Unix Tools

A C Norman, Michaelmas Term 1998

Part B

1 Syllabus

Unix Tools (4 lectures, no examination questions)

1. Overview and basics. Expected impact of this course andu€ST practi-
cal work and the evaluation criteria applied to it. The Uninlpsophy and
history. Streams, redirection, pipes. Ways to identifyornation (wild-
cards, find, grep and the use of regular expressions). Ird@ueh Unix
tools on the non-Unix world.

2. Tools to support development and testing. Makefiles & ipatar substi-
tution. Important shell facilities including job contrdhice” and history-
substitution.

3. Data manipulation tools: sed, tr, diff. Why these may bdulse

4. Scripting with perl and hence more advanced linkage batweol compo-
nents.

Books:
1. Unix in a Nutshell Daniel Gilly, O’'Reilly

2. Learning Perl (edn 2)Schwartz and Christiansen, O’Reilly

2 Introduction

This course is called “Unix Tools”, and this is because théous support utilities

that it discusses originated with Unix and fit in with a phdply that was made
explicit from the early days of that operating system. Itidddowever be noted
that most of the particular programs or tools mentioned Heaen found suffi-

ciently useful by generations of programmers that verstumng been ported to
other operating systems, notably Microsoft Windows, anavieatever platform

you use now or expect to use in the future there is somethirgthat may prove
relevant to you. Even when running under Windows it seempearto refer to

things as “Unix” tools, both for historical reasons and hesgathe style of inter-
face that these tools provide contrasts quite strongly Wit seen in (say) the
Microsoft Visual Studié.

1The environment within which one influential vendor’s senhative Windows development
tools reside.

This course is short and it is also unusual in that no questiarit will appear
on the examination papers at the end of the year. These tusrfay lead to the
impression that the department considers the materiafredweimportant or op-
tional. Any such impression is ill-founded. It is anticipdtthat techniques men-
tioned during this course will be of relevance in later picdtwork: specifically
both the Group Project this year and your individual projestt year. Familiar-
ity with and competent use of standard tools and techniqaesrake your work
on these projects significantly more efficient, and all assesit of practical work
are entitled to assume this fluency when judging whetherrtreuat of work done
was more or less than could be reasonably expected of you.

For this course | count the printed lecture notes as more litapbthan the
lectures themselves, and | also believe that your practiii$ will only develop
with practical experience, so | would urge you all to try ws@ach of the tools and
techniques mentioned here. | will generally only explamgimpleways of using
each facility, and as you gain confidence it may be that youhwehefit if you
deepen your understanding by reading the “man” pages or ddoeimentation.

There is at least an attempt to define a standardised setotabis, including
the shell: those interested in fine and authoritative detaight like to follow up
on the IEEE POSIX Shell and Tools specification (IEEE Workisrgup 1003.2).
Note that IEEE does not publish its standards on the web @netke make the
freely available: it supports its standardisation workotigh sales of both the
standards and various certification services. More inftionaabout their activi-
ties can be found on the web-sitep://standards.ieee.ord/

A thread | hope will run through my presentation is that thelsaliscussed
are not totally arbitrary in their design (despite some éfithitial impressions that
they give). There is at least a part of their construction tdoacerns itself with
compatibility of ideas from one tool to the next and of exfdton of powerful and
general computer science fundamentals such as regulaasskpns. The “Unix
philosophy” that | mentioned earlier is that (ideally) thend would contain a
number of tool components, each addressing just one prolisoh individual
tool would then be small, easy to learn but completely gdneiigs treatment of
the limited class of problem that it addressed. The Unix epgin is then to solve
typically messy real-world problems by combining use ofsal/such basic tools.
In this spirit there will be a small number of major ideas uglag all the material
covered here:

1. Complex tasks are often best solved by linking togetheersé\existing
programs rather than be re-inventing every possible lagtldetail of the
wheel over again;

2. Regular expressions, seen in the Partdurse as a mathematical abstrac-
tion of pattern description, generalise to provide amdyipgwerful and

2

flexible (if sometimes obscure-looking) capabilities;

3. There should be a smooth transition between the tasks grdorp one at
a time interactively and those that need real programsemritb perform
them. The Unix tool tradition is particularly strong on hielpto automate
tasks of medium complexity;

4. Mouse/Menu interfaces are utterly admirable for makiitpes easy to use
for the untutored or casual user. They are also helpful wioein snain con-
cern is the visual appearance of a page of text, since theyma&a it easy to
select a block of text and change its attributes. But for veapyrother tasks
a keyboard based (vermin free?) approach can let a shortisegjof key-
strokes achieve what would otherwise require much mousement and
the switching of concentration between mouse and keybddrd.learning
effort required pays off as you are able to get your work d@séef.

The topics covered here are somewhat inter-related andtsotiydinear and
compartmentalised coverage would not be satisfactoryll thwis often refer back
to concepts sketched earlier on and flesh out additionailsl@ieexamples given
later in the course. In four lectures it must be clear thatl mwat cover all of the
facilities that Unix provides, and the languagel that | discuss towards the end
could of itself justify a full-length lecture course and ashof associated practical
classes. You must thus be aware that this course is going soficial, and
those of you who already count yourselves as experts are lialdind many of
your favourite idioms are not covered. However the lectaees(l hope) still form
a good starting point for those who are relative Unix begianehile these notes
can be a reminder of what is available, a modest source of-book examples
and a reminder of which parts of the full documentation yoghhiwvant to read
when you have some spare time.

3 The “Unix shell”

These first few sections will recapitulate on material thai will (mostly) have
come across in the introductions to Unix you had at the staft@Part A Java
course, or that were mentioned in part of the Operating Systhread. Repetition
in these notes will help keep this course self-containgdpabh the lectures will
skim over this information very rapidly. See [1] for a tolblaconcise expansion
of what | have included here.

Part of the Unix design involved making all the functionabupported by the
operating system available as function calls, and makingasy of these calls as
possible available to all users. In other words a delibeatteempt was made to

arrange that Unix security only needed a very small set ofaimas to be run as
privileged system tasks. Partly as a demonstration ofttiessystem ensured that
theshellcould be written as an ordinary user-mode program. The sbeiprises
the fundamental interface the user sees to Unix: it is thepoorant of Unix that
lets you type in commands which it then executes for you. Mathgr operating
systems give their shells private and special ways of tgltarthe inner parts of the
operating system so that it is not reasonable for a user temmgnt a replacement.

Two consequences have arisen. The first is that themmangdifferent Unix
shells available. This can be a cause of significant confiiSitne second is that
good ideas originally implemented in one of these shelletexentually found
their way (often in slightly different form) into the other3he result is that the
major Unix shells now have a very substantial range of cditiabj and the way in
which these are activated has benefited from a great deapefiexentation and
field-testing. The original Unix shell is known as the Bourrelf (after Steve
Bourne, who after leaving Cambridge went to Bell Laboratoriben his enthu-
siasm for Algol 68 had its effects). The major incompatibiielsyou may come
across is th€ shel| where the “C” is both to indicate that its syntax is inspirgd b
C, and also (given a Unix tradition of horrible puns) because expects to find
shells on beaches, so a C-shell is an obvious thing to talktabbere have been
many successors to these two shells. The one that you avagbty encouraged
to use here is basically upwards compatible with the Bourredl Sind is know as
bash , the Bo(u)rn(e)-Again SHell.

Whenever you are typing in a command at the usual Unix comnpaniahpt
you are talking to your current shell. Also if you put somettexa file and set
the file to have “executable” status (eg by sayuamgnod +x filename) then
quoting the name of the file will get the shell to obey the segeeof commands
contained. In such case it is considered standard and politeake the first line
of the file contain the incantation

#!/bin/sh

where/bin/sh is the full file-name of the shell you are intending to use. For
shell scripts like this it is generally safest to restricuyself to the facilities and
syntax of the basic Bourne shell, even if you use somethingmpowerful when
interacting. The#” mark makes this initial line a comment, and the following *
and the fact that it is the very first thing in the file mark it aspecial comment
used to indicate what should be used to process the file. Séthe examples
given here will be most readily tested interactively whitbers will be best put
into files while you perfect the lengthy and messy runes.

Some small and common things that you may have thought of msnemds
are in fact built into the shell (for instana@?). But the most interesting shell

2For the purposes of this course | am going to suppose that ebthe basic Unix commands

4

features relate to ways to run other programs and provide thigh parameters
and input data.

