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Development
and attributes
of z/Architecture

The IBM z/ArchitectureTM instruction set
architecture (ISA) is an extension of the
IBM Enterprise Systems Architecture/390®

(ESA/390) ISA and features 64-bit general
registers, 64-bit operations, and 64-bit virtual
and real addressing. In addition, z/Architecture
includes new instructions to optimize the
handling of modern multi-byte character
encodings and to improve the performance of
programs written in high-level languages. It
provides compatibility for ESA/390 application
programs and increases the ease of
development of new application programs.
This paper presents an overview of the
interesting aspects of z/Architecture and some
of the associated decisions and tradeoffs
made in its development.

Introduction
In early 1996, it was determined that the ESA/390
architecture had to be extended to provide 64-bit
capabilities. At that point, ESA/390 could support large
system images with more than two gigabytes of processor
storage by augmenting the maximum of two gigabytes
of main storage with additional gigabytes of expanded
storage. Yet, the need for more main storage and larger
address spaces was seen in the not-too-distant future.
Some other platforms had already delivered 64-bit-capable
systems, and it had been announced that others would
be doing so. The extension to ESA/390, which was called
z/Architecture*, was announced by IBM in October 2000.

Before presenting an overview of the z/Architecture, we
summarize some history of predecessor architectures on
which it is based.

Addressing and other history
The z/Architecture [1] continues a succession of
architectures for IBM’s large computers: the System/360*
(1964), System/370* (1970), System/370 Extended
Architecture (370-XA, 1983), Enterprise Systems
Architecture/370* (ESA/370, 1988), and Enterprise
Systems Architecture/390* (ESA/390, 1990) [2] ISAs.
The principal evolutionary trait of the processor-related
advances in this series has been an increase in both the
storage usable by an individual application program and
the main storage that can be attached to a model and
shared by many programs being executed concurrently.
The z/Architecture increases the 31-bit virtual and real
(for main storage) address sizes of 370-XA, ESA/370,
and ESA/390 to 64 bits, a size large enough to address
approximately 1.8 � 1019 bytes (16 exabytes) of either a
single virtual address space or the total main storage of
the machine. This is 1.1 � 1012 times as much storage
as is supported by ESA/390!

In System/360 through ESA/390, addressing proceeded
from 24 bits to 31 bits for all addresses, with transitional
support for 26-bit addressing of main storage. The dual-
address-space facility initiated in System/370 and the
access registers initiated in ESA/370 increased addressing
horizontally by allowing multiple address spaces to be
addressed concurrently. The architectures leading to
ESA/370 are discussed in References [3– 6], and ESA/370
is discussed in Reference [7].
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System/360
System/360 and its successors through ESA/390 contain 16
32-bit general registers (GRs) used as accumulators and
as base and index registers for addressing. System/360
supported 24-bit effective addresses, allowing programs
to access 16 megabytes of main storage. Several forms of
address specification were provided in the instruction set,
the most general of which used a 12-bit displacement in
the instruction along with the contents of a base GR and
an index GR, with each GR specified by a four-bit field in
the instruction. A typical instruction using this “D(X, B)”
address calculation uses the RX instruction format, as
shown in Figure 1. As an example, an ADD instruction in
this format forms the operand address as the sum of D2,
the contents of GR B2, and the contents of GR X2; reads
four bytes from storage at that address; adds this value to
the contents of GR R1; and writes the result into GR R1.

The principal controlling element of System/360 and its
successors is the program status word (PSW), a 64-bit
(before z/Architecture) register containing the current
instruction address and other control information. The
instruction address in the PSW is advanced during
sequential instruction execution and is replaced by the
branch-target address when a branch is taken. The entire
PSW is stored and replaced during an interruption. The
PSW formats for System/360 through ESA/390 are shown
in Figure 2. Among the controls in the PSW is a bit (P)
which controls whether the processor is in the problem
state or the supervisor state. Certain system-control
instructions, such as those for input/output operations,
are classified as privileged and may be executed only in
the supervisor state.

System/370 and DAT
The System/360 architecture was extended in System/370
by adding 16 32-bit control registers (CRs) and by
supporting virtual storage accessed by means of virtual
addresses. The virtual storage was mapped to real storage
(a synonym for main storage, except for the effects of
prefixing, as described below) by means of dynamic address
translation (DAT). In System/370 and its successors, an
instruction or operand address used by the program may

be either real or virtual, with a bit (T) in the PSW
controlling this for most addresses.

In System/370, the virtual storage consists of 64KB
or 1MB units designated as segments and, within each
segment, 2KB or 4KB units designated as pages, with
these variations controlled by bits in CR0. Only the
1MB segments and 4KB pages are discussed here, since
these became standard beginning with 370-XA. Address
translation is performed on a page basis, with each virtual
page being mapped to a page frame of real storage.

The DAT process for System/370 is illustrated in
Figure 3. The address translation is performed by means
of a lookup in segment and page tables. The segment-table
designation (STD), which is contained in a CR, specifies
the address of the segment table. The segment index (the
four-bit high-order part of the virtual address) selects one
entry from this table, which contains the address of the
page table. The page index (the next eight bits of the
virtual address) selects an entry from the page table,
which contains the page-frame real address. A 12-bit
byte offset (the low-order part of the virtual address) is
appended to the page-frame real address to form the
resulting real address, which is then used to access
storage. If the page-table entry is marked as invalid,
indicating that the virtual page is not currently backed
in real storage, the control program is signaled by an
interruption that it must allocate a real page frame for
that page and copy the current contents of that page
(e.g., from disk storage) into that real page frame. Other
exceptional conditions encountered during DAT also are
reported to the control program by interruptions.

