CPU Performance Equation

Time for task = C xT x 1
C =Average # Cycles per instruction
T =Time per cycle
I =Instructions per task

e Pipelining
— e.g. 3-5 pipeline steps (ARM, SA, R3000)
— Attempt to get C down to 1

— Problem: stalls due to control/data hazards

e Super-Pipelining
— e.g. 8+ pipeline steps (R4000)

— Attempt to decrease T

— Problem: stalls harder to avoid

e Super-Scalar
— Issue multiple instructions per clock
— Attempt to get C below 1

— Problem: finding parallelism to exploit

x typically Instruction Level Parallelism (ILP)

Critical Path

' D
Clock —:>_ D

[
A A
Clock /: \ Y

-~

A \

5 4

e] -

° : /E «—>, Setup
I Margin :<—>E |
L Period = 1/F >E

Pipelining

Data in | An output
D Q D Q
> - J_E)— >
Another input :l}ﬂ_ :DO Yet another output
D Q D Q
= Doy n >
Yet another input D_ Another output still
> o D D oo [
> >
Synchronous global clock Large loop-free combinatorial logic function
signal
Desired logic function
D Q
Data in > ,::D—L An output
Q - I
Do o DI >
Another input > Yet another output
Q D Q
J\:D—L D Q D— >
Yet another input D_ > :[}3]_ Another output still
D Q >
Synchronous global cloc Loop-free combinatorial logic = Loop-free combinatorial logic
signal function - first half function - second half

Desired logic function - pipelined version.

T he classic RISC pipe

Branch target PC

'

Branch taken?
PC PC N

Op

Rb

Ra Branch

¥ Test
a
. Data from ALU OP
% Instruction Register g
Memory a» > ID File d
—»{d > a
d— q Data
" L Memory
> din dout| >
»| sign _
ext
Dest Reg# > _l
Data to write back
Instruction Instruction EXecute Memory Write
Fetch Decode Access Back

IF

ID

EX

MA
WB

Send out PC to I-cache. Read instruction into
IR. Increment PC.

Decode instruction and read registers in parallel
(possible because of fixed instruction format).
Sign extend any immediate value.

Calculate Effective Address for Load/Stores.
Perform ALU op for data processing instruc-
tions. Calculate branch address. Evaluate con-
dition to decide whether branch taken.

Access memory if load/store.

Write back load data or ALU result to register
file.

The cost of pipelining

e Pipeline latches add to cycle time

e Cycle time determined by slowest stage

— Try to balance each stage

e Some resources need to be duplicated to avoid some Structural Hazards
— (PC incrementer)
— Multiple register ports (2R/1W)

— Separate I&D caches

= Effectiveness determined by CPI achieved

Pipelining is efficient

Non Load-Store Architectures

e Long pipe with multiple add and memory access stages
— Lots of logic

— Many stages unused by most instructions

e Or, multiple passes per instruction
— Tricky control logic
e Or, convert architectural instructions into multiple RISC-like internal
operations
— Good for multi-issue
— More ID stages
— Pentium Pro/II/III (nops)
— AMD x86 K7 (r-ops)

Pipelining easiest if all instructions do a similar
amount of ‘work’

Data Hazard Taxonomy

e WaW: write after write, out of order completion.

e WaR: write too early, overwrites data still needed.

e RaW: need to read a value that has (potentially) yet to be
written.

The first two are avoided when have sufficient registers and/or
can rename.

RaW hazards are more tricky!

ALU Result Forwarding

e E.9. 4 forwarding paths to avoid stalls:
a: add r1 «— r8, r9
b: add r2 «— r1, r7
C add r3 «— ri1, r2
d add r4 «— r1, r2

Branch target PC

Branch taken?

!