4 Streams, redirection, pipes

Central to the Unix design is the idea of a stream. Streamsharéotindation
for input and output, and at one (fairly low) level they arentfied by simple
small integer identifiers. When a program is started thel gheliides it with
three standard streams, with numeric identities 0, 1 andH fifst of these is
standard input and programs tend to read data from there if they have rpthin
better to do. The second is a place $tandard outputo be sent, while the third
is intended forerror messagesIf you start a program without giving the shell
more explicit information it will connect your keyboard s@rovides data for the
standard input, and it will direct both of the default outptreams to your screen.

These standard streams can be redirected so that they &iitess the filing
system or provide communication between pairs of prografise importance
(for today!) of file redirection is that it means that a pragraan be written so
that it just reads from its standard input and writes to igmdard output. Using
redirection the shell can then cause it to take data from @narid write its results
to another. The program itself does not have to bother witfilmaname decoding
etc.

my_program < input_data.file > output_data.file

If >> is used as a redirection operator the new data is appendbd tutput
file. This can be very useful when executing a sequence of @rdm

#!/bin/sh

echo "Test run starting” > log.file
date >> log.file

my_program >> log.file

echo "end of test" >> log.file

Two programs can be linked so that the (standard) output fiwerfirst is
fed in as the (standard) input to the second. The fact thatighso very easy to
arrange encourages a style where you collect a whole bursrhaif utilities each
of which performs just one simple task, and you then chaimttugyether apipes
to perform some more elaborate process. | will use this itecunumber of the
examples given later in these notes. One useful programttm@upipe istee
which passes material straight from its input to output,ddsb diverts a copy to
a log-file. The following (not very useful) example uses to copy an input file

are already familiar. But the suggested textbook will giviefoexplanations even if | do happen
to mention something that you have not seen or that you hagetten about.

5

to its standard outputee then captures a copy of this to a log file, and passes the
data on tamy_program for whatever processing is needed.

cat input.file | tee log.file | my_program

A further use of pipes antke is as follows where the standard output from a
test run is permitted to appear on the screen but a copy idaleded to a log
file in case detailed examination is called for at a later .d@tee output is piped
throughmore to make it possible to read it all even when it is too long to fitzo
single screen. The Unix enthusiast would point out the pafi@ipes where the
functionalities of bothee andmore are being combined without the need for a
messy composite utility.

my_second_program | tee log.file | more

Especially when debugging code it is often important to ble &b redirect
the error output as well as the regular one. This is one of thasawhere the
exact syntax to be used depends on which shell you are usidgsamy use of
the Bourne Shell or one of its derivatives does matter. Foh shells the form
2> error.file redirects the standard error file (descriptor number 2) ab th
material is sent to the named file.

A final common feature for redirection is activated us#yg This makes it
possible to embed an input document within a shell script Aliger the doubled
angle bracket you put some word, and the standard input todiremand acti-
vated will then be all lines form the command input sourceaiprie that exactly
matches this word:

#!/bin/sh

cat << XXX > output.file
line 1 to go in the new file
line 2 to go in the new file
XXX

5 Command-line expansion

When the shell is about to process a command it first performe sxpansion
on it. It will interpret some sequences of characters agpaf and replace them
with a list of all the names of files that match those patterys.a special and
perhaps common case the single charactérs'a pattern that matches the names
of all® files in the current directory. For these purposes a sulwiding is just
another file. Because this wild-card expansion is performetté shell before a
command is executed its effects are available whatever @rdjiou are using.

3Well all except for the “hidden” file-names that start withat.d.

6

Perhaps a convenient one to tryeisho which just prints back its parameters to
you:

echo =

will display a list of the files in the current directory. Of wse to achievehis
effect you would normally usis which lays out the list neatly and provides lots
of jolly options, but use of a pattern means that you can deadtidt of file-names

to any program, not just techo . For now the important components of a pattern
are

1. Most characters stand literally for themselves;

2. An asterisk{) matches an arbitrary string of characters. In file-name ex-
pansion file-names that start with a do)) @re treated specially and the
wild-card asterisk will not match that initial dot;

3. A question mark¥) matches any single character, again except for an initial
dot;

4. A backslash\() causes the following character to lose any special meaning
and so if you need a pattern that matches against an astertpkestion
mark (or indeed a backslash) one may be called for;

5. Quotation marks (either single or double) can also be tesprbtect special
characters. Note that as well asand? the Unix shell may be treating
and all sort of other punctuation marks specially, so in cdsgoubt use
quotation marks or backslash escapes fairly liberally!

In addition to file-name expansion the shell expands commsaggermitting
reference tenvironment variablesThis is indicated by writing a variable name
preceded by a dollar sigrs). It is also legal to write a variable reference as
${name} where the braces provide a clear way of indicating where #imable
name ends. There are liable to be quite a few variables predfor you, some
set up by the shell itself, some by scripts that are run forwben you log on.
There are in fact two subtly different classes of shell \@eaand anybody who
is going to get involved in serious shell programming wouded to understand
the differences (which mostly relate to visibility from oskell session or script
to another). In this course | am suggesting the uspenf for any elaborate
scripting so | can afford to omit this explanation.

To set a new variable you may write

variable_name=value ; export variable_name

where the use ofxport is not always necessary but at the level of detail | am
including here | suggest that you always include it. A slighhore concrete
example shows that with a lot of shell variables set up thesacommands that
you issue may turn out to be almost entirely built out of referes to variables.

LANGUAGE=java,; export LANGUAGE
COMPILER=javac; export COMPILER
OPTIONS=; export OPTIONS

SOURCE=hello_world; export SOURCE
$COMPILER $OPTIONS $SOURCE.$LANGUAGE

Especially in script files there is a great deal to be said$taldishing variables to
hold the names of compilers that you use and of the optiongrithat be passed to
them, since it makes everything much easier to alter if youanyour programs to
a slightly different environment later on. For instance anious Unix machines
that | have used the C compiler is called sometiroes sometimesycc, and
sometimes89, maybencc and everlopt/EA/SUNWSspro/bin/cc I Changing
just one setting of a variable to allow for this is neater theaking extensive edits
throughout long scripfs

A rather different but convenient use of variables is to hibld names of
directories. If you often work within a directory with a rathlong name, say
/home/acnl1/Project/version-1_0_3/source , then you might set a vari-
able (saySRQ to that long string. Then you can u$sRCfreely on the command
line to allow you to select your important directory or refeffiles within it with
much less typing that you might otherwise need. An additiadsantage of this
strategy is that when you move on to versio®_4 you can just change the one
place where you define this variable and now you will natyraticess the newer
location.

Within a shell scrip$1, $2, .. .refer to arguments passed when the script was
started,$* expands to a list of all the arguments, whii# is replaced by the
number of arguments provided. Consider a file calledio that contains

#!/bin/sh

echo Start of $0, called with $# arguments
echo All args: $ =

echo Arg 1 = $1

echo Arg 2 = $2

Let's put another comment here.

which also illustrated that “argument zero” will be takerréder to the name of
the script that is being executed. A use of the above scrightiie

4In a DOS/Windows world, of course, the C compilers | use oehssed are called wcl386, cl,
ztc, gcc (maybe 3 versions!), and bce32. And they all neddr@ifit sets of options and parameters,
so the confusion is not unique to Unix.

demo hah | what | typed in
Start ./demo with 1 args | output from script

All args: hah
Arg 1 = hah
Arg 2 = | $2 => empty string

Redirection allows one to send the output from a command tctiduedard
input of another. Sometimes you may want to incorporate sken@lard) output
from one command as part of another command. This is achigyvediting the
first command within back-quotes)(A sensible example of this in use will be
shown later on, but for now | will illustrate it with

echo Today is ‘date’

6 find andgrep

One of the expectations that comes with Unix is that it shdnddeasy to spec-
ify that operations should be performed upon multiple filggdsuing just one
command. File-name expansion as described earlier pothgesimplest way of
listing a bunch of files to be processed: sometimes it is lisehave rather more
subtle selection and filtering procedures. The foal is used when this should
be based on the file’'s name and attributes (eg date of laste)pdaehile grep
inspects the contents of files.

6.1 find

Thefind command takes two groups of arguments. The first few argusmenast
be path-names (ie typically the names of directories), hagtibsequent ones are
conditions to apply when searching through the directaniestioned. The con-
ditions that can be used include tests on the name, creatbmadification date,
access permissions and owner of files. A special “conditiprifit causes the
name of the file currently being proces3émibe sent to the standard output, and it
will often be shown as the final item on the command-line. Iailombined using
-0 which stands foORall previous conditions must be satisfied if tpgnt is
to be activated. Conditions may be negated using

The conditionsatime ,-mtime and-ctime test the access, modification or
creation times of files. They are followed by an integer. littien unsigned they
accept files exactly that many days old. If it is written with gign they accept
files older than that, and-aasks for files younger. A conditioname is followed

5Some implementations dihd have an implicitprint if no other action is specified, but
do not rely on that even if the one that you usually use does it

by a pattern much like those previously seen in file-name sipa, and checks
the name of the file. You will normally need to put a backslastole any special
characters in the pattern. There are lots of other optiocijding ones to execute
arbitrary programs whenever a file is accepted, but thosewiwho want to use
them can read the full documentation.