Prefixing and extended real addressing
The System/370 architecture was also enhanced to support
multiprocessing, allowing multiple processors to share
main storage under the control of a single operating
system. This required the introduction of prefixing to avoid
conflicts among the processors in the use of real page
frame 0, which is used for interruption processing. With
prefixing, each processor has a prefix register specifying a
unique 4KB block in main storage, which that processor
will use as its real page frame 0, also known as its prefix
area. Any reference by a processor to a real address in
page frame 0 will be directed instead to that processor’s
prefix area; conversely, any reference by a processor to a
real address in which the page-frame address matches the
contents of the processor’s prefix register will be directed
instead to main-storage page frame 0. A real address to
which prefixing has been applied is known as an absolute
address; this is the type of address actually used by the
hardware to access main storage.

Later, the System/370 architecture was further enhanced
by extending the page-frame real address by two bits. This

Figure 1

RX instruction format.

0 12 318 2016

Op code R1 X2 B2 D2
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provided a 26-bit real address and allowed attachment of
up to 64 MB of main storage.

Dual-address-space facility
The dual-address-space facility was added to the
System/370 architecture to allow an application program,
in a controlled manner, to operate on two address spaces
concurrently and to pass control between one address
space and any of many other address spaces. These
different address spaces might be separate to achieve
protection through isolation (since a virtual address of one
space normally does not map to a real address for another
space) or because of differing degrees of authority. The
dual-address-space facility provided for two active STDs
(“primary” and “secondary”) in separate CRs (CR1 and
CR7) and defined an address-space-control bit in the PSW
to select between primary and secondary address-space
modes. In these modes, instructions are in the primary
address space, and operands are in the primary or
secondary address space, as determined by the mode.
Special instructions were added to move data between
the primary and secondary address spaces, to change the
address-space-control bit, and to transfer control from
one address space to another. A target address space is
identified by an address-space number (ASN). The ASN
selects an ASN-second-table entry (ASTE) containing
an STD that is loaded into CR1 as its new primary STD
during the transfer of control. The dual-address-space

facility and the enhancements to it introduced in ESA/370
are extensively described in Reference [7].

370-XA and 31-bit addressing
The 370-XA architecture introduced 31-bit virtual and real
addressing. A bit (A) in the PSW was defined to specify
whether effective addresses were 24 or 31 bits in size. To
support this, DAT was extended by enlarging the page-

Figure 3

Dynamic address translation for System/370 through ESA/390.
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table entry to four bytes and the segment index to 11 bits.
The instruction address in the PSW was also extended to
31 bits. New instructions were added to allow a program
to switch between addressing modes: Branch and save and
set mode (BASSM) and branch and set mode (BSM) use
bit 0 of the branch-address GR to control the addressing
mode after the branch. BASSM and BSM also save the
old addressing mode in bit position 0 of a GR along with
either the saved return address (BASSM) or a specified
address (BSM). The dual-address-space instructions
program call and program transfer were extended to
support addressing-mode changes across program
boundaries. The ability to change the addressing mode
made it possible to mix 24-bit and 31-bit programs,
allowing software reuse and accelerating the exploitation
of 31-bit addressing. This ability, along with some lesser
compatibility issues, was the rationale for defining 370-XA
with 31-bit rather than 32-bit addressing. The success of
this approach to compatibility and to mixing addressing
modes greatly influenced the 64-bit addressing design for
z/Architecture.

Expanded storage
The architecture was also extended to include a new form
of electronic storage known as expanded storage. This was
addressable in 4KB blocks through the use of a 32-bit
block number by special privileged instructions. The
expanded storage was originally intended to bridge
the gap in cost and density between main storage and
magnetic media; later it provided a means to relieve the
performance constraint imposed by the 31-bit real-address

size by serving as a high-speed backing store for paging
and for large data buffers.

ESA/370
The ESA/370 architecture retained the address size and
other attributes of 370-XA, added 16 new 32-bit access
registers, and extended the address-space control to two
bits to support two additional translation modes: home-
space mode and access-register mode. In the home-space
mode, instruction and operand addresses are translated
using the home STD in CR13. This was originally used
by the ESA/370 control program (MVS*) and now is used
also for Linux** application programs. In the access-register
(AR) mode, instructions are in the primary address
space, and operands are in AR-specified address spaces.
The instruction field specifying a base GR for address
generation for a storage operand also selects the same-
numbered access register. The access register is loadable
by the application program and contains an access-list-
entry token (ALET) that designates, by means of an
access-list-entry number (ALEN) an entry in an access
list. The access-list entry in turn points to an ASTE
which contains an STD that is used by DAT to translate
the virtual address for the storage-operand access. Special
ALET values are defined as designating the current
primary STD and current secondary STD. This
architecture allows a program to associate a different
address space with each base register used for storage-
operand accesses. The mapping of ALETs to STDs, known
as access-register translation, is depicted in Figure 4. This
mapping allows for precise control of access to shared
address spaces by various programs as well as
simultaneous and efficient access to multiple address
spaces by a single program.

ESA/390
ESA/390 initially was little changed from ESA/370. Over
time, a number of features were added to ESA/390 which
are not germane to this paper; these are described in
detail in Reference [2].