PC PC
Op
Rb
Ra » Branch >
v Test
a
A Data from ALU OP
Instruction Register g
Memory a» 1D File d—»
—>d —— a
»|a d—> Data
. Memory
O- din dout
sign
ext immediate
Dest Reg# _l
Data to write back
Instruction Instruction EXecute Memory Write
Fetch Decode Access Back

e Read after Write

e Doubled # mux inputs

e Deeper pipes — more forwarding

— R4000, 8 deep pipe
forward to next 4 instructions

Load Data Hazards

Impossible without a stall:
1w r1 «— r9(4)

add r2 «— ri1, r6

Read after Write (RaW) hazard

New forwarding path saves a cycle

Re-order code to avoid stall cycle

— Possible for 60-90% of loads

Software Interlocked

— Compiler must insert nop

— e.g. R2000/R3000

e Hardware Interlocked
— Save nop: better for I-stream density

— Register scoreboard

x track location of reg values e.g.:

x File, EX, MA, MUL1, MUL2, MemVoid

x hold back issue until RaW hazard resolved
x control operand routeing

— Required for all sophisticated pipelines

e More stalls for deeper pipes

— 2 stalls and 2 more forwarding paths for R4000

Longer Latency Instructions
e Mul/Div, Floating Point

e Different functional units operating in parallel with main
pipeline
e EXxtra problems:

— Structural hazards
x Unit may not be fully pipelined, eg:

. 21264 FDiv: 1é6cy latency, not pipelined
- 21164 FMul: 8cy latency, issue every 4cy

— 21264 FMul: 4cy latency, fully pipelined

10

« Multiple Write Back stages

- more register write ports?
. or, schedule pipeline bubble

— Read after Write hazards more likely
« compiler instruction scheduling

— Instruction complete out of order

* Write after Write hazards possible

* Dealing with interrupts/exceptions

e Use scoreboard to determine when safe to issue

e Often hard to insert stalls after ID stage
— synthesize NOPs in ID to create bubble

— ‘replay trap’ : junk & refetch

Exceptions and Pipelining

User SWI/trap ID Precise (easy)
Illegal Instruction ID Precise (easy)
MMU TLB miss IF/MA | Precise required
Unaligned Access MA Precise required
Arithmetic EX 1..N | Imprecise possible

e EXxceptions detected past the point of in-order execution
can be tricky

— FP overflow

— Int overflow from Mul/Div

e EXxact arithmetic exceptions
— Appears to stop on faulting instruction

— Need exact PC

x care with branch delay slots
11

— Roll back state/In-order commit (PPro)

e Imprecise arithmetic exceptions
— EXxception raised many cycles later
— Alpha: Trap Barriers
— PPC: Serialise mode

— IA-64: Poison (NaT) bits on registers

x Instructions propagate poison

x explicit collection with "branch if poison’

Interrupts
e Interrupts are asynchronous

e Need bounded latency
— Real-time applications

— Shadow registers avoid spilling state

* Alpha, ARM

e Some CISC instructions may need to be interruptible

— Resume vs. Restart

x €g. overlapping memcpy

— Update operands to reflect progress

* VAX MOVC

12

Control Flow Instructions

e Absolute jumps

— To an absolute address
(usually calculated by linker)

— Immediate / Register modes

— usage: function pointers, procedure call/return into other
compilation modules, shared libraries, switch/case statements

— Unconditional - but perhaps computed

— Also subroutine return

e PC Relative branches
— Signed immediate offset

— Limited range on RISC

*x Typically same compilation module (calculated by compiler)

— Conditional

13

Jump to Subroutine often has hardware stack support.

— Save PC of following instruction into:

x CISC: stack

x* Most RISC: special register

+ ALPHA: nominated register

* [A-64. nominated Branch Reg

ARM neatly optimised RLA save along with data register
saving.

Modern CPUs want to know which registers are (likely) to
be holding an RLA.