Plausible uses are illustrated in the following examples:

1. List all files that have not been accessed for at least 1€ ddese are ob-
vious candidates for moving to an archive, or compressirgyen deleting!
Note that by searching in the current directory éven files whose names
start with a dot will be listed here.

find . -atime +150 -print

2. List files that have been created during the last week:rfalae expansion
means that the is turned into a list of all files in the current directory
apart from those whose name starts with dot. Reminding direfselcently
created or modified files may be useful when you want to consitiat to
back up.

find * -ctime -7 -print

3. Delete all files in the current directory or any sub-dioegtthereof if their
name endin!old ”. The-i flag totherm command gets it to ask the user
for confirmation in each case, which makes this commandl|a §tfer to
issue. Observe the back-quotes to get the output fidn presented as
command-line arguments to th@ command.

rm -i ‘find . -name \ *.0ld -print’
Alternatively thexargs command could be used to build the callrto.
This command builds a command from an initial command narmgether
with whater if finds on its standard input, and works bettantthe previous
scheme when there are a very large number of arguments tesbeda

find . -name \ *.old -print | xargs rm -i

4. Listany files in myprogram directory that are empty and whose name does
not start with amp.

6Specifically when you issue an ordinary command, includiagive backquote construction,
there may be a limit on the lenth of the command-line that @hdndledxargs goes to some
trouble to invoke programs properly even when they are todssed utterly huge numbers of
arguments.

10

find program -size 0 ! -name tmp\ * -print

find is obviously valuable as an interactive tool, perhaps aafhgfor help-
ing keep your file-space tidy. It is also a valuable buildbigek in scripts.

6.2 grep

grep is the first tool that | will describe here that makes serioses of the Unix
interpretation of regular expressions. Its use is

grep <options> <regular-expression> <file(s)>

where the options may includie to make searches case insensitivecoto make

it just count the number of matches found in each file. Noryngiép searches
through all the files indicated and displays each line thataias a match for the
given regular expression. The optidn gets you just a list of the names of files
within which there are matches. You need to be aware thas drerrelated com-
mand callecegrep andfgrep that support different degrees of generality in the
pattern matching. Furthermore on some computers you wilthat the program
invoked by thegrep command has either more or less capability than is men-
tioned here. This all arises because matching against ergrgl regular expres-
sions can be an extremely expensive process so the earlytabitbuilders de-
cided to provide three different search engines for tri{fgdep), typical @grep)

and ambitiousdgrep) uses. In describing the regular expression formats tleat ar
available | will mark ones that neegjrep with an(#). Given that todays com-
puters are pretty fast you might like to standardise on usgngp to reduce your
worry on this front.

All the real interest and cleverness wgiiep comes in the regular expressions
that it uses. You will recall the rather spartan definitioraafegular expression
used in the PartA course that introduced them. Those provided everything tha
was actuallyneededo describe any regular language, but in many realisticscase
there is a very great benefit in using additional short-ctite following are the
more important of the constructs supportedyp , and as we will see later most
of them are also used witted andperl as well as various other Unix-inspired
tools.

a,b,... In general characters in a regular expression stand fordbkes.
If one of the special characters mentioned below is needech asdinary
literal that can be arranged by sticking a backslash in fobiitt Note then
(of course) that to get this backslash through to wigese will find it you
may need either quote marks or a yet further backslash, amgstban start
to look messy!

11

AB Concatenating regular expressions works in the obvious arann
An effect is that strings of literal characters can be gived match words
in much the way you might expect;

(A) (&) Where necessary you may use parentheses to group sub-parts of
a complicated expression;

A| B (&) Alternation is written using a vertical bar, which may bedes
OR

Ax The star operator applies to the previous character or btadk
expression, and matches zero or more instances of it;

A+ (W) Much like the star operator, but accepts one or more instaoice
things that match the given pattern;

A? (&) Zero or one matches for the given item;

A\ n,m\} Fromn to m repetitions. Amazingly this construct is only guar-

anteed to be available rep and foregrep you may be able to achieve
the same effect with a pattern that omits the backslashes.igh natural
generalisation of the more common cases thatuseand?.

[a 7] This matches a single character, which must be one of the ones
listed within the brackets. Ranges of characters are showmnanhyphen.
If you put a hyphen or close (square) bracket as the very fiatacter then
it is treated as a literal, not as part of the syntax of the tans The mark
“~ " can be used at the start of a pattern to negate the sense dth;ma

A dot matches any single character except a newline. Thus
matches any string of characters not including newlines;

“and $ Normally patterns are looked for anywhere within a sourge.li
If you puta” at the start of an expression it will only match at the stag of
line, while a$ at the end ensures that matches are only accepted at the end
of a line. Use both if you want to match a whole line exactly;

\< and\> These allow you to insist that a certain place within youteyat
matches the start or end of a word. This facility is only supgmbin some
implementations ofirep .

Again | think that the possibilities are best explored viensexamples. Firstly
I will give just regular expressions, and then | will builcetihh into complete com-
mands showingrep in a potentially useful context:

12

. A pattern that matches words that start with a capitabiditit where the
rest of the characters (if any) are lower case letters antsdigunderscores

[A-Z][a-z0-9_]+

. The string #include at the start of a line, apart from possible leading
blanks

" *#include
. Aline consisting of just the single woEND
"END$

. Aline with at least two equals signs on it with at least on&racter between
them

= +=

. Find which file (and which line within it) the stringass Lostlt IS in,
given that it is either in the current directory or in one edkxtras

grep ’class Lostlt’ * java extras/ * java

. Count the number of lines on which the wafrd occurs in each file whose
name is of the form .txt

grep -¢ "\<if\>" * ixt

The output in this case is a list showing each file-name, gl by a colon
and then the count of the number of lines which contain thergstring.
The use of<..\> means thaif embedded within a longer word will not
be recognised.

. As above, but then usgep again on the output to select out the line that
end with:0 , ie those which give the names of files that do not contain the
word if . This also illustrates that if no files are specifgdp scans the
standard input.

grep -c¢ "\<if\>" *.txt | grep :0\$

13

8. Start the editor passing it the names of all your sourcs that mention
some_variable , presumably because you want to review or change just
those ones. You could obviously use the same sort of constryeint out
just those files, or perform any other plausible operatiothem.

emacs ‘grep -l some_variable * java'

Note thatgrep has its own idea of what a “word” is, and so in some cir-
cumstances you may want to write a more elaborate patteroge with
different syntax.

Regular expressions do not provide a sufficiently general @fajescribing
patterns to allow you to do real parsing of programming laggs, and as present
in grep they do not even make it easy to distinguish between the bbggwr
program, comments and the contents of strings. Howeverautiodest amount
of ingenuity they can often let you specify things well enbdigat you can search
for particular constructions that are interesting to yoom® people may even go
to the extreme of laying out their code in stylised manneraasiegrep searches
easier to conduct!

7 make and project building

When building a serious program you will have a number of ciifé source files
and a collection of more or less elaborate commands thatitsthpm all and link
the resulting fragments together. For large projects yoylmaae helper programs
that get run to generate either data files or even fragmengswfcode. When
you have edited one source file you can of course re-buildlatetp everything,
but that is obviously clumsy and inefficiennhake provides facilities so you can
document which binary files depend on which sources so thablyparing file
date-stamps it can issue a minimal number of commands tg Baar project up
to date.

The information needed has two major components. The fistcigtalogue
of which files depend on which other ones. The second is a sebramands
that can be executed to rebuild files when the things that degend upon are
found to have changed. By default the utility looks for thifonmation in a file
calledMakefile ’. In a practical Makefile there will often be a substantial amto
of common material used to make the actual rules themselees compact or
easier to maintain. In particular variables will often bediso specify the names

"You can also usenakefile without a capital. Many Unix users (slightly) prefer the eap
talised version because it results in the file being showly earin the output fronis when they
inspect the contents of a directory.

14

of the compilers used and all sorts of other options. My fiashgle (or template)
Makefile will be for use with an imaginary programming langaaalledfrog .
It imagines that source files are first compiled into objectez@nd then linked to
form the final application.

