### Intel® Itanium<sup>™</sup> Processor Microarchitecture Overview



#### Harsh Sharangpani

Principal Engineer and IA-64 Microarchitecture Manager Intel Corporation



### Unveiling the Intel® Itanium<sup>™</sup> Processor Design

- Leading-edge implementation of IA-64 architecture for world-class performance
- New capabilities for systems that fuel the Internet Economy
- Strong progress on initial silicon



#### Itanium<sup>™</sup> Processor Goals

- World-class performance on high-end applications
  - High performance for commercial servers.
  - Supercomputer-level floating point for technical workstations
- Large memory management with 64-bit addressing
- Robust support for mission critical environments
  - Enhanced error correction, detection & containment
- Full IA-32 instruction set compatibility in hardware
- Deliver across a broad range of industry requirements
  - Flexible for a variety of OEM designs and operating systems

Deliver world-class performance and features for servers & workstations and emerging internet applications

roprocessor Forum

### **EPIC Design Philosophy**



- Maximize performance via hardware & software synergy
- Advanced features enhance instruction level parallelism

Predication, Speculation, ...

- Massive hardware resources for parallel execution
- High performance EPIC building block

Achieving performance at the most fundamental level



#### **Breakthrough Levels of Parallelism**



6 instructions provides 12 parallel ops/clock (SP: 20 parallel ops/clock) for digital content creation & scientific computing

6 instructions provides 8 parallel ops / clock for enterprise & Internet applications

Itanium<sup>™</sup> delivers greater instruction level parallelism than any contemporary processor

### Highlights of the Itanium<sup>™</sup> Pipeline

#### 6-Wide EPIC hardware under precise compiler control

- Parallel hardware and control for predication & speculation
- Efficient mechanism for enabling register stacking & rotation
- Software-enhanced branch prediction

#### 10-stage in-order pipeline with cycle time designed for:

- Single cycle ALU (4 ALUs globally bypassed)
- Low latency from data cache

#### Dynamic support for run-time optimization

- Decoupled front end with prefetch to hide fetch latency
- Aggressive branch prediction to reduce branch penalty
- Non-blocking caches and register scoreboard to hide load latency

# Parallel, deep, and dynamic pipeline designed for maximum throughput

WORD-LINE

DECODE

WLD

### **10 Stage In-Order Core Pipeline**

#### Front End

- Pre-fetch/Fetch of up
- to 6 instructions/cycle

EXPAND

RENAME

- Hierarchy of branch predictors
- Decoupling by
- Decoupling buffer

#### Execution

**REGISTER READ** 

REG

- 4 single cycle ALUs, 2 ld/str
- Advanced load control

EXE

DET

DETECT

EXCEPTION WRITE-BACK

**WRB** 

- Predicate delivery & branch
- Nat/Exception//Retirement

IPG FET ROT EXP REN

INST POINTER FETCH GENERATION

> Instruction Delivery
> Dispersal of up to 6 instructions on 9 ports
> Reg. remapping
> Reg. stack engine

#### **Operand Delivery**

Reg read + Bypasses

YECUTE

- Register scoreboard
- Predicated dependencies

#### Itanium<sup>TM</sup> Processor Microarchitecture Overview

### **Frontend: Prefetch & Fetch**

- SW-triggered prefetch loads target code early using br hints
  - Streaming prefetch of large blocks via hint on branch
  - Early prefetch of small blocks via BRP instruction
- I-Fetch of 32 Bytes/clock feeds an 8-bundle decoupling buffer
  - Buffer allows front-end to fetch even when back-end is stalled
  - Hides instruction cache misses and branch bubbles



highly parallel, high performance machine

intal

### **Front End: Branch Prediction**

- Branch hints combine with predictor hierarchy to improve branch prediction: four progressive resteers
  - 4 TARs programmed by "importance" hints
  - 512-entry 2-level predictor provides dynamic direction prediction
  - 64-entry BTAC contains footprint of upcoming branch targets (programmed by branch hints, and allocated dynamically)



Itanium<sup>™</sup> Processor Microarchitecture Overview

### **Instruction Delivery: Dispersal**



October 5-6, 1999

- Stop bits eliminate dependency checking
- Templates simplify routing

Microprocessor Forum

- 1st available dispersal from 6 syllables to 9 issue ports
  - Keep issuing until stop bit, resource oversubscription, or asymmetry



intel Achieves highly parallel execution with simple hardware

### **Instruction Delivery: Stacking**

- Massive 128 register file accommodates multiple variable sized procedures via stacking
- Eliminates most register spill / fill at procedure interfaces
- Achieved transparently to the compiler
  - Using register remapping via parallel adders
  - Stack engine performs the few required spill/fills



Unique register model enables faster execution of object-oriented code

Intel<sup>®</sup> Microprocessor Forum REN

### **Operand Delivery**



- Multiported register file + mux hierarchy delivers operands in REG
- Unique "Delayed Stall" mechanism used for register dependencies
  - Avoids pipeline flush or replay on unavailable data
  - Stall computed in REG, but core pipeline stalls in EXE
  - Special Operand Latch Manipulation (OLM) captures data returns into operand latches, to mimic register file read



