
Unix Tools

A C Norman, Michaelmas Term 1998

Part IB

1 Syllabus

Unix Tools (4 lectures, no examination questions)

1. Overview and basics. Expected impact of this course on future CST practi-
cal work and the evaluation criteria applied to it. The Unix philosophy and
history. Streams, redirection, pipes. Ways to identify information (wild-
cards, find, grep and the use of regular expressions). Influence of Unix
tools on the non-Unix world.

2. Tools to support development and testing. Makefiles & parameter substi-
tution. Important shell facilities including job control,“nice” and history-
substitution.

3. Data manipulation tools: sed, tr, diff. Why these may be useful.

4. Scripting with perl and hence more advanced linkage between tool compo-
nents.

Books:

1. Unix in a Nutshell, Daniel Gilly, O’Reilly

2. Learning Perl (edn 2), Schwartz and Christiansen, O’Reilly

2 Introduction

This course is called “Unix Tools”, and this is because the various support utilities
that it discusses originated with Unix and fit in with a philosophy that was made
explicit from the early days of that operating system. It should however be noted
that most of the particular programs or tools mentioned havebeen found suffi-
ciently useful by generations of programmers that versionshave been ported to
other operating systems, notably Microsoft Windows, and sowhatever platform
you use now or expect to use in the future there is something here that may prove
relevant to you. Even when running under Windows it seems proper to refer to
things as “Unix” tools, both for historical reasons and because the style of inter-
face that these tools provide contrasts quite strongly withthat seen in (say) the
Microsoft Visual Studio1.

1The environment within which one influential vendor’s set ofnative Windows development
tools reside.

1

This course is short and it is also unusual in that no questions on it will appear
on the examination papers at the end of the year. These two facts may lead to the
impression that the department considers the material covered unimportant or op-
tional. Any such impression is ill-founded. It is anticipated that techniques men-
tioned during this course will be of relevance in later practical work: specifically
both the Group Project this year and your individual projectnext year. Familiar-
ity with and competent use of standard tools and techniques can make your work
on these projects significantly more efficient, and all assessment of practical work
are entitled to assume this fluency when judging whether the amount of work done
was more or less than could be reasonably expected of you.

For this course I count the printed lecture notes as more important than the
lectures themselves, and I also believe that your practicalskills will only develop
with practical experience, so I would urge you all to try using each of the tools and
techniques mentioned here. I will generally only explain thesimpleways of using
each facility, and as you gain confidence it may be that you will benefit if you
deepen your understanding by reading the “man” pages or other documentation.

There is at least an attempt to define a standardised set of Unix tools, including
the shell: those interested in fine and authoritative details might like to follow up
on the IEEE POSIX Shell and Tools specification (IEEE WorkingGroup 1003.2).
Note that IEEE does not publish its standards on the web or otherwise make the
freely available: it supports its standardisation work through sales of both the
standards and various certification services. More information about their activi-
ties can be found on the web-sitehttp://standards.ieee.ord/ .

A thread I hope will run through my presentation is that the tools discussed
are not totally arbitrary in their design (despite some of the initial impressions that
they give). There is at least a part of their construction that concerns itself with
compatibility of ideas from one tool to the next and of exploitation of powerful and
general computer science fundamentals such as regular expressions. The “Unix
philosophy” that I mentioned earlier is that (ideally) the world would contain a
number of tool components, each addressing just one problem. Each individual
tool would then be small, easy to learn but completely general in its treatment of
the limited class of problem that it addressed. The Unix approach is then to solve
typically messy real-world problems by combining use of several such basic tools.
In this spirit there will be a small number of major ideas underlying all the material
covered here:

1. Complex tasks are often best solved by linking together several existing
programs rather than be re-inventing every possible low-level detail of the
wheel over again;

2. Regular expressions, seen in the Part IA course as a mathematical abstrac-
tion of pattern description, generalise to provide amazingly powerful and

2

flexible (if sometimes obscure-looking) capabilities;

3. There should be a smooth transition between the tasks you perform one at
a time interactively and those that need real programs written to perform
them. The Unix tool tradition is particularly strong on helping to automate
tasks of medium complexity;

4. Mouse/Menu interfaces are utterly admirable for making editors easy to use
for the untutored or casual user. They are also helpful when your main con-
cern is the visual appearance of a page of text, since they canmake it easy to
select a block of text and change its attributes. But for very many other tasks
a keyboard based (vermin free?) approach can let a short sequence of key-
strokes achieve what would otherwise require much mouse movement and
the switching of concentration between mouse and keyboard.The learning
effort required pays off as you are able to get your work done faster.