Architectures and compatibility
It should be noted that a hallmark of the z/Architecture
family is that it has provided, in its succession of
architectures, upward compatibility for application
programs. That is, if a program could be executed
successfully by a machine that implemented an old
architecture, it could also be executed successfully on
a different machine built to conform to a replacement
architecture. Such compatibility is crucial to mainframe
customers since it guarantees that upgrading to the next
machine will not render their application software
obsolete. Preserving this characteristic was a key challenge
in the development of the 64-bit z/Architecture.

Figure 4

Access-register translation.
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This compatibility has not necessarily applied to
a control program. The architecture of System/370
supported both “basic control” (System/360) and
“extended control” (including CRs and DAT) modes of
operation. The 370-XA architecture dropped the basic-
control mode and changed the DAT-table formats, thus
requiring changes to the control program. From 370-XA
to ESA/370 to ESA/390, upward compatibility was
maintained for control programs as well as for application
programs. Although z/Architecture provides compatibility
for ESA/390 application programs, it does not do so for
control programs because of its changes to the DAT tables
and other, lesser changes.

To minimize customer impact, the 370-XA machines up
through the early ESA/390 machines were designed such
that they could also operate in the System/370 mode. The
architectural mode was established by Licensed Internal
Code during machine initialization, known as initial
machine load (IML).

Creating a 64-bit architecture and more
As might be expected of any 64-bit architecture,
z/Architecture includes 64-bit general registers, 64-bit
control registers, 64-bit real addressing, 64-bit virtual
addressing, and instructions to operate on 64-bit binary
integers. The z/Architecture also contains additional new
instructions and facilities that facilitate modern e-business
computing. The primary concern in extending ESA/390 to
create z/Architecture was the need to maintain complete
compatibility for application programs and nearly
complete compatibility for middleware, tools, and
utility programs. Nearly as important was to create an
architecture which made it easy for programmers to
selectively exploit a subset of the new capabilities without
having to totally reprogram in order to use all of the new
capabilities.

Access register/general register pairs vs.
64-bit general registers
In the late 1980s, an architecture proposal was made
which would allow for the creation of and access to virtual-
storage objects larger than two gigabytes. The intention
was to accommodate large arrays in FORTRAN. The
proposal would allow multiple 2GB spaces to be put
together into a seamless address range using the access
registers in a novel way. Some of the bits in the ALET
(specifically, the ALEN) would, in a new addressing mode,
be appended to the left of the 32 bits in the corresponding
general register to create a 48-bit virtual address; bits
16 –32 of this address, which might include a carry from
bit 31 resulting from a D(X, B) addition, would then
select an access-list entry specifying one of possibly many
concatenated 2GB address spaces. The proposal also
provided for 64-bit arithmetic instructions, operating on

AR/GR pairs, by using two-byte prefixes placed in front of
existing ESA/390 32-bit arithmetic instructions. The
proposal had an important advantage: It did not create
additional process-state information that had to be saved
and restored across context switches and program
linkages. This was an important consideration because of
the performance cost of saving and restoring additional
state information and because program changes are
required in order to perform the saving and restoring.
Nonetheless, this approach had to be dropped because it
was not general enough. Since it used the access register
to contain part of the address, it would not have been
possible to access locations above two gigabytes while in
the access-register mode. This capability would be needed
by many operating-system elements that often access data
in user address spaces while in the access-register mode.
Also, it provided only 48 bits of addressability, while
competitors were providing or would provide 64 bits.
It was therefore decided that, despite the additional
expenses, extending the 32-bit general registers to 64 bits
would produce a better overall architecture than the use
of AR/GR pairs. Shortly thereafter it was also decided,
for reasons of simplicity, that all 16 control registers also
should be extended to 64 bits, rather than extending only
those which had to contain large addresses.

Modal vs. non-modal instruction-set
architecture
One approach for extending an instruction-set architecture
to 64-bit functionality is to create a new execution mode
in which all addresses are 64 bits and all register operands
are 64 bits. This allows reuse of most or all existing
instructions, but it has the disadvantage of combining 64-
bit addressing and 64-bit operations into a single option.
This was deemed to be too disruptive an approach for this
platform, given the strong requirement for application-program
compatibility and the need for new 64-bit programs to
inter-operate with existing 32-bit programs. There are also
many programs that may want 64-bit addressing but prefer
to continue to work with 32-bit integers and, conversely,
many programs that could benefit from 64-bit arithmetic
operations but have no need for 64-bit addressing.
Therefore, in z/Architecture, the concepts of addressing
mode and operand width are separated. The addressing
mode is determined by bits in the PSW, while the operand
width is determined by the instruction operation code. It
is possible for a program to perform 64-bit arithmetic
while being executed in the 31-bit addressing mode, and it
is also possible to perform 32-bit arithmetic while being
executed in the 64-bit addressing mode.

This approach provides the maximum flexibility to
programmers (and compilers) in choosing when and how
to take advantage of 64-bit capabilities. The cost of this
approach is the introduction of about a hundred new
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instructions to perform operations analogous to operations
already performed on 32-bit operands by existing ESA/390
instructions. The instruction set of z/Architecture contains
a new instruction to perform the 64-bit analog of almost
every 32-bit arithmetic or logical operation provided by
the ESA/390 instruction set. It also provides many
additional arithmetic instructions that operate on one
32-bit operand and one 64-bit operand. These mixed-
precision instructions are defined to make it easier to
manage preexisting 32-bit data in a new 64-bit program.