Conditional Branches

e Conditional branch types

— most: Test condition code flags

x Z, C, N, V
* Bxx label

— Alpha/MIPS: Test bits in named reg

* msb (sign), Isb, ‘zero’
* Bxx Ra, label

— some: Compare two registers and branch

* Bxx Ra, Rb, label

+ (PA-RISC, MIPS, some CISC)

14

— [IA-64: Test one of 64 single bit predicate regs

e Conditional branch stats (for MIPS and SPEC92)

— 15% of executed instructions

x 73% forward (if/else)
*x 27% backward (loops)

— 67% of branches are taken

x 60% forward taken

x 85% backward taken (loops)

Control Hazards

e ‘classic’ evaluates conditional branches in EX
— Identify branch in ID, and stall until outcome known
— Or better, assume not taken and abort if wrong
— 2 stall taken-branch penalty
e If evaluating branch is simple, replicate h/w to allow early
decision
— Branch on condition code

— Alpha/MIPS: Test bits in named reg

x Special ‘zero’ bit stored with each reg

— Hard if Bxx Ra, Rb, label
15

a| Instruction

!

Memory [

Instruction
Fetch

PC

Branch
Test
Op >
Rb
Ra
a‘ 4 ADD|)
) Data from ALU OP
Register
File d
—>d a
d > > Data
s Memory
m r din dout|
@ immediate
> Dest Reg# >
Data to write back
Instruction Memory
Decode EXecute Access

Write
Back

Control Hazards (2)

e Evaluate branches in ID (when possible)
= Only 1 cycle stall if test value ready
(Set flags/reg well before branch)
— Bad if every instruction sets flags (CISC)
— Helps if setting CC optional (SPARC/ARM)
— Good if multiple CC regs (PPC/IA-64), or none
(Alpha/MIPS)
e Branch delay slots avoided the taken branch stall on early

MIPS

— Always execute following instruction
16

— Can’'t be another branch
— Compiler fills slot ~60% of the time
— Branches with optional slots: avoid nop
e Modern CPUs typically have more stages before EX, due to

complicated issue-control logic, thus implying a greater
taken-branch cost

e Stalls hurt more on a multi-issue machine. Also, fewer
cycles between branch instructions

Control hazards can cripple multi-issue CPUs

Static Branch Prediction

e Speculation should not change semantics!

e Simple prediction

— e.g. predict backward as taken, forward not

e Branch instructions with hints

— Branch likely/unlikely
* strong/weak hint varients

— Use Feedback Directed Optimization (FDO)

— Fetch I-stream based on hint

e Delayed branch instrs with hints and annulment

— If hint that branch taken is correct then execute slot instruction else
don't

— e.g. new MIPS, PA-RISC

— Compiler able to fill delay slot more easily

17

Dynamic Branch Prediction

e Static hints help, but need to do better

e Branch prediction caches

— Indexed by significant low order bits of branch
instruction address

— Cache entries do not need tags (they're only hints)

— E.g. 512-8K entries

e Bi-modal prediction method
= many branches are strongly biased

— Single bit predictor

18

* Bit predicts branch as taken/not taken
x Update bit with actual behaviour
x Gets first and last iterations of loops wrong

— Two bit predictors

x Counter saturates at O and 3

x Predict taken if 2 or 3

* Add 1 if taken, subtract 1 if not

« Little improvement above two bits

*x >90% for 4K entry buffer on SPEC92

Local History predictors

e ADble to spot repetitive patterns

e Copes well with minor deviations from pattern

e E.9. 4 bit local history branch predictor
— 4 bit shift reg stores branch’s prior behaviour
— 16 x 2 bit bi-modal predictors per entry
— use shift reg to select predictor to use

— perfectly predicts all patterns < length 6, as well as
some longer ones (up to length 16)

— used on Pentium Pro / Pentium II

19

x 512 entries x (16 x 2 4+ 4) = 18K bits SRAM
— trained after two sequence reps

— other seqs up to 6% worse than random

e An alternative approach is to use two arrays. One holds
branch history, the other is a shared array of counters
indexed by branch history

— branches with same pattern share entries in 2nd array
(more efficient)

— 21264 LH predictor: 1024 entries X 10 bits of history per
branch, and shared array of 1024 counters indexed by
history