The topics covered here are somewhat inter-related and so a strictly linear and
compartmentalised coverage would not be satisfactory. I will thus often refer back
to concepts sketched earlier on and flesh out additional details in examples given
later in the course. In four lectures it must be clear that I can not cover all of the
facilities that Unix provides, and the languageperl that I discuss towards the end
could of itself justify a full-length lecture course and a host of associated practical
classes. You must thus be aware that this course is going to besuperficial, and
those of you who already count yourselves as experts are liable to find many of
your favourite idioms are not covered. However the lecturescan (I hope) still form
a good starting point for those who are relative Unix beginners, while these notes
can be a reminder of what is available, a modest source of cook-book examples
and a reminder of which parts of the full documentation you might want to read
when you have some spare time.

3 The “Unix shell”

These first few sections will recapitulate on material that you will (mostly) have
come across in the introductions to Unix you had at the start of the Part IA Java
course, or that were mentioned in part of the Operating Systems thread. Repetition
in these notes will help keep this course self-contained, although the lectures will
skim over this information very rapidly. See [1] for a tolerably concise expansion
of what I have included here.

Part of the Unix design involved making all the functionality supported by the
operating system available as function calls, and making asmany of these calls as
possible available to all users. In other words a deliberateattempt was made to

3

arrange that Unix security only needed a very small set of operations to be run as
privileged system tasks. Partly as a demonstration of this,the system ensured that
theshellcould be written as an ordinary user-mode program. The shellcomprises
the fundamental interface the user sees to Unix: it is the component of Unix that
lets you type in commands which it then executes for you. Manyother operating
systems give their shells private and special ways of talking to the inner parts of the
operating system so that it is not reasonable for a user to implement a replacement.

Two consequences have arisen. The first is that there aremanydifferent Unix
shells available. This can be a cause of significant confusion! The second is that
good ideas originally implemented in one of these shells have eventually found
their way (often in slightly different form) into the others. The result is that the
major Unix shells now have a very substantial range of capabilities, and the way in
which these are activated has benefited from a great deal of experimentation and
field-testing. The original Unix shell is known as the Bourne Shell (after Steve
Bourne, who after leaving Cambridge went to Bell Laboratories where his enthu-
siasm for Algol 68 had its effects). The major incompatible shell you may come
across is theC shell, where the “C” is both to indicate that its syntax is inspired by
C, and also (given a Unix tradition of horrible puns) because one expects to find
shells on beaches, so a C-shell is an obvious thing to talk about. There have been
many successors to these two shells. The one that you are (strongly) encouraged
to use here is basically upwards compatible with the Bourne Shell, and is know as
bash , the Bo(u)rn(e)-Again SHell.

Whenever you are typing in a command at the usual Unix command-prompt
you are talking to your current shell. Also if you put some text in a file and set
the file to have “executable” status (eg by sayingchmod +x filename) then
quoting the name of the file will get the shell to obey the sequence of commands
contained. In such case it is considered standard and politeto make the first line
of the file contain the incantation

#!/bin/sh

where/bin/sh is the full file-name of the shell you are intending to use. For
shell scripts like this it is generally safest to restrict yourself to the facilities and
syntax of the basic Bourne shell, even if you use something more powerful when
interacting. The “#” mark makes this initial line a comment, and the following “! ”
and the fact that it is the very first thing in the file mark it as aspecial comment
used to indicate what should be used to process the file. Some of the examples
given here will be most readily tested interactively while others will be best put
into files while you perfect the lengthy and messy runes.

Some small and common things that you may have thought of as commands
are in fact built into the shell (for instancecd 2). But the most interesting shell

2For the purposes of this course I am going to suppose that someof the basic Unix commands

4

features relate to ways to run other programs and provide them with parameters
and input data.