We use the term non-modal to describe a situation
in which instruction operation is defined solely by the
instruction operation code and not by the addressing
mode. The term modal is used when the operation of an
instruction depends not only on the operation code but
also on the current addressing mode. Almost all of the
instructions of z/Architecture are non-modal and perform
operations which are not influenced by the current
addressing mode, other than the effect that the addressing
mode has on locating operands in storage. However,
z/Architecture does define a number of instructions for
which the operation is influenced by the addressing mode.
These instructions behave differently in the 24- and 31-bit
addressing modes than they do in the 64-bit addressing
mode. These instructions all return storage addresses in
general registers. In the 24- or 31-bit addressing mode,
they return a 24- or 31-bit address in the low-order half
of the register and leave the upper half unchanged. In the
64-bit addressing mode, they return a full 64-bit address in
the register. New instructions for the 64-bit behavior of
these instructions were not introduced because the 64-bit
behavior is not useful in the 24- or 31-bit addressing
mode, nor is the 24- or 31-bit behavior useful in the
64-bit addressing mode. In a sense, each of these modally
defined instructions comprises two instructions that share
an operation code, each providing the appropriate
behavior for the addressing mode in which it is executed.
Many of the modally defined instructions also have
length values in general registers. In the 24- and 31-bit
addressing modes, these are 24- or 31-bit lengths in the
low-order half of the general register. In the 64-bit
addressing mode, they are 64-bit lengths.

To realize the full benefit of the non-modal approach to
the instruction set, the operation of the existing (ESA/390)
instructions in the z/Architecture mode was carefully
defined such that an ESA/390 program being executed in
the z/Architecture mode could not accidentally change any
processor state which did not exist in ESA/390. Thus, not
only do the ESA/390 32-bit instructions use 32-bit
operands and operations, but also the results of these
instructions modify only the low-order 32 bits of GRs,
leaving the high-order 32 bits unchanged. Thus, a program
being executed in the 64-bit addressing mode can call an
old program to be executed in the 24- or 31-bit addressing

mode without concern that the left halves of the GRs will
be changed and then not restored (which assumes, of
course, that the old program does not use the new
instructions having 64-bit operands). Leaving the left
halves of the GRs unchanged does impose some
additional complexity on the execution hardware,
particularly in the register-file design.

To facilitate branching between programs executed in
different addressing modes including the 64-bit mode,
z/Architecture extends the branch and save and set mode
(BASSM) and branch and set mode (BSM) instructions
so that a 1 in bit position 63 of the branch-address GR
causes setting of the 64-bit addressing mode; when bit 63
is 0, bit 32 of the GR causes setting of the 24- or 31-bit
addressing mode as in ESA/390. When bit 63 is 1, the
branch address is generated as if the bit were 0 (because
instructions are necessarily on halfword boundaries), but
the bit is left 1 to indicate that the addressing-mode
change occurred and, therefore, the addressing mode
must be restored during the return linkage by using
BSM instead of an unconditional branch on condition
instruction. Similarly, BASSM and BSM set bit 63 of the
return-address register to 1 when executed in the 64-bit
addressing mode.

Instruction prefixes vs. split operation codes
The decision to add so many new instructions to
z/Architecture created a problem. Since the roots of
z/Architecture are more than 35 years old, it is difficult to
find operation codes for so many new instructions. The
idea to use instruction prefixes, as had been done in the
1980s proposal, was tempting. However, the problems
that instruction prefixes present to processor design and
software debugging required a different solution. A
number of the few remaining one-byte operation codes
would be used, along with another byte that could take
values from 0 to 255, to create a large number of two-byte
operation codes. The base architecture has had two-byte
operation codes since the introduction of the System/370
architecture in the early 1970s. However, the approach
taken then of using the first two bytes of the instruction
for the operation code creates some difficulties. First, the
base architecture defines an execute instruction that allows
a target instruction to be executed with a temporary
modification of the second byte of the instruction. If the
second byte of an instruction is defined as part of the
operation code, it cannot profitably be used as the
target of the execute instruction, because any temporary
modification of that byte would cause the execution of a
completely different instruction. Also, it is advantageous
to processor design if certain specifications within the
instruction appear at the same relative location for
instructions with two-byte operation codes as for
instructions with one-byte operation codes. Therefore,
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a novel approach was taken. The second byte of the
operation code was placed not as the second byte but as
the last byte. New six-byte forms of existing four-byte
formats were created to accommodate the extended
opcode without any loss of functionality. As an example,
the RX format (Figure 1) was extended to the RXE
format (Figure 5), retaining the position within the
instruction of the R1, X2, B2, and D2 fields. These formats
were first introduced in the binary-floating-point facility
when this was added to ESA/390.

Hashing vs. dynamic address translation
Since z/Architecture supports 64-bit virtual addressing, it
must provide for the translation of 64-bit virtual addresses
to real-storage addresses. Historically, since System/370,
the architecture has employed an indexed-table scheme for
accomplishing address translation, as described previously
above. In extending from 31 bits to 64 bits, 33 additional
addressing bits are introduced. An obvious way of dealing
with these additional addressing bits would be to
decompose them into three additional 11-bit indexes to
three additional levels of translation tables, which might
be called region tables. However, there was great concern
that three additional levels of translation table—and three
additional main storage references— during address
translation would lead to significant processor overhead
and would waste considerable main storage for
predominantly empty region tables.