Makefile for "princess" program

COMPILE = frogc
OPTS = -optimise -avoid_lillypads=yes
LINK = froglinker

princess: crown.o tadpole.o
$(LINK) crown.o tadpole.o -to princess

crown.o: crown.frog
$(COMPILE) $(OPTS) crown.frog

tadpole.o: tadpole.frog
$(COMPILE) $(OPTS) tadpole.frog

test.log: princess test.data
date > test.log
princess < test.data >> test.log

end of Makefile

The above file starts with a comment. Each line that begirts#ig comment.
Next it defined three variables, which are supposed to beaimerof the compiler,
options to pass to the compiler and the name of the linkera@pg these off in
this way and then referring to them symbolically makes thiagot easier when
you want to change things, which in the long run you undouipted!.

The next few blocks are the key components of the file. Eactsstath a line
that has a target file-name followed by a colon, and then afigte files upon
which it depends. Following that can be a sequence of comstrat should
be obeyed to bring the target up to date. These commands mussdt using a
tab character (n.b. not spaces). A blank line marks the esddf a sequence of
commands. More or less anywhere it is possible to refer tiabkes, and using a
dollar sign you can refer to either something defined inMlagefile itself or to
a variable set up by the shell. Additional variable defimt@an be passed down
whenmake is invoked.

To use this you just issue a command suchnake testlog , where you
specify one of the declared targetsake works out how many of the commands

15

need to be executed and so in the above case if nothing atthliden pre-built it
would execute the commands

frogc -optimise -avoid_lillypads=yes crown.frog
frogc -optimise -avoid_lillypads=yes tadpole.frog
froglinker crown.o tadpole.o -to princess

date > test.log

princess < test.data >> test.log

If you do not tellmake what to do it updates whatever target is mentioned first
in your Makefile

A true Unix enthusiast will feel that the abowakefile is too easy to read
and that it does not include enough cryptic sequences oftpaticn marks. A
slightly better criticism is that as the number of sourcesfiler our princess in-
creases the contents of the file will become repetitive: grhbe nice to be able to
write the compilation command sequence just once. Thisfisdiorse) possible.
In fact there will usually be a whole host of built-in rulesdgoredefined variables
(they are typically callednacrosin this context) that know about a wide range
of languages, and the most you will ever want to do will be mingstomisation
on them. To illustrate the power afake | will stick with my imaginary Frog
language. To telinake a general rule for making files from.frog ones you
include something like the following in youmakefile

frog.o:
$(COMPILE) $(OPTS) $<

where the$< is a macro that expands to the name of the source file that deede
recompilation. There are other slightly cryptic macrod ten be used in rules
like this. These funny automatically defined macros are egex that you can
refer to the files that the general file-suffix-based rule iadpesed on.

$@ expands to the name of the current target, ie the file thathe t@-created;

$< expands to the name of the “prerequisite” file, ie the soutedtat had been
seen to have a newer time-stamp than the target;

$* is like $< except that what it expands to does not include the file suffix.

By defaultmake stops if one of the commands it tries to run fails, and it then
deletes the associated target. The idea here is that if pesbbyour source files
contains a syntax error then everything will be re-built aphte stage that that is
detected, and things will be left so that a subsequent iriwtaf make will try
that file again and then continue.

There are in fact a few further thing that | ought to mentiothwegard to
make: if you use file suffixes other than the ones that are initiafigwn about you

16

may need to declare them and specify their ordering. In tee baing discussed
here it would be necessary to specify first an empty list divseg (to cancel the
built-in list®) and then list the ones that are desired. The various filexssfihould
be listed in order, with generated files first and originalrsewones last:

.SUFFIXES:
.SUFFIXES: .o .frog

It is also recommended that you put a line that says
SHELL = /bin/sh

in everyMakefile so that even if it is invoked by somebody who is using a non-
standard shell its internal command processing will belragestandard manner.

Again (as you might expect) there are other declaratiortscérabe provided
for various specialist uses. | will not even mention theneher

Some versions omake provide extra facilities, notably the opportunity to
build conditions into the file so that different things hap&ased on the values of
macros. Another extension is the ability to reference ofites so that it is as if
their contents had formed part of the origindkefile . | suggest that you avoid
any such features even when they do make life a lot easierast lintil you have
had significant experience moving programs from one compaoinother. Some
people would disagree with me here, perhaps suggesting/tieatever you move
to a new computer you should fetch and install a copy of the GBHdion ofmake
on it so you can be certain that all of its capabilities arelalte. | will re-phrase
my advice to suggest that you stick witlery plain and simpleMakefiles at
least until you feel comfortable re-building GNukke from source and installing
it on new computers!

Itis well worth using eMakefile as the repository for many more commands
than just those to recompile your code. You can usefully pat target that tidies
up by deleting all object and executable files (leaving jhst original sources
present), ones to run test cases, commands for formattehgranting the manual,
scripts that pack up a version of your program for distrilmitand interfaces to
whatever backup/archive discipline you adhere to. The daedin then end up
as documentation of all the major procedures associatédtétmanagement of
your program: it is perhaps sensible then to make sure it leasypof informative
comments in it.

Itis perhaps at this stage worth noting the commt@andh that resets the date
on a file to make it look as if it is new. Use of this can sometirakbsw you to
trick make into assuming that some binary files are new enough that theyot
need re-building even though the general rules given suggesrwise. This can

8At least some version ahake appear to require this.

17

be helpful if you make changes in some source files that yowentain do not
really call for re-compilation: eg correction of spelling@'s in their comments.

8 rcs and friends

The most common cause of corrupted or lost files these dayst isable to be
hardware failure, viruses or rogue software. It will be tegeness on the part
of the owner of the files. The proper protection againstalieeived editing and
false-starts towards program upgrades are best based pimgeefairly detailed
incremental record of changes made to all files. Because rhasges are rather
small these can be stored quite compactly by keeping a basewef each file
and a list of changes made to it. The progmifih which is discussed later on can
compare two versions of a file to generate just such a list ahghs. If properly
organised such a scheme could have just one file representiage version of a
module, the most recently released fully-tested versiahsaveral experimental
versions. Any one of the versions stored could be re-crebyedpplying the
relevant set of stored edits to the base version of the filevirigagot that far
it would seem natural to attach commentary to each set oftapda document
their author and intent, and to accept the fact that seveogirammers might be
working on just one project, and all of them might be makingjitiown separate
changes. With all this in place editing a file shoueverdestroy information,
because it will always be possible to reconstruct the stetdile was in before it.
It is still necessary to back up files to protect against sydalure or wholesale
deletion of the code database, but overall everything shfeel a lot safer. What |
have just described isravision control systepand the Unix tootcs is the prime
examplé. Note thatrcs is at least as relevant when developing documentation
(or indeed literary works) as when writing programs.

Getting started withcs is easy. Change directories into the one where your
source files live. Create a sub-directory cala@iSwhich will be where the system
keeps its database. You theavermess about inside that directory directly, and
periodically copy its contents to floppy disc, magnetic tapsome other fully
secure and for choice remotely stored medium. Now supposégee a set of
files that make up the base-line version of your program: ineathey are called
Arthur.java andNorman.java . You issue the commands:

ci Arthur.java
ci Norman.java

and when you have finished typing in the description of the fies that you
are asked for and you look at what has happened you find thatfijegiseem to

9sccs is another, but at least locallgs is distinctly preferred.

18

have vanished. In fact they have been entered into the dagatith a “revision
number” setto 1.1.

ci stands forcheck-in Given that it is perhaps not too much of a surprise that
the converse command is called for check out This has two rather different
uses. The first is when you just want to read the file (and the reosnt version
of it at that). Then you say just

co Arthur.java

and you should find that the file has re-appeared. You canipantompile it. If
you want to edit it you ought to say

co -l Arthur.java

where the-| stands fodock Part of whatrcs does for you is to arrange that
only one user can lock a file at any one time, so if you are wgrkira multi-user
project® and this succeeds then you know that none of your colleagilebev
able to lock that particular file until you have finished makyour edits and have
checked it back in again. If you specify the lock flag with ci it checks the
file in but leaves a copy outside the database for you to coadliting.

Note that with this scheme you may need to have a suitablpedtdMakefile
that checks out (without locking) all the files that it needsompile. Unlocked
checking out is possible at any time. All that locking doe®iensure that the only
person subsequently allowed to check a file back in is theopewko successfully
obtained a lock for it.

The commandcsdiff ~ compares the version of a file that you have checked
out with the version in the database so you can get a quickugemiof what you
have just changed.