4 Streams, redirection, pipes

Central to the Unix design is the idea of a stream. Streams are the foundation
for input and output, and at one (fairly low) level they are identified by simple
small integer identifiers. When a program is started the shell provides it with
three standard streams, with numeric identities 0, 1 and 2. The first of these is
standard input, and programs tend to read data from there if they have nothing
better to do. The second is a place forstandard outputto be sent, while the third
is intended forerror messages. If you start a program without giving the shell
more explicit information it will connect your keyboard so it provides data for the
standard input, and it will direct both of the default outputstreams to your screen.

These standard streams can be redirected so that they eitheraccess the filing
system or provide communication between pairs of programs.The importance
(for today!) of file redirection is that it means that a program can be written so
that it just reads from its standard input and writes to its standard output. Using
redirection the shell can then cause it to take data from one file and write its results
to another. The program itself does not have to bother with any file-name decoding
etc.

my_program < input_data.file > output_data.file

If >> is used as a redirection operator the new data is appended to the output
file. This can be very useful when executing a sequence of commands:

#!/bin/sh
echo "Test run starting" > log.file
date >> log.file
my_program >> log.file
echo "end of test" >> log.file

Two programs can be linked so that the (standard) output fromthe first is
fed in as the (standard) input to the second. The fact that this is so very easy to
arrange encourages a style where you collect a whole bunch ofsmall utilities each
of which performs just one simple task, and you then chain them together aspipes
to perform some more elaborate process. I will use this in quite a number of the
examples given later in these notes. One useful program to put in a pipe istee
which passes material straight from its input to output, butalso diverts a copy to
a log-file. The following (not very useful) example usescat to copy an input file

are already familiar. But the suggested textbook will give brief explanations even if I do happen
to mention something that you have not seen or that you have forgotten about.

5

to its standard output.tee then captures a copy of this to a log file, and passes the
data on tomy program for whatever processing is needed.

cat input.file | tee log.file | my_program

A further use of pipes andtee is as follows where the standard output from a
test run is permitted to appear on the screen but a copy is alsodiverted to a log
file in case detailed examination is called for at a later date. The output is piped
throughmore to make it possible to read it all even when it is too long to fit on a
single screen. The Unix enthusiast would point out the powerof pipes where the
functionalities of bothtee andmore are being combined without the need for a
messy composite utility.

my_second_program | tee log.file | more

Especially when debugging code it is often important to be able to redirect
the error output as well as the regular one. This is one of the areas where the
exact syntax to be used depends on which shell you are using, and so my use of
the Bourne Shell or one of its derivatives does matter. For such shells the form
2> error.file redirects the standard error file (descriptor number 2) so that
material is sent to the named file.

A final common feature for redirection is activated using<<. This makes it
possible to embed an input document within a shell script file. After the doubled
angle bracket you put some word, and the standard input to thecommand acti-
vated will then be all lines form the command input source up to one that exactly
matches this word:

#!/bin/sh
cat << XXX > output.file
line 1 to go in the new file
line 2 to go in the new file
XXX

5 Command-line expansion

When the shell is about to process a command it first performs some expansion
on it. It will interpret some sequences of characters as patterns, and replace them
with a list of all the names of files that match those patterns.As a special and
perhaps common case the single character “* ” is a pattern that matches the names
of all3 files in the current directory. For these purposes a sub-directory is just
another file. Because this wild-card expansion is performed by the shell before a
command is executed its effects are available whatever command you are using.

3Well all except for the “hidden” file-names that start with a dot. . .

6

Perhaps a convenient one to try isecho which just prints back its parameters to
you:

echo *

will display a list of the files in the current directory. Of course to achievethis
effect you would normally usels which lays out the list neatly and provides lots
of jolly options, but use of a pattern means that you can send the list of file-names
to any program, not just toecho . For now the important components of a pattern
are

1. Most characters stand literally for themselves;

2. An asterisk (*) matches an arbitrary string of characters. In file-name ex-
pansion file-names that start with a dot (.) are treated specially and the
wild-card asterisk will not match that initial dot;

3. A question mark (?) matches any single character, again except for an initial
dot;

4. A backslash (\) causes the following character to lose any special meaning,
and so if you need a pattern that matches against an asterisk or question
mark (or indeed a backslash) one may be called for;

5. Quotation marks (either single or double) can also be usedto protect special
characters. Note that as well as* and? the Unix shell may be treating>
and all sort of other punctuation marks specially, so in caseof doubt use
quotation marks or backslash escapes fairly liberally!