Global Correlating predictors

e Behaviour of some branches is best predicted by observing
behaviour of other branches

e (Spatial locality)

= Keep a short history of the direction that the last few
branch instructions executed have taken

e E.g. Two bit correlating predictor:
— 2 bit shift register to hold processor branch history

— 4 bi-modal counters in each cache entry, one for each
possible global history

20

e Rather than using branch address, some GC predictors use
the processor history as the index into a single bi-modal
counter array. Also possible to use a hash of (branch
address, global history)

— Alpha 21264 GC predictor uses a 12 bit history and 4096
X 2 bit counters
e Combination of Local History and Global Correlating
predictor works well
— >95% for 30K bit table on SPEC92

— E.g. Alpha 21264

— Tournament System to decide which to use.

Reducing Taken-Branch Penalty

e Branch predictors usually accessed in ID stage, hence at
least one bubble required for taken-branches

e Need other mechanisms to try and maintain a full stream of
useful instructions:

e Branch target buffers
— In parallel with IF, look up PC in BTB

— if PC is present in BTB, start fetching from the address
indicated in the entry

— Some BT Bs actually cache instructions from the target
address

21

e Next-fetch predictors

— Very simple, early, prediction to avoid fetch bubbles,
used on PPro, A21264

— I-cache lines have pointer to the next line to fetch

— Update I-cache ptr. based on actual outcome

e Trace caches (Pentium IV)
— Replace traditional I-cache

— Cache commonly executed instr sequences, crossing
basic block boundaires

— (c.f. "trace straightening” s/w optimization)
— Table to map instr address to position in cache

— Instrs typically stored in decoded form

Avoiding branches

e Loop Count Register (PowerPC, x86, IA-64)
— Decrement and branch instruction

— Only available for innermost loops

e Predicated Execution (ARM, IA-64)

— Execution of all instructions is conditional

x ARM: on flags registers
* IA-64: nominated predicate bit (of 64)

— IA-64: cmp instructions nominate two predicate bits,
one is set and cleared depending on outcome

— E.g. if([r1] && [r2] && [r3]) {...} else {...}

22

1d r4 <- [r1]

p6,p0 <= cmp(true)

pl,p2 <= cmp(rd4==true)

<p1> 1d r5 <- [r2]

<pl> p3,p4 <= cmp(rb==true)
<p3> 1d r6 <- [r3]

<p3> p5,p6 <= cmp(r6==true)
<p6> br else

Transform control dependency into data dep

Instruction ‘boosting’

x €.g. hoist a store ahead of a branch
Inline simple if/else statements
Costs opcode bits

Issue slots wasted executing nullified instrs

Avoiding branches 2

e Conditional Moves (Alpha, new on MIPS and x86)
— Move if flags/nominated reg set

— Just provides a ‘commit’ operation

x beware side effects on ‘wrong’ path

— PA-RISC supports arbitrary nullification

e Parallel Compares (IA-64)
— Eliminate branches in complex predicates

— Evaluate in parallel

*x (despite predicate dependancy)

23

— if ((rA<0) && (rB==-15) && (rC>0)) {...}

cmp.eq pl,p0O = r0, r0 ;; // pl =1
cmp.ge.and pl,p0 = rA,r0
cmp.ne.and pl,p0 = rB,-15
cmp.le.and pl,p2 = rB,10

(pl) br.cond if-block

Avoid hard to predict branches

Optimizing Jumps

Alpha: Jumps have static target address hint
— Ajq6_o Of target instruction virtual address
— Enough for speculative I-cache fetch

— Filled in by linker or dynamic optimizer

Subroutine Call Returns

— Return address stack

— Alpha: Push/pop hints for jumps

— 8 entry stack gives > 95% for SPEC92

Jump target registers (PowerPC/IA64)
— Make likely jump destinations explicit

— Buffer instructions from each target

Next-fetch predictors / BTBs / trace caches help for jumps too
— Learn last target address of jumps

— Good for shared library linkage

24