Each time afile is checked initis given a new revision numbkese numbers
normally run1.1,1.2,1.3,.... You can check out a specifeafithese by saying

(e9)
co -rl.4 Norman.java

While checking in a filecs scans it for the stringld$ and if it finds that it
replaces it with a longer string that gives the name of the ifdeauthor, revision
number and the date. This is a textual substitution so youldhmrmally place
the marker within a comment or a string. If you put it in a ggrijou may be able
to access this version information when your program is run.

If the stringLog is present in your source file the explanations you type in
whenci prompts you are collected there, (almost) painlessly actatng update
history as part of your source files. Some other similar suwitsins are made for
other words enclosed in pairs of dollar signs.

105ych as the Lent Term group project. . .

19

There are (of course) rather more facilities and optiona fhat that, and in
particular special provision is made for the case where geg@rcs totally under
the control of just one programmer and so the full discipliridocking is too
heavy handed. The only option | will mention herests -d datewhere the date
can be specified in almost any even half-plausible synta dtily trick is that
the suffixLT is often useful, and indicates that the clock should be nredsin
local time rather than (say) the time zone relevant for Calitoor Japan. In this
country you may like to us&MTinstead, and allow for summer time yourself?
This option recovers the latest version of the file whose tat® later than the
one given. Eg

co "-d monday" filel.xxx
co "-d 2 july" file2.yyy
co "-d 8:00 pm gmt" file3.zzz

For the schemes that permit branches in the tree of versemshe manual
pages: the need for that should not arise until you have haslth get thoroughly
comfortable with the basic commands.

Especially for projects that involve collaboration betwgeogrammers who
do not share a common computer or who are otherwise mildlypterfnom one
another it may make sense to investigate . This is not available on all Unix
systems but where it is it provides an alternative intertacine facilities ofrcs
which may prove more convenient.

One issue that has not been addressed so far is that of whatityal fail
to obtain a lock on a file that you want to change. The easy aniswe contact
the person who does have a lock and see how long they expeitorking with
that file. In some cases you may instead choose to check tloaifilenlocked and
edit it locally. Then when (later on) you do succeed in logkihe file you can try
to merge your own edits with the changes that the other pnogrer madecvs
goes to some trouble to help with this, and if you and the gthegrammer made
sufficiently well separated changes to the file it may be ablpropose a good
merged version for you.

Observe in any case that it is anti-social to lock a file fogenthan you have
to. It will generally count as good practice to plan your aes first, and then
lock the file, make them and check it back in so as to keep thieaderee free for
as much of the time as possible.

On starting to usecs you are liable to find two general frustrations. The first
is that it is not integrated with or especially comfortalmaise withmake unless
you fill your Makefile with lots of uglyco commands and then extra commands
to delete the source files after you have compiled them. Thenskeis that it
stores its database in a rather rigidly defined locationHeesubdirectoryRCS
of the currently selected directory), and this means tHaifahe group of users

20

working on a project tend to need to work in this one directdya small extent

the optionco -p which checks out a file but sends its contents to the standard
output (whence it can be re-directed to any file anywherepeamseful in scripts
that allow for this. Another plausible strategy is to havengle common directory
that all members of a group ugestfor rcs , and then each group members keeps
their own private copy of all the files that make up the projeelles can then

be copied to and from the common repository as need be (bobutiutomatic
protection against the possibility of two users performatgshing operations).
Where availablevs provides distinctly better support for co-operative warki

9 Job control

The features mentioned here are probably ones that yourassglfamiliar with,
but for completeness | will mention them again.

Under Unix you can have several tasks running at once: orgrfound task
that you are interacting with and many background ones. Smankground jobs
will be active and running while others may be suspended. cbinemandobs
displays information about the current situation, wiyte can give information
about tasks at a finer grain (eg when one job that you havelteaghna fact end up
generating a number of sub-tasks).

To start some task in the background you append an ampe>odite com-
mand that starts it. Alternatively you can start the tasksasmband then interrupt
it using control-Z. This suspends its work. A suspended jab loe allowed to
proceed in the background usibg and any job can be made into the one that
is directly connected to your terminal usifgy. The jobs you have to work with
may be referred to as %1, %2, ..., and jiles command lists them so you can
be reminded of the numbers allocated to each particulariggctiio cancel a job
you can uséill oniit.

Especially on multi-user systems it is polite to prefix longdanon-urgent
commands witmice , which gets them run at a lowish priority thereby interfgrin
less with other interactive work. Putting the wairde before a command records
the CPU and elapsed time it takes to execute it, splitting dnepuitation time into
that used directly by the task and that consumed by way oésystverhead. It
is unreasonable to expect timings to be accurately repleaiélonly because of
effects of multi-tasking, virtual memory and caches.

nice make & # make in background at low priority

fg # bring it to the foreground
"z # suspend it...
bg # .. and put back into background

time program < test.data > test.output # test time

21

jobs # see what jobs | have active
kill %3 # kill job number 3

The disposition of background tasks that have not complatéle time that
you log out and other such oddities can also be controlledsiach matters fall
beyond the scope of this introduction.

Having multiple background jobs running and controlled histmanner is
probably less common than it used to be: nowadays many paadiplese Unix
via X-windows and if they have several tasks that they warfopmed they will
run them each in a separate window. This leaves the basicjblmigontrol mech-
anisms to be used for starting new X windows and applicatias

xterm -fn 10x20 -sb -sl 300 &
xclock &

where thexterm command launches a new command window (using a big font
and providing 300 lines of scroll-back), while the secondhomand pops up a
clock for you. In each case the ampersand is important sahlibatew task runs
concurrently with the shell from which it has been invoked.

Creating totally excessive numbers of Unix tasks can ovdréval ultimately
crash the system and so is discouraged. Trying to speed upletion by starting
many jobs at the same time (one for each input file) is not iregdruseful: the
jobs will compete for memory and disc access and can easilytslings down.

These days British University use of international netwasksharged for, but
transfers during the middle of the night are (at preseng.frome large tests
might be better run at times when a computer is not otherwizéddd. The com-
mandat allows you to schedule something to be executed later. Seppimt
you have a program you would like recompiled overnight, asdtaof commands

stored inscript.file that you want executed later on you could issue the com-
mands:

at -f script.file noon tomorrow
at 02:00am
cd /home/acnl/project
make
"D

The first form specifies the commands to be obeyed by indgatifie that they
live in. The second will prompt you to type in commands (I hdisplayed them
indented), and you end the list by typing control-D (ie thencands terminate at
an end-of-file mark). As witincs the format for dates and times that is supported
is astonishingly flexible and general. The commattd should show you all the
jobs you still have pending, but with luck you will not needuse it sinceat
generally send e-mail to you when your task runs.

22

10 More shell facilities: history

If you usebash as your shell (as distinct from the original Bourne Shell)@egs
track of all the commands that you have issued and makesyitfeagou to acti-
vate them again. This is achieved by making text that staittsan exclamation
mark() expand into some variation on a previous command (muchirgsithat
start with a dollar get replaced by the value of a variabldle €asiest cases arise
when you want to repeat a command exactly as it was. Then tiigéssne is how
to indicate which previous command is to be re-issued. Taerdive recipes:

1.1 just repeats the most recent command, whatever it had been;

2. 1-n generalises on the above and repeats the comméaadk. The
simple case! isin fact an abbreviation fdrl ;

3.!n re-plays command numbemwheren starts counting at the start
of your session. The commariktory displays the commands that are
stored along with their numbers in case you are not good attowy

4. ! string is a search. When you follow the exclamation mark with a string
the shell searches back for the most recent command thét etitih this
string, and uses that one. This may well be the most genersdiiyl variant;

5. 1? string? is also a search, but by enclosing the string win questiotksnar
you indicate that the string should be looked for anywhetaiwithe stored
commands, not just at the start of the line.

When you have identified an old command with one of these regipe can
change the command. After all you may well be wanting to ept because
you did not get it quite right last time. You can put an edituest after a history
reference, and this is of the forre/ pattern replacemerit where it is legal to
use almost any character as the delimiter where | have usedA's might be
imagined this makes the indicated change to the old commarspecial syntax
is available if you want to make an edit to the most recent camanm For instance
if you had just typed in the mis-spelt commatmgtery and wanted to correct it
you could issue either of the following equivalent forms

Il :s/elo/

eo

and it is clear that the short-hand usingaves a useful amount of typing.
Because history substitutions are a part of the general sbheimand-line

expansion process (along with file-name wild cards and bkrieeferences) you

can put other text before or after a history reference agéowiag you to get

23

a modified version of a previous command. You can even makeraehvistory
references on one line if that is at all useful.