Some other architectures employ what is called
“inverted page tables” rather than an indexed-table
scheme. With inverted page tables, the virtual address is
hashed, and the hash value is used to index into a table
that contains a list of all the page-table entries designated
by that particular value. The list is then searched to find a
page-table entry that translates the specific virtual address
being processed. In this sort of scheme, increasing the
width of the virtual address to 64 bits does not necessarily
lead to significant additional main-storage accesses to
perform a translation. Switching completely to such a
scheme would have driven an unacceptable level of change
in the operating systems for z/Architecture, but a mixed
approach appeared practical to pursue. The first 33 bits of
the address would be hashed to search for a segment-table
origin, and then the remainder of the translation would
be done, as in ESA/390, by indexing to a segment-table
entry and then a page-table entry. This idea seemed
very promising, but as it was refined over time several
problems arose. The largest problem was the possibility
that a software error could put a loop in the synonym
chain of the hash table and cause an unending internal-
code loop. To avoid this possibility, a model-dependent
limit was defined for the length of these chains. However,
this led to the possibility that a page of virtual storage
could be resident in real storage but, based on the pattern

of valid virtual locations, could not be made valid because
of the limitation on the number of synonyms allowed for
a hash value. Another problem was that if the synonym
chain exceeds a certain length, this scheme, which was to
decrease main-storage accesses, might actually lead to
more accesses than the indexed-table approach. These
and other problems with the hashing technique made the
approach unacceptable, particularly for a mainframe
system that must be robustly reliable (both hardware
and software) even under extraordinary conditions.

Out of this effort, an alternate idea arose, illustrated in
Figure 6. Although the architecture would allow for a
huge (16-exabyte) address space, it was known that most
address spaces would be no larger than two gigabytes and
that almost none would be larger than four terabytes for
many years. The idea was to allow the translation process
to bypass the initial translation tables if the address space
was not large enough to require them. For example, for a
2GB address space, translation would start directly at the
segment table, bypassing all three levels of region tables;
for a 4TB address space, translation would start at the
third region table, bypassing the first two levels of tables;
and for larger address spaces, translation would start at
the second or first region table as necessary. Two bits are
used in the address-space-control element, the anchor for
address translation for an address space in z/Architecture,
to tell the translation hardware the type of table with
which the translation process is to start (and, thus, the
maximum allowed size of the virtual address). By using
this approach, the additional main-storage accesses to
translate the extra 33 bits in a 64-bit address are almost
totally avoided. Furthermore, extending the indexed-table
structure for address translation is a more natural
extension of the architecture, and much less costly and
complex to support in operating-system software. This
approach also proved simpler to implement in hardware,
since the additional translation steps are essentially
identical to the first step (segment translation) of the
ESA/390 DAT. This simplicity of design was further aided
by making the formats of the region-table entries and
segment-table entries nearly identical.

Figure 5

RXE instruction format.
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Op code R1 X2 B2 D2
Op code
extension/ / / / / / / /
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The real space
For some time, the operating-system community has
wanted a simple and safe way to access real storage
directly. In ESA/390, a program must be executed with
DAT turned off in order to access real storage (other
than by using the instructions LURA and STURA).
When address translation is turned off, the address-space
isolation it provides is negated, so that an erroneous store
can damage any application being executed, in any address
space, in an unpredictable way and can lead to problems
that are extremely difficult to debug. Execution with
address translation turned off is complex, inconvenient,
and dangerous. Furthermore, turning address translation
on and off is expensive in terms of performance.

The first approach used to mitigate this situation was to
designate specific access-list-entry-token (ALET) values
which, with execution in the access-register mode with
address translation turned on, could be used to address
real storage directly. The problem with this is that a
mechanism would be needed to prevent unauthorized
programs from directly accessing real storage. Since the
ALET values loaded into access registers are completely

under the control of the application program, the only way
to inhibit unauthorized access would be to limit the use of
the special ALETs to supervisor-state execution. The base
architecture has many means for limiting storage access,
such as the storage key and, in CRs, the authorization
index and extended authorization index, but it has no
concept of requiring supervisor state for data access.

This first approach was refined by using specific address-
space-control-element (ASCE) values to designate access
to real storage, rather than using the ALET. Unlike the
ALET, the ASCE is totally controlled by the operating
system. The distinctive ASCE values either could be
loaded into control registers (CR1, CR7, or CR13) or
could be placed in an ASN-second-table entry (ASTE)
that is attached to an access list for use in the access-
register mode. By creating an ASTE containing a real-
space ASCE and designating it from an entry in the access
list of every address space, with the entry protected by a
unique extended authorization index (EAX), convenient
access to real storage is made available to programs being
executed in any address space, but it is made available
only to programs which have the authority to set the
appropriate EAX. These techniques are used by both the
z/OS* and z/VM* control programs to access real storage
without the problems associated with turning off address
translation.

An ASCE providing access to real storage as described
above is called a real-space designation (RSD). An ASCE
is like the segment-table designation (STD) of ESA/390,
except that an ASCE may be an STD, a region-table
designation (RTD), or an RSD.

