70

Example Tagged Token and
Instruction Formats

o

example token format:

tag data
[ frame pointer | statement pointer | port [ type | value |

where frame pointer = address of the start of the activation frame
statement pointer = address of the target statement
port = indicates left or right operand
type = integer, floating point etc.
value = typically 64 bits of data
example instruction format:

[ op-code | (r) [ dest1 [ (dest2) |

where () indicates optional parameters
op-code is the instruction identifier
r is the activation frame offset number for dyadic operations
dest1 and dest2 are the destination offsets (dest2 being optional)

Matching Algorithm for
Dyadic Operations

©

¢ incoming token’s statement pointer is used to look up the instruction

¢ theinstruction’s activation frame offset is added to the token’s activation
frame number to give an effective address

& the effective address is then used to look up the the presence bit in the
activation frame

& if the presence = empty then the token’s value and port are written to the
location

& if the presence = full then the stored value and token value should make
up the two operands for the dyadic instruction (assuming their ports are
different)

¢ the operation, its operands and the destination(s) are executed
note:

¢ these stages correspond to the stages in the pipeline

Matching Dyadic Operations cont...

first token:
(statement,frame,port,type,value)
\ﬁ(—)

instruction:
(opcode,offset,destination)

address +
to do
instruction
fetch address data

use address to access activation frame to see if empty
the first time it will be empty so the data will be written

Computer Design

Matching Dyadic Operations cont...

second token:
(statement,frame,port,type,value)
\ﬁ(—)

instruction:
(opcode,offset,destination)

address +
to do
instruction
fetch address data

use address to access activation frame to see if empty
this time it will be full so the data pair will be sent for execution

Example Tagged-token
Data-flow Program 12
address instruction
(e.g.) |op-code offset destinations
0x30 mul 0, 0x314,nil
0x31 add 2, 0x334,nil
0x32 div 1, 0x31r,nil
0x33 ret 0, (dest)Z,nil
note:
® ret accepts a (destination instruction, port, frame) triplet as its left
parameter
advantages:

# simple matching algorithm which may be implemented using a pipeline
& garbage collecting unmatched tokens is easy

problems:
# pipeline bubble every time the first operand of an instruction is matched

# token explosion problem can still occur (careful code generation required)
Evaluation of Data-flow 13

advantages:
# inherently concurrent and latency tolerant (no need for caches)

& multiprocessor applications are easy to write

disadvantages:

# assignment a problem because there is too much concurrency, thus
functional languages tend to be used. Furthermore, this makes I/O difficult

+ ineffective use of very local storage (a register file or stack)
# scheduling policies have to be simple because of the instruction level

concurrency

Multithreaded Processors — Combining Control-
flow and Data-flow 14

example machine: Anaconda (Cambridge)

one thread

microthread

updated
parameters ¢
memory or |/O accesses

RS

microthread

# unit of execution is larger so matching time does not dominate

4 concurrency allows memory latency to be tolerated