The history mechanism ibash also responds to the arrow keys so you can
browse your history that way. Control-R initiates a searalough the history
list. One model that has been explored is to view terminalirgs just another
(slightly special) document that should respond to the tkel¢ss that you expect
your editor (specificallegmacs to know about.

11 Datatools (1):tr

There are many editing-style tasks that are slightly beybadeasy use of) simple
substitution capabilities of text editors but not compiéchenough to make you
want to rush out and write a new program to perform them. Urixipes several
tools that cover common conversion tasks that you may comesscThe first of
these performs simple character substitution, and it is¢al . You should note
that the version of that | describe here is the one documented in the book[1] and
is as defined for Unix systems that follow the “System V” ttemhi. The version
of tr on Unix systems descended from the BSD family differs, andIN&J tr

as provided on Linux documents itself as not befally compatible with either
tradition. So before you use this command on any particubanputer please
check theman pages!

You givetr some simple options and two strings. It reads from its stahda
input and writes to the standard output, so it is usually seiémfile redirection
or pipes. Its basic use is to replace each character thagseprin its first string
with the corresponding member of the second. Strings cablreaated (as with
grep) to show ranges of characters. Two plausible uses follow:

tr '[A-Z]' '[a-z]' < original.file > lowercase.file
cat message | tr '[a-z][A-Z] ’'[b-z][A-Z]a’ | ...

The first of these turns upper case letters into their lowse eguivalents, and is
obviously a useful thing to be able to do easily. The secondase of a joke:
it replaces each letter by the next one in the alphabet toused very weakly
obscured version of some text.

With the-d flag the command only needs to be given one string, and it just
deletes any characters listed in this string from the file. ifstance if you have
received a file from a DOS/Windows site it probably has negdimepresented
as carriage return/linefeed pairs and it may be padded artevith control-Z
characters. It can be cleaned up using

tr -d '\015\032’ < dos.file

24

where the bad news is that | have had to use octal escapescitygpe control
characters that | want to discard.

A final use fortr is with the-s flag where if it finds any repeated strings of
any of the characters from its second string it consolidétesn into just a single
instance. It can sometimes be useful to remove redundamk$knd newlines.
Such processes are perhaps unexpectedly useful thingsedrhgour armoury
when you are building long pipes that use output generatexhbyutility as input
to anothertr might be used to clean up the output to make it more digeditible
the next use to be made of it.

Sl tr-s 7 T \012 |

Not a very complicated tool, but useful to know about!

12 Data tools (2):sed

The next data tool to mention ed, which is one of the world’s crudest and
dullest editors. The reason is still exists and qualifiesrfolusion in this course is
that it is intended for use is embedded within scripts whiszan do automatic and
systematic editing for you. Thus nobody in their right mindulM usesed when
first typing in a program, but uses for it abound where a sinsiéd of edits must
be applied to a large number of files or where the nature of sanodesale change
does not quite match the global-replacement facilitiesofyyormal screen-based
editor.

Since it is expected to be used in scriptsy reads the original version of the
file it is to process as a stream. It either reads from fileedigin the command
line, or if none are given it uses its standard input. Theegliersion is always
sent to the standard output. Editing commands are eithengirectly on the
command-line (typically delimited by quote marks) or in atfile that is named
on the command line after them key.

When processing a filsed works through the file line by line applying each
of its commands to all lines to which they are relevant. Thaaly simple uses
of sed let you perform collections of global exchanges all the waptigh a file.
For instance to change every dog into a cat and every bona mtmuse you might
use the command

... | sed ’'s/dog/cat/g; s/bone/mouse/qg’ | ...

The command being used is just™for substitute. The pattern that follows it is a
regular expression (very much as tpep . After the final 7 ” there can be some
flags, and thg here instructs that the exchange should be made as manydimes
the line as possible: by default only the first match on eaphtitine would be
processed.

25

Any sed command can be preceded by one or two addresses to limitrtge ra
within the file that it will be applied to. If you use a numberas address it is
treated as a line number. The symBatands for the end of the file. So if you
want to make an edit that leaves the first dozen lines of yaaafdne you might
try a command of the formh2,$s/xx/yy/ . The more interesting feature s4d
is that you can use regular expressions as addresses. Ifijteywst one pattern
it will apply its edit to all lines that match it. Appending a&xclamation mark
causes the edit to apply to all linegceptthose matching the pattern. A pair of
comma-separated patterns will select a region from wherérgt pattern matches
up to (and including) where the second does.

We have already seen tkecommand. Next | will mention thad deletes a
line. Itis then clear that the command

/public static void main/,/ * 1$/d

deletes all the lines from one containing the words abaih down to one that
consists of just a close curly bracket (possibly precededdmyge spaces). Note
that the range specified doest do anything to enforce matching of braces, so it
will delete until thefirst close brace that it finds on a line of its own.

Another example, also slightly fragile, supposes that yanate has a collec-
tion of lines that optionally print a trace statement, arat frou want to comment
them all out. Each such statement is supposed to be on jusihene

fif 2(debug)/{
sPl N x|
SI$/ - *VI
}

This applies a pair of commands to each line that contaihe&f{debug) or

if (debug) 1% The first command matches against the first position in the li
and inserts therex --- while the second substitution puts =/ at the end of the

line. You can see that a number of ugly backslash characteestbeen required
so that various characters in patterns and replacemenatextreated literally

rather than as special. The use of multiple commands a$sdaeiéth one address
expression requires that the braces appear on separagugies shown in this
example.

Of coursesed has many commands beyond the delete and substitute ones
listed here, but its real power comes not from the richnesssafommand set
but from the use of regular expressions. One way in whichdtgant on regular
expressions differs from that useddrep is that you can enclose a section of a
pattern within backslashed parentheses, and the effelbhismhatever matches
that pattern is captured and stored in a text variable. Upirite such strings

with a space in one but not in the other.

26

can be collected, and the replacement text in a substitutenamd can refer to
them usingl to\9 . So for instance if a file consisted of data in three columns
separated by blanks it would be possible to rearrange c@lWBC into the order
BACA (making a second copy of the first column, A) using

sl \[T] *) A\] %) #\. *OA2 \1 \3\1/

This looks utterly horrible! But if read through one chunk dtrae it can make
sense! The pattern first looks for zero or more blanks. Thermawe a block
enclosed in(...\) so that its value will be stored. The pattern within looks
for an arbitrary repetition of characters that a@t spaces. Next we match a
further run of blanks, capture a second column of non-blaaiia,dskip further
inter-column space and at the end *\) matches and saves everything up to the
end of the line. That completes the pattern. The replaceteghjust plays back
the saved material in the order we want it in. Achieving ttfgat using a typical
mouse-driven editor would probably be pretty uncomfoeabl

| think that typical strings oed commands are dense enough in punctuation
that they deserve to go into files so they can be preparedutigrehd tested.
Comment lines in such files begin withand are somewhat desirable!

13 Data tools (3):diff

You probably already know that when you want to compare twesfilou use
diff . By default it displays the differences between the two filgsboting line
numbers and then listing lines that have been added, daletdthnged. A fully-
fledged Unix tool-user will also be aware of at least some efdbmmand-line
options it can be given:

-i Ignore upper/lower case distinctions when making the coispa;

-b Treat multiple spaces as if they had been one space, angtaulgwlines
as if they had been just one. This can be useful if you haventlycadjusted
the layout in a file and do not want to be overwhelmed with repibrat are
just whitespace changes;

-r When the “files” given taliff ~ are in fact directories this recurses through
them and rungliff on all files in any common sub-directories;

-Dsynbol This merges the two files by inserting C-style conditional pem
lation directives of the forn#ifdef ~ symbol It is arranged that isymbol
is defined the generated file would be equivalent to the sefilendvhile
otherwise it would match the first one. Even if you are not g€irthis can

27

be useful since you can edit the merged file and search fotrihg symbol
to find where discrepancies had occurred;

-e Generate a simple edit script (intended for the Unix edstrthat would
change the first file into the second. In effect this is whatam@ done
internally inrcs where is stores files as base versions and sequences of
updates.

Note that if the two files being compared have identical coirtteendiff ~ will
generate no output at all.

14 perl as a super-setofjrep

Thus far | have concentrated on tools that are fairly small fairly specialised.
Even when used individually these solve problems that wotherwise require
a lot of manual work. Linked together with pipes they can doryere. It is
possible to use the Unix shell to run quite complicated sege® of sub-tasks,
with conditional execution, recursion and most of the freumik that you would
expect in a real programming language. When used this way yaldwet the
shell call upon the various lower level tools to perform eal@mentary operation:
of itself it would do just the co-ordinating. Both the ineféaicy of this and the
fact that there are at least half a dozen different Unix shalluse has led to a
slightly more integrated languaggerl gaining popularity.perl can simulate
and generalise most of the tools mentioned so far, includuige elaborate shell
scripting. Typical (badly-written!)perl programs tend to look utterly horrible,
being utterly full of significant punctuation charactersf i you build up to it
slowly you should find that you can start using it quite eas8ynce it is a full-
scale programming language | will not start to pretend taecornore than a very
tiny fragment of it here. | can suggest the introductory bbgkSchwartz and
Christiansen[2] and leave the definitive guide by Larry V@&llfor those who
want to become real experts.