Supporting two architectures
With each extension of the architecture, it has been
required that the first hardware systems supporting the
new architecture also fully support the older architecture,
such that operating systems written for the older
architecture could run on the new hardware without
change. This is needed to minimize customer disruption
when upgrading hardware and to allow for a phased
adoption of software that exploits the new architecture
features. For most of these architecture extensions, the
changes have been upward-compatible, and it has been
sufficient to indicate to the software which architecture is
in effect. For the introduction of z/Architecture, however,
incompatible changes (such as to the DAT-table formats)
required a different approach. In the transition of S/370
to 370-XA, which entailed similar control-program
incompatibilities, a machine was initialized to one of the
two architecture modes, in some cases using different
Licensed-Internal-Code loads. This approach was rejected
for z/Architecture because of the disruptive nature of
reinitializing the machine and because of increased
development and testing costs. On the other hand, a

Figure 6

z/Architecture dynamic address translation.
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method in which the architectural mode is selected by a
control-register or PSW bit was considered too vulnerable
to a software error.

It was decided that the system would always be
initialized in the ESA/390 architectural mode and the
operating system could then switch into the z/Architecture
mode under program control. In addition to avoiding the
pitfalls of the previous solutions, this method would also
make it easier to write an operating system that could run
under either architecture (which was done with z/OS and
z/VM). However, the method also posed some problems,
such as having different processors in a multiprocessor
configuration executing different architectures. While no
need for such a hybrid configuration was ever identified,
allowing for it would have required a complete definition
and rigorous testing of the behavior in such a situation.
To avoid this complexity, it was determined that the
architectural mode had to be an attribute of the
multiprocessor configuration rather than an attribute of
each processor (another reason for not using a control-
register bit). This was implemented by defining a special
order of the signal processor instruction to change the
architectural mode for all processors in the configuration.
This order is unique in that it can only succeed if all
processors in the configuration, other than the processor
executing the instruction, are in a stopped or check-stop
state. This rule makes it impossible to “pull the rug out
from under” the program being executed by another
processor by changing the architectural mode while that
execution is ongoing.

In order to fully support the functions of the z/VM
control program and the logical partitioning provided by
the Processor Resource/Systems Manager* (PR/SM*)
facility, the architecture for the interpretive-execution
facility (the SIE instruction) was extended to allow
virtualization of the architectural mode. Thus, any given
logical partition under PR/SM on a machine supporting
z/Architecture may be in either the ESA/390 or the
z/Architecture mode, regardless of the architectural mode
used by other partitions, though all of the processors
within a multiprocessor partition must be in the same
architectural mode, as described above. Similarly, z/VM
allows for a mixture of ESA/390 and z/Architecture
“guest” operating systems.

Staged architecture vs. a single and complete
architecture
In order to provide flexibility for the initial software
support for z/Architecture, and to a lesser extent for the
initial hardware implementation, the initial definition of
z/Architecture permitted separate enablement, by means
of control-register bits, of the following features of the
architecture:

● The basic z/Architecture, consisting of larger registers,
larger segment- and page-table entries, and a larger
prefix area. The instructions performing 64-bit
operations could be executed, with this feature, only in
the supervisor state, since the operating system would
not necessarily save and restore the larger registers. This
feature was to allow the operating system to use real
storage above 2GB on behalf of itself and application
programs.

● Allowance of execution of the new instructions in the
problem state.

● The use of address-space-control elements designating
region tables, thus providing virtual storage above 2 GB.

● Large instruction addresses, that is, a larger PSW
containing a 64-bit instruction address.

It was intended that the operating system would enable
the above four features as it became ready to support
them. Only the last feature, the large instruction address,
was intended as one that need not be in the initial
hardware implementation.

As plans moved from the drawing board to
implementation, however, several liabilities of this
approach became apparent. First, the plurality of features
greatly increased the amount and complexity of checking
required in the hardware, and this in turn affected the
circuit delay on critical paths in the control logic,
potentially limiting the operating frequency of the
processor. Each of the features required thorough
testing in both simulation models and actual hardware,
significantly increasing overall development costs and
schedules. Furthermore, once these features were
described as such in the externally published architecture,
hardware support for their separate enablements would be
required in future machine models even when the software
had progressed to using all of them.

Another argument against this initial approach grew
out of the hardware implementation plan that was finally
chosen. One goal of this plan was that programs using
the 64-bit functionality (both operations and addressing)
should perform as well as if they were using only the
ESA/390 31-bit functionality; this was necessary to avoid
giving the 64-bit architecture a “black eye” because of
weak performance of the initial product. Another goal was
that the initial hardware should facilitate development
of software which would exploit the full capabilities of
z/Architecture, a target that is most easily hit by providing
“native” hardware support for all architectural features.

These considerations led to a decision to combine the
first three of the above features into a single architectural
mode. Inclusion of 64-bit instruction addressing was less
clear-cut, for two reasons:
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1. The practical need for 64-bit instruction addressing in
real applications is far less than for 64-bit operand
addressing. Indeed, given the robust address-space
architecture from ESA/390 and the availability of 64-bit
addressing for data, a strong requirement for 64-bit
instruction addressing is not likely for many years,
if ever.

2. Expansion of the instruction address (IA) requires
expansion of the program status word (PSW), which
includes the IA, from a doubleword to a quadword
(128 bits), and that in turn ripples into many parts
of the operating system and even some middleware
and applications.