Avoids pipeline flush to enable a more effective, higher throughput pipeline

intel<sup>®</sup> Microprocessor Forum

October 5-6, 1999

# Itanium<sup>™</sup> Processor Microarchitecture Overview **Predicate Delivery**

- All instructions read operands and execute
  - Canceled at retirement if predicates off
- Predicates generated in EXE (by cmps), delivered in DET, & feed into: retirement, branch execution and dependency detection
- Smart control network cancels false stalls on predicated dependencies
  - Dependency detection for cancelled producer/consumer (REG)



Higher performance through removal of branch penalties in server and workstation applications

intel<sup>®</sup> **Pe** Microprocessor Forum EXE

## **Parallel Branch Execution**

- Speculation + predication result in clusters of branches
- Execution of 3 branches/clock optimizes for clustered branches

Itanium<sup>TM</sup> Processor Microarchitecture Overview

 Branch execution in DET allows cmps-->branches in same issue group



Parallel branch hardware extends performance benefits of EPIC technology DET WRB

Itanium<sup>TM</sup> Processor Microarchitecture Overview

#### **Speculation Hardware**

- Control Speculation support requires minimal hardware
  - Computed memory exception delivered with data as tokens (NaTs)
  - NaTs propagate through subsequent executions like source data
- Data Speculation enabled efficiently via ALAT structure
  - 32 outstanding advanced loads

inta

Microprocessor Forum

Indexed by reg-ids, keeps partial physical address tag

• 0 clk checks: dependent use can be issued in parallel with check



Efficient elimination of memory bottlenecks

DET WRB

#### Itanium<sup>™</sup> Processor Microarchitecture Overview Floating Point Features

- Native 82-bit hardware provides support for multiple numeric models
- 2 Extended precision pipelined FMACs deliver 4 EP / DP FLOPs/cycle
- Performance for security and 3-D graphics
  - 2 Additional single-precision FMACs for 8 SP FLOPs/cycle (SIMD)
  - Efficient use of hardware: Integer multiply-add and s/w divide
- Balanced with plenty of operand bandwidth from registers / memory



Itanium<sup>™</sup> processor delivers industry-leading floating point performance

intel<sup>®</sup> Microprocessor Forum

October 5-6, 1999

### **Reliability & Availability Features**

#### Extensive Parity/ECC coverage on processor and bus

- L3 MESI state bits sparsely encoded to protect the M-state
- Frontside bus uses special ECC encoding for consecutive 4-bit errors



1x ECC Correction, 2 x ECC detection Parity coverage w/ enhanced MCA

#### **Comprehensive integrity for high-end applications**

intel<sup>®</sup> Microprocessor Forum

#### Enhanced Machine Check Architecture

|          | Error Type                                                   | Signaling | Example                      | Benefit                                   |
|----------|--------------------------------------------------------------|-----------|------------------------------|-------------------------------------------|
| CONTINUE | Corrected by CPU;<br>current process continues               | CMCI      | 1xECC L2 data                | Enhanced<br>Reliability &<br>Availability |
|          | Corrected by firmware;<br>current process<br>continues       | CMCI      | I-cache parity               | Enhanced<br>Reliability &<br>Availability |
| RECOVER  | Affected process<br>terminated by f/w to OS;<br>OS is stable | LMCA      | Poisoned data                | Enhanced<br>Availability                  |
| CONTAIN  | Error is contained,<br>affected node is taken<br>off-line    | GMCA      | System Bus<br>Address parity | Enhanced<br>Reliability                   |

Itanium<sup>™</sup> processor delivers the int<sub>el</sub><sup>®</sup> mission-critical reliability required by E-business

Microprocessor Forum

October 5-6, 1999

### IA-32 Compatibility

- Itanium<sup>™</sup> directly executes IA-32 binary code
  - Shared caches & execution core increases area efficiency
  - Dynamic scheduler optimizes performance on legacy binaries
- Seamless Architecture allows full Itanium performance on IA-32 system functions



Full, efficient IA-32 instruction compatibility in hardware





October 5-6, 1999

#### Itanium<sup>™</sup> Processor Status

#### Solid progress in weeks following Itanium<sup>™</sup> first silicon

- More than 4 operating systems running today
- Demonstrated 64-bit Windows 2000 and Linux running apps
- Initial engineering samples shipped to OEMs

#### Comprehensive functional validation underway

- Thorough pre-silicon functional testing included OS kernel on Itanium logic model
- Testing including 7 OS's & many key enterprise and scientific apps.
- Multiple Intel and OEM test platform configurations (from 2 64 processors)

#### Planned steps to production in mid 2000

- Completion of functional testing phase through end of 1999
- Performance testing/tuning accelerates in 1H'00
- Broad prototype system deployment by Intel and OEM's early 2000.



### Intel® Itanium<sup>™</sup> Processor Summary

#### High performance leading-edge design

- EPIC technology provides a breakthrough in hardware/software synergy
- Predication, speculation, register stacking, & large L3 for High-End servers
- Supercomputer-level GFLOPs performance for technical workstations
- 64-bit memory addressability for large data sets
- Mission-critical reliability and availability
  - Machine check implementation maximizes error containment and correction
  - Comprehensive data integrity for e-Business, Internet and enterprise servers
- Full IA-32 instruction level compatibility in hardware
- Strong Itanium<sup>™</sup> silicon progress and industry support