I will illustrate the language by givingerl scripts that simulate behaviour
similar to that which can be obtained using one of the moreiapst tools. So
first | will cover grep .

The first version of this shows the “program” passeddo on its command-
line after the keye :

perl -n -e ’print if /regexp/’ < somefile.txt

In this very concise example the flag causes the command given followitgg
to be applied to every line of the input. The command giventpra line if it
contains a match against the given expression.

28

The same effect can be expanded out into something that lnoks like a
program: Aperl script lives in a file, and contains

#!/usr/bin/perl -w

while (<>) {
if (/regexp/) {
print $_;
}
}

When the name of this file is presented to the shell it readsfdata either
each file named on its command line, or if there are none oéthrom its standard
input. The first line marks it asgerl script?, and thew flag asks for warnings
about dubious constructs. Since almost anything is valigeth you have to
do something quite seriously weird to get much of a warninge Body of the
program we have here is a loop. The diamoxzel) causes the next line of input to
be read and saved in a standard place. iThstatement matches this text against
the given regular expression (and regular expressiopsrin are as extended as
you could ever dream of). If there is a match then the pririestant is activated
to send something to the standard output. The' feferences the location where
the most recent input line had been stored. The effect isathiides matching the
regular expression get printed.

It is perhaps obvious that there will then be arithmeticestegnts, variables,
arrays and the ability to nest arbitrary mixtures of comdiéils and loops. You
can defingerl procedures and call them recursively. In consequence ahe at
cost of writing a slightly longer scriggerl can perform much more complicated
pattern detection than camnep . But because the full power of regular expression
matching is available withiperl those tasks that just need that remain quite easy
to express.

15 perl for scripting

There are three things thpérl does that make it a really useful language for
writing system maintenance utilities in. The first is thatdis a rich built-in col-
lection of directory and file manipulation primitives. Ifetvariable$filename

is the name of a file you are interested in then there are owedbzen each tests
you can perform on it. Important examples are:

-r $filename yields true if the file exists and is readable;

2Well, you need to indicate there whatever place on your Ugstesnperl is actually in-
stalled.

29

-w $filename is true if the file is writeable;

-e $filename is true if it exists;
-z S$filename is true if it exists but has zero size;
-d $filename if it is a directory rather than a simple file.

and other similar short operators can find the age of a file @istbe (in bytes)
that it currently has. There are then further facilities fi@versing directories,
expanding file-name wild-cards and changing file-accegsigsions.

The second feature is that it is easy to launch sub-processkeetrieve their
output. If you want the output from the program you are gomguh to be sent to
a file or to the standard output you can usystem function, as in

system "javac Testfile.java";

but on other occasions you want yquatl program to capture, parse and respond
to the output generated by the program. In such cases yowiiistan expression
which is the command you want executed enclosed in backguloteny example
here | just print the output straight away — normally you wbstore it in a
variable and process it further:

print ‘javac Testfile.java’;

The final strength thaterl brings is the use of regular expressions to decom-
pose program output and a neat (?) syntax that lets you depautithe parts
of your sub-program’s output. In fact this just comes frosigeneral patter-
matching ability, but | will illustrate it here based on a stddl togrep . Actually
one would normally darep -like thingswithin your perl program, but | just
want an illustration of calling a program and then parsirggdhtput. So suppose
I have a file calledfunny.data” and within it there are a number of lines that
contain the stringkXX | can causeerl to invokegrep by putting

‘grep -n XXX funny.data'
in my perl script. With then flag the output frongrep might be something like

108: while ((c = XXX getc(fmakebase)))
150: return 1; XXX
179: fXXXor (i=0; i<n_user_words; i++)

with a line number, then a colon, and then the line that theepatvas found in.
The output fromgrep gets passed back perl as an array of lines, and within
each line it is useful to search (using a very simple regutgression) for the
colon and split the line into two parts there. As a simpleiyidlous demonstration
I will just filter things so that | only display things that af@und within the first
160 lines, and | will annotate the output a little:

30

#/usr/bin/perl -w
@grepresults = ‘grep -n XXX funny.data’;
chomp @grepresults
foreach $line (@grepresults) {
($linenumber, $contents) = split(/:/, $line);
if ($linenumber < 160) {
print "line=$linenumber, data=<$contents>\n";
}
}

The output might then be

line=108, data=< while ((c = XXX getc(fmakebase)))>
line=150, data=< return 1; XXX>

A more realistic application that might start off in a similstyle would run a
compiler and then retrieve and parse the error messagesuor.y

16 perl as a general-purpose language

Again | must stress that this course is at best a tastgudidr, and so rather than
giving a proper presentation of its syntax and capabilitiedl just give a couple
of annotated sample programs. The ones | present are takartlie suggested
book[2].

16.1 Counting repetitions

My first example program counts the number of times each woptesent in a
file, where the file contains just one word per line:

#!/usr/bin/perl -w
chomp(@words = <STDIN>);
foreach $word (@words) {

$count{$words}++;
or. $count{$word} = $count{$word} + 1;
or: $count{Sword} += 1; (all 3 are equivalent)

}

foreach $word (keys %count) {
print "$word was seen $count{$word} times\n";

}

The first line is one we have seen before and marks this @sla script.
On the next line@words refers to a variable that is array type, and when we

31

assign to it from<STDIN> it ends up with each line of the input file in a separate
element. The built-in functiomhomp removes the newline characters that are
initially present in this array. Thiereach statement iterates over all items in the
array. The referenc&ount{$word} is the use of &ash tablewvhich is a bit like

an array but can be indexed by arbitrary things (in this caseam@rds) not just
by numbers. Note that iperl references to scalar variables includé & the
variable name to show that a scalar rather than an array i&ioeolved. Note
also that the table of counts did not need to be initialisest:fin an arithmetic
context an unset value is treatéas zero! Finally the built-in functiokeys is
used on the hash table of counts. In this case it is necessegierence the whole
hash table, not just some entry in it, and this is why the teatiskeys %count

with a percent mark. Observe that the output text is creayeldalving variable
references expanded within the string.

16.2 Extracting data from a table

Suppose you have a file whose contents are arranged as a noinfileéds sepa-
rated by colons. The fifth such column contains a name, wisi¢bliowed (op-
tionally) by an address and phone numbers (separated offtoynas). This curi-
ous format is illustrated by a two-line (non-real) file:

acnl:x:1000:1000:Arthur C Norman,T34,,:/home/acnl:/bi n/bash
am:x:1003:1003:Alan Mycroft,,,:/home/am:/bin/bash

and happens to follow the layout used by Unix for password.filEhe task is
to list just the first names of all the users present. Thisidessan illustratio of
thesplit operation. This takes a regular expression and a string r@ades an
array whose elements are the parts of the string delimitatibgs that match the
regular expression:

#!/usr/bin/perl

while (<STDIN>) {
chomp;
($gcos) = (split /:N[4];
($real) = split(/,/, $gcos);
($first) = split(\s+/, $real);
print "$first\n";

}
BHowever here if we use thew flag we will be presented with a bunch of warn-
ings when this happens. | rather suspect that a norped style does not do

the initialisation and only uses thew flag while testing its code. However a line
if (defined $count {$word }) $count {$word } = 0; could clean things up.

32

This is tolerably dense, but | hope that with some explanaiiovill become
readable. It starts by reading in lines from its standardiin@hewhile loop
reads one line at a time. The line that has been read is lefdefault variable
called$_ and other operations work on this if not told to use sometbisg. This
saves typing somewhat. As befarigomp removes the newline that is at the end
of each line. Here it works ofi_. The right hand side of the next line starts by
splitting the input line at each colon. This hands back aayaand so the element
with index 4 is selected. Since the first item has index O thts the field that we
want. It is assigned t8gcos where this name hints at a traditional Unix hame
for this field in a password file. The next usesplit find a comma, and can
omit an explicit subscrip[0] because some cleverness in the assignment puts
the first item from the right-hand-side array into the scataiable$real . The
final use ofsplit uses a regular expression that looks for a string of one oemor
non-space characters. The escape sequsneg one of very many pre-defined
escape sequences that give you very concise ways of sperifgrds, numbers,
whitespace and other common things you may need to matchllyFinust print

the result.