On the other hand, having different architected sizes
for operand and instruction addresses would create an
architectural asymmetry new to the architectures
commenced by System/360. An example of the difficulties
arising from this is the case of the execute (EX)
instruction, which specifies as its operand a single
instruction to be executed with some modification by
another operand of the EX. From a software viewpoint,
the target instruction is a storage operand and should be
subject to operand-addressing rules; in the hardware, the
target must be processed as an instruction and is most
naturally fetched from storage using instruction-fetching
hardware, which operates according to instruction-
addressing rules. While it would have been possible to
define the rules and build the hardware to cover all such
“corner” cases, the result would have been an unduly
complex architecture and implementation. These
considerations led to the development of a means to
isolate the impact of the PSW format change to a small
portion of the operating system, which opened the way
for adoption of a single “64-bit everything” definition
for z/Architecture.

By incorporating all of the 64-bit capabilities into a
single architectural step, z/Architecture forms a stable
base for software exploitation of these facilities in the
years ahead and avoids a need to change the formal
architecture or the hardware implementation. With the

emergence of Linux as a viable operating system on the
IBM zSeries* platform, this is all the more valuable since
it allows different operating systems to follow different
courses and schedules without having to adjust, or adjust
to, the hardware implementation plan. Supporting all 64-
bit features in the first implementation did require some
additional dataflow hardware, but the support brought
with it a simplification of some control logic and a
robustness of performance which more than compensated
for its cost.

One or two PSW formats
As mentioned above, changing the PSW format to
accommodate a 64-bit instruction address would be very
expensive in terms of software changes required to deal
with such an incompatibility. On the other hand, there is
very little need at this point to allow program execution
in virtual storage above 2 GB. Once an application’s data
items can reside anywhere in a 16-exabyte address space,
2GB storage provides plenty of room for the programs
themselves. However, introducing a “non-Von Neumann”
architecture, with asymmetry between operand and
instruction addressing, would have raised a number of
subtle architecture issues and would have been a
complication for all future z/Architecture implementations.

The compromise solution was remarkably simple. The
architecture would allow program execution with a full
64-bit instruction address, and the PSW format would
be incompatibly changed to accommodate the longer
instruction address, as shown in Figure 7. However, this
incompatible change would be absorbed and hidden by the
operating system, at least in the initial implementations.
Whenever a copy of a PSW is placed in storage, the
operating system collapses the full z/Architecture PSW to
the size and format of an ESA/390 PSW. Other software
with PSW-format dependencies can be totally unaware of
the actual z/Architecture PSW. The number of places in
an operating system where this PSW-format manipulation
would need to be done is small and does not present a
performance problem. Since the PSW-format change loses
the high-order 33 bits of the 64-bit instruction address,

Figure 7

PSW format for z/Architecture.
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an operating system that does this transformation for
compatibility cannot, of course, support program execution
above 2 GB even though the architecture allows it. This
approach permits the z/Architecture to be defined as a full
(“Von Neumann”) 64-bit architecture while delaying the
impact of the incompatible PSW format. When there is a
true requirement for program execution above 2 GB, it
will just be a matter of making all of the software changes
and will not require an architecture revision or hardware
change.

Since there are now, in a sense, two PSW formats—the
true z/Architecture format and the collapsed ESA/390
format that software will generally be using—some
accommodations were made in the z/Architecture
definition. First, PSW bit 12, which has had to be 1 since
370-XA, is defined to be 0 in a z/Architecture PSW to
avoid confusion. Second, a new load PSW extended
(LPSWE) instruction is defined for loading a true
z/Architecture PSW. The ESA/390 load PSW (LPSW)
instruction is still supported and can be used to load
an ESA/390-format PSW. When LPSW is executed,
the processor expands the ESA/390-format PSW to
the z/Architecture format, including inverting bit 12. This
is the reverse of the collapsing that the operating system
performs to create the ESA/390-format PSWs.

Doubling the prefix area
As was described in the historical background, each
processor has a unique 4KB area at real address 0.
This prefix area contains various hardware/software
communication areas used during interruption processing
and other activities. Thus, when different processors
access real locations 0 – 4095, they are actually accessing
different storage locations. Since the sizes of the
z/Architecture PSW, general registers, and control
registers are each doubled, more space is required
for these communication areas in z/Architecture. The
ESA/390 prefix area, given that a large part of it is used
by software, does not contain enough free space for all the
extra status that must be communicated in z/Architecture.
Therefore, the size of the prefix area in z/Architecture was
increased from 4 KB to 8 KB. Prior to z/Architecture, the
entire prefix area was addressable without a base register.
This was a convenience and sometimes a necessity for
software, so the new mapping was laid out to keep the
most frequently accessed fields in the first 4 KB by placing
in the second 4 KB only fields which are seldom accessed.

Since the processor is always initialized in the ESA/390
mode and may switch to the z/Architecture mode, care
had to be taken in defining what happens to the prefix
register when the architectural mode is switched.
Processor performance is very sensitive to the efficiency
with which prefixing and reverse prefixing are done. To
simplify matters, it is required that the prefix area

address in the z/Architecture mode be a multiple of 8092.
Therefore, the rightmost bit of the ESA/390 prefix, which
specifies a location on a 4KB boundary, is set to zero
when the prefix becomes a z/Architecture prefix due
to a change of the architectural mode.

Onward to e-business
In addition to the main goal of defining z/Architecture as
a 64-bit architecture, it was desirable to include some new
capabilities to enable and facilitate modern business.
These include globalization, cryptography, and
interoperability.

