily

17

Dynamic Branch Prediction

• Static hints help, but need to do better

• Branch prediction caches

– Indexed by significant low order bits of branch

instruction address

– Cache entries do not need tags (they’re only hints)

– E.g. 512-8K entries

• Bi-modal prediction method

⇒ many branches are strongly biased

– Single bit predictor

18

∗ Bit predicts branch as taken/not taken

∗ Update bit with actual behaviour

∗ Gets first and last iterations of loops wrong

– Two bit predictors

∗ Counter saturates at 0 and 3

∗ Predict taken if 2 or 3

∗ Add 1 if taken, subtract 1 if not

∗ Little improvement above two bits

∗ ≥90% for 4K entry buffer on SPEC92

Local History predictors

• Able to spot repetitive patterns

• Copes well with minor deviations from pattern

• E.g. 4 bit local history branch predictor

– 4 bit shift reg stores branch’s prior behaviour

– 16 x 2 bit bi-modal predictors per entry

– use shift reg to select predictor to use

– perfectly predicts all patterns < length 6, as well as

some longer ones (up to length 16)

– used on Pentium Pro / Pentium II

19

∗ 512 entries x (16 x 2 + 4) = 18K bits SRAM

– trained after two sequence reps

– other seqs up to 6% worse than random

• An alternative approach is to use two arrays. One holds

branch history, the other is a shared array of counters

indexed by branch history

– branches with same pattern share entries in 2nd array

(more efficient)

– 21264 LH predictor: 1024 entries x 10 bits of history per

branch, and shared array of 1024 counters indexed by

history

Global Correlating predictors

• Behaviour of some branches is best predicted by observing

behaviour of other branches

• (Spatial locality)

⇒ Keep a short history of the direction that the last few

branch instructions executed have taken

• E.g. Two bit correlating predictor:

– 2 bit shift register to hold processor branch history

– 4 bi-modal counters in each cache entry, one for each

possible global history

20

• Rather than using branch address, some GC predictors use

the processor history as the index into a single bi-modal

counter array. Also possible to use a hash of (branch

address, global history)

– Alpha 21264 GC predictor uses a 12 bit history and 4096

x 2 bit counters

• Combination of Local History and Global Correlating

predictor works well

– ≥95% for 30K bit table on SPEC92

– E.g. Alpha 21264

– Tournament System to decide which to use.

Reducing Taken-Branch Penalty

• Branch predictors usually accessed in ID stage, hence at

least one bubble required for taken-branches

• Need other mechanisms to try and maintain a full stream of

useful instructions:

• Branch target buffers

– In parallel with IF, look up PC in BTB

– if PC is present in BTB, start fetching from the address

indicated in the entry

– Some BTBs actually cache instructions from the target

address

21

• Next-fetch predictors

– Very simple, early, prediction to avoid fetch bubbles,

used on PPro, A21264

– I-cache lines have pointer to the next line to fetch

– Update I-cache ptr. based on actual outcome

• Trace caches (Pentium IV)

– Replace traditional I-cache

– Cache commonly executed instr sequences, crossing

basic block boundaires

– (c.f. “trace straightening” s/w optimization)

– Table to map instr address to position in cache

– Instrs typically stored in decoded form

Avoiding branches

• Loop Count Register (PowerPC, x86, IA-64)

– Decrement and branch instruction

– Only available for innermost loops

• Predicated Execution (ARM, IA-64)

– Execution of all instructions is conditional

∗ ARM: on flags registers

∗ IA-64: nominated predicate bit (of 64)

– IA-64: cmp instructions nominate two predicate bits,

one is set and cleared depending on outcome

– E.g. if([r1] && [r2] && [r3]) {...} else {...}

22

ld r4 <- [r1]

p6,p0 <= cmp(true)

p1,p2 <= cmp(r4==true)

<p1> ld r5 <- [r2]

<p1> p3,p4 <= cmp(r5==true)

<p3> ld r6 <- [r3]

<p3> p5,p6 <= cmp(r6==true)

<p6> br else

...

4 Transform control dependency into data dep

4 Instruction ‘boosting’

∗ e.g. hoist a store ahead of a branch

4 Inline simple if/else statements

8 Costs opcode bits

8 Issue slots wasted executing nullified instrs

Avoiding branches 2

• Conditional Moves (Alpha, new on MIPS and x86)

– Move if flags/nominated reg set

– Just provides a ‘commit’ operation

∗ beware side effects on ‘wrong’ path

– PA-RISC supports arbitrary nullification

• Parallel Compares (IA-64)

– Eliminate branches in complex predicates

– Evaluate in parallel

∗ (despite predicate dependancy)

23

– if ((rA<0) && (rB==-15) && (rC>0)) {...}

cmp.eq p1,p0 = r0, r0 ;; // p1 =1

cmp.ge.and p1,p0 = rA,r0

cmp.ne.and p1,p0 = rB,-15

cmp.le.and p1,p2 = rB,10

(p1) br.cond if-block

Avoid hard to predict branches

Optimizing Jumps

• Alpha: Jumps have static target address hint

– A16−2 of target instruction virtual address

– Enough for speculative I-cache fetch

– Filled in by linker or dynamic optimizer

• Subroutine Call Returns

– Return address stack

– Alpha: Push/pop hints for jumps

– 8 entry stack gives ≥ 95% for SPEC92

• Jump target registers (PowerPC/IA64)

– Make likely jump destinations explicit

– Buffer instructions from each target

• Next-fetch predictors / BTBs / trace caches help for jumps too

– Learn last target address of jumps

– Good for shared library linkage

24