16.3 A bit more pattern matching

In a bit ofperl pattern matching you can enclose parts of your regular egpme
in parentheses, and the result (without backslashes the is that the parts of
the pattern that match those little fragments get storedhriables for you. For
instance when you use the C shell the display you get when getime to
record how long a command takes to execute looks somettkiag li

44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+Ow

where the fields show user-mode time, operating system eadd) total elapsed
time and various statistics relating to memory and progestiicsation. | present
this example even though it comes from a different shell bgeat provides a
plausible example of some murky text string that needs todm®miposed. To
skip the issue of capturing the data | will put it intgperl variable by hand. In
this display | will underline the parts that | will supposesavanted (for some
reason):

$data = "44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+Ow";

The relevant fields can be extracted by matching the datastgaregular expres-
sion

$data =" /:(["\.] *N\S * (%] *)%.*io (. =*)pf/;
print "fieldl = $1 field2 = $2 field3 = $3\n";

33

The operator~ asks for a pattern match. Within the horrid looking regular
expression there are a couple of patterns that represagasaf characters, so for
instance the sub-pattefin] * is looking for an arbitrary number of characters
that are not dots. The predefined escépeamatches any character that is not a
space. And then some parts of the regular expression areaentpases so that
the corresponding fragments of matched text can be retrieg@1 etc in what
follows. Perhaps a little cryptic but very powerful!

There are many hundreds pérl modules available on archive sites for
downloading. These provide ready-written facilities fohiage range of oper-
ations you might imagine wanting: image compression, ngkwoanagement,
database connectivity, extra data-types and algorithrtig list goes on and on.
One of the strengths of the language is the wide range of shimat you do not
have to write for yourself but can pick up in this way.

A context where you are especially liable to hpart mentiones is that of so-
calledcgi-bin scripts, which are ways in which a web-server can run program
in response to clicks made by the remote user who is browsage.perl sees
major use as a programming language in this special but wgvgitant niche.

17 A brief note aboutemacs

There is one tool that is very widely used on Unix (and of cewisewhere) which
draws on some of the tradition of these tools, but which eraladidof its power
within a single comprehensive interface. Thigsmsacs. If you are only using this
as a simple screen editor, clicking on your mouse every tiowevwant to open or
save a file and doing most of your navigation by dragging allsbew then you
are not following the use-pattern that the origiealacs designers had in mind
and you may be missing out on understanding just how muchitodor you.
emacs provides an astonishingly large collection of editing coamufs, vari-
ous of them based on searches using regular expressioresfofthwe have seen
here. It can also provide a model for file-management basd¢keoidea that you
are “editing” your directory structure, and it provides aliter-like environment
for reading e-mail (which thus naturally permits easy seesa¢hrough incoming
or stored mail, and makes the commands to display or delateatteer like those
to display or delete files). Its scripting facilities are éd®n it having an embed-
ded language —emacs lisp — which makes it possible to write quite general
programs based upon the basic (and indeed not so basic)geditmmands that
are pre-defined. Perhaps the best illustration of the pomg:banefit of the script-
ing capabilities is the way in which the editor can be custadifor the language
that you are editing, so that there are simple commands te mowss blocks and
procedures, to recompile parts of your code and to re-positie editing focus

34

at the first place that the compiler spotted a syntax editanp® users can of
course benefit from these language-speeifracs modes without understanding
where they came from, but the open nature of emacs meanshtisd who are
more experienced can first customise existing modes, amddigign new ones
to suit their own exact preferences or to perform new tasks.

My belief is that gaining initial experience witrep and the like is useful
even if you intend to end up as an ultimat@acs wizard who uses it for every-
thing.

18 “Unix” tools and Microsoft Windows

The Unix tools discussed here represent a particular pergpen the world. It
starts with an expectation that serious users are going teilbeg to take time
to learn how to use the systems that are at their disposa. prihaps rooted in
the “no pain, no gain” world view, which expects that anyththat goes truly out
of its way to be easy for an utter novice to use will necesganly have limited
capabilities. An elaboration on this is that the Unix toois attempting to provide
fundamental building blocks of functionality (such as pattmatching), rather
than complete solutions (like writing your program for yaut@matically). Big
tools will be wonderful when what you want to is something thes been thought
of and supported by the tool author, but when it does not yeuratrouble. Small
but generic tools provide at least some leverage even in nessual situations.

A second part of the Unix philosophy is that it should be palssio automate
tasks. Again setting up the scripts with all their pipes,ineaions and messy
parameters may be a painful cost, but is can be seen as atmevessince then
the operations concerned can be performed over and over aghithe greatest
of ease. This applies just as much to slightly complicatedl r@petitive edits
on a large file as it does to the process of recompiling yougnam, running all
your standard tests and checking their output to see thatas iexpected. For
tiny tasks where you write a short program, run it once and atonorry about
documentation all this seems unnecessary, but for bigggegis it is of course
vital.

A third aspect of Unix is perhaps a legacy of the fact that nobshese tools
have been around for a long while. However the tools destriteze represent
an emphasis on command-line working, with hands firmly pms#td above a
keyboard. For one who has taken the time to learn how to uséotiie and
who has set up a set of well designed scripts diakefile s almost all common
operations can be performed using a quite short sequenceysfrikes. Hands
do not have to move between keyboard and mouse, and the spositioning
needed when selecting test visually is avoided. The shathty mechanism saves

35

keystrokes compared to the DOS/Windows equivalent thatstém lead to long
sequences of repeated presses on arrow keys.

A final thing to note about these Unix tools (and to contrdstpu have used
it, with the Microsoft Development Studio) is that the toblsgave discussed here
are by and large neutramake does not mind whose compiler it is going to in-
voke. Indeed it can be used to automate anything where orgetdere-built from
another and where date-stamps define dependencgesstores updates to your
files, but leaves you to decide which editor you will use torgethem. It does
not lock you in to one vendor or stylegrep , sed and the rest are all general
purpose.

Some tasks, however, do not fit in at all well with this stylewairk. The
prime example is probably desk-top publishing where finestdjent of the vi-
sual appearance of documents matters, and the automatieg telswindowed
applications where text-based scripts find it a little hardimulate full interac-
tive input and to check that the programs’s behaviour isexrr

19 Conclusion

As previously mentioned, all the “Unix” tools are in fact fisegeneric, and
although they original arose as part of the Unix project thaye been ported
to other platforms, notably Windows. There (of course) tlaeg run from a
command-line. Amazingly you can even get a version ofhsh shell that
runs under Windows, although | would suggest that if youlyeabnt that envi-
ronment you should probably install Linux on your computestéad! Better than
the fact that they are available is the fact that there arengdly free versions of
everything, in particular versions from the Free Softwararkdation issued under
the GNU public license. You should perhaps be aware thaté ther also a load
of slightly half-baked approximations to the real Unix ®olut there too, where
somebody has wanted (sayep and implemented some subset of it for them-
selves. You may like to try to ensure that you find definitivesi@ns of at least the
more important tools. A useful place to look to find one fagtymplete collection
is

http://sunsite.doc.ic.ac.uk/Mirrors/ftp.cygnus.com/
pub/gnu-win32/gnu-win32/

Cygnus spearhead a project intended to make it easy to hagigpne that were
originally written for Unix on a Windows machine, and in theopess they have
gone quite a long way towards making it possible to simulai@ia development
environment within Windows. They have an implementatiorbash as well

as pretty well all the tools discussed in this course, andaisociated free C,
C++ and Fortran compilers are of respectable quality. Howat@resent their

36

software counts as a “beta” release, ie it is known to haveesostabilities, and
use of it should be for experimentation rather than for thgpsut of some large
or important project.

Everything you might want relating feerl is at

http://sunsite.doc.ic.ac.uk/packages/CPAN/

where perhaps the sub-directgryrts/win32/ActiveState may be of inter-

est. Note that as with all references to material on the wetetis little guarantee
of stability in what you will find, but | would expect that theimors at SunSITE

would normally hold copies of all the most commonly usefutlanost robust
software collections.

20 Bibliography

References

[1] Arnold Robbins.Unix in a Nutshell O’'Reilly & Associates, 1999.

[2] Randal L Schwartz and Tom Christiansdrearning Perl O’'Reilly & Asso-
ciates, 1997.

[3] Larry Wall, Tom Christiansen, and Randal L Schwarrogramming Perl
O'Rellly & Associates, 1996.

Thanks are due to Piete Brooks who spotted
some places where | had things utterly wrong
in an earlier draft of these notes.

37