Dealing with multiple character sets
For the most part, the processor architecture is ignorant
of any character encodings such as ASCII or EBCDIC,
yet applications must use different encodings (code-
pages) for different languages. Because most character
representations use one byte per character, the limitation
to 256 characters caused many codepoints to be used
multiple times in different languages— even within the
different versions of the Latin alphabet for special
characters such as monetary characters (e.g., $) and
umlauts (e.g., ä, ö, ü). For more complicated characters
such as Chinese, a two-byte encoding is needed.

To address these problems, an industry group, the
UNICODE foundation, was created. The UNICODE
foundation defined unique representations of all known
characters, most of which are two bytes in length. In
order to ease the conversion between different forms of
UNICODE, the extended-translation facility 1 was
introduced in ESA/390. The extended-translation facility 2,
which is part of z/Architecture but has also been added
back into ESA/390, enables conversion between different
one- and two-byte character representations. Facility 2
provides table-driven conversions between one- and
two-byte character representations, four conversions
altogether: one-to-one, one-to-two, two-to-one, and
two-to-two.

Besides these table-driven conversions, z/Architecture
provides conversions of UNICODE decimal numbers,
which are two bytes, or ASCII decimal numbers, which are
bytes, into the computational packed-decimal format. It
also provides an instruction to test the validity of packed-
decimal numbers without causing a program interruption.

Toward more efficient cryptography
While for most commercial applications, 32-bit, and now
64-bit, signed arithmetic is sufficient and mathematically
complete, newer applications such as cryptography require
unsigned arithmetic and functions which allow easy
calculation on arbitrary-length integers. For example,
some cryptographic functions require 1024-bit or even
longer arithmetic, and others require bit-wise rotation of

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 K. E. PLAMBECK ET AL.

377



values. In order to satisfy these requirements, instructions
for 32-bit and 64-bit add-with-carry, subtract-with-borrow,
and rotate operations were included in z/Architecture.

Trading data with other platforms
Another requirement is to be able to convert between the
native “big endian” integer format of z/Architecture and
the reversed “little endian” format of many distributed
platforms. Instructions are provided for byte-wise reversal
of two-, four-, and eight-byte values as they are loaded
into a general register or stored from a general register
into storage.

More modern instructions
The definition of the z/Architecture also includes a number
of new instructions that are not needed to support any
particular initiative but simply allow for more efficient
program execution. Most of these new instructions have
immediate operands so that they can be used to reduce
storage references and make more efficient use of
processor cache. Here they are simply listed with a brief
description:

● Load immediate loads a 16-bit immediate field into any
one of the four halfwords of a 64-bit general register
and clears the other three halfwords.

● Insert immediate is like load immediate but does not
clear the remainder of the register.

● And immediate performs a logical AND operation
between a 16-bit immediate field and any one of the
four halfwords of a 64-bit general register and places
the result in that halfword.

● Or immediate is like and immediate but performs a
logical OR operation.

● Test under mask immediate performs a test under mask
of any one of the four halfwords of a 64-bit general
register using a 16-bit immediate mask. The instructions
which perform this operation for the two low-order
halfwords of a register already existed in ESA/390. Two
new instructions were added to z/Architecture for the
two high-order halfwords.

● Branch relative on condition long performs a relative
branch similar to the ESA/390 instruction branch relative
on condition except that the relative offset for the new
instruction is 32 bits long and allows a branch to any
halfword location within four gigabytes of the branch
instruction.

● Branch relative and save long is like the ESA/390
instruction branch relative and save, except that the
relative offset is 32 bits long.

● Load address relative long loads the address of any
halfword location within four gigabytes of the
instruction.

Out with the old
In the more than 35 years since the introduction of the
IBM System/360, the architecture has grown in complexity,
with hundreds of small and several large extensions. It was
determined that some of these extensions would be of
little or no value in z/Architecture, and they were dropped
(i.e., not brought forward from ESA/390) in z/Architecture
when this could be done in a way consistent with IBM’s
extreme commitment to compatibility in this architecture
family. Some facilities having to do with expanded storage
are not needed in z/Architecture because they were only
used in z/OS, and z/OS does not support expanded storage
when using the z/Architecture mode, since the 31-bit real-
storage addressing constraint has been completely relieved
by 64-bit real addressing. These facilities are asynchronous
paging, the asynchronous data mover, and the ability
of a page of virtual storage to be valid in expanded
storage when referred to by the move page instruction.
Control register 0 bit 15 (now bit 37), which was used to
distinguish new control structures of ESA/370 from earlier
dual-address-space structures, is now not defined because
only the later structures are supported in z/Architecture.
Finally, the vector facility was not carried forward into
z/Architecture because it had not been built as part of
ESA/390 machines for many years due to technology
changes.

Future architecture steps
As described in this overview, z/Architecture extends the
ESA/390 instruction-set architecture to obtain full support
for 64-bit operations and addressing (real and virtual,
operand and instruction) and enriches the instruction set
to better support applications written in modern high-
level languages. Even if the addressing needs of server
applications continue to expand rapidly, these extensions
should provide adequate growing space for decades to
come, and operating-system support for exploiting them
can be expected to track application needs. Future steps in
the architecture, therefore, will come in new directions. As
new languages, programming techniques, and applications
arise, they will bring with them new opportunities for
optimization of the architecture and hardware. The
z/Architecture instruction formats, including several new
ranges of extended opcodes, and the expanded control-
register and PSW formats of z/Architecture, provide ample
space for adding new features in a fully compatible and
software-controllable manner.
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