In addition to file-name expansion the shell expands commands by permitting
reference toenvironment variables. This is indicated by writing a variable name
preceded by a dollar sign ($). It is also legal to write a variable reference as
${name} where the braces provide a clear way of indicating where the variable
name ends. There are liable to be quite a few variables predefined for you, some
set up by the shell itself, some by scripts that are run for youwhen you log on.
There are in fact two subtly different classes of shell variable and anybody who
is going to get involved in serious shell programming would need to understand
the differences (which mostly relate to visibility from oneshell session or script
to another). In this course I am suggesting the use ofperl for any elaborate
scripting so I can afford to omit this explanation.

To set a new variable you may write

variable_name=value ; export variable_name

7

where the use ofexport is not always necessary but at the level of detail I am
including here I suggest that you always include it. A slightly more concrete
example shows that with a lot of shell variables set up the actual commands that
you issue may turn out to be almost entirely built out of references to variables.

LANGUAGE=java; export LANGUAGE
COMPILER=javac; export COMPILER
OPTIONS=; export OPTIONS
SOURCE=hello_world; export SOURCE
$COMPILER $OPTIONS $SOURCE.$LANGUAGE

Especially in script files there is a great deal to be said for establishing variables to
hold the names of compilers that you use and of the options that must be passed to
them, since it makes everything much easier to alter if you move your programs to
a slightly different environment later on. For instance on various Unix machines
that I have used the C compiler is called sometimescc , sometimesgcc , and
sometimesc89 , maybencc and even/opt/EA/SUNWspro/bin/cc ! Changing
just one setting of a variable to allow for this is neater thanmaking extensive edits
throughout long scripts4.

A rather different but convenient use of variables is to holdthe names of
directories. If you often work within a directory with a rather long name, say
/home/acn1/Project/version-1_0_3/source , then you might set a vari-
able (saySRC) to that long string. Then you can use$SRCfreely on the command
line to allow you to select your important directory or referto files within it with
much less typing that you might otherwise need. An additional advantage of this
strategy is that when you move on to version1_0_4 you can just change the one
place where you define this variable and now you will naturally access the newer
location.

Within a shell script$1, $2, . . . refer to arguments passed when the script was
started,$* expands to a list of all the arguments, while$# is replaced by the
number of arguments provided. Consider a file calleddemo that contains

#!/bin/sh
echo Start of $0, called with $# arguments
echo All args: $ *
echo Arg 1 = $1
echo Arg 2 = $2
Let’s put another comment here.

which also illustrated that “argument zero” will be taken torefer to the name of
the script that is being executed. A use of the above script might be

4In a DOS/Windows world, of course, the C compilers I use or have used are called wcl386, cl,
ztc, gcc (maybe 3 versions!), and bcc32. And they all need different sets of options and parameters,
so the confusion is not unique to Unix.

8

demo hah | what I typed in
Start ./demo with 1 args | output from script
All args: hah
Arg 1 = hah
Arg 2 = | $2 => empty string

Redirection allows one to send the output from a command to thestandard
input of another. Sometimes you may want to incorporate the (standard) output
from one command as part of another command. This is achievedby writing the
first command within back-quotes (‘). A sensible example of this in use will be
shown later on, but for now I will illustrate it with

echo Today is ‘date‘

6 find and grep

One of the expectations that comes with Unix is that it shouldbe easy to spec-
ify that operations should be performed upon multiple files by issuing just one
command. File-name expansion as described earlier provides the simplest way of
listing a bunch of files to be processed: sometimes it is useful to have rather more
subtle selection and filtering procedures. The toolfind is used when this should
be based on the file’s name and attributes (eg date of last update), while grep

inspects the contents of files.

6.1 find

Thefind command takes two groups of arguments. The first few arguments must
be path-names (ie typically the names of directories), and the subsequent ones are
conditions to apply when searching through the directoriesmentioned. The con-
ditions that can be used include tests on the name, creation and modification date,
access permissions and owner of files. A special “condition”-print causes the
name of the file currently being processed5 to be sent to the standard output, and it
will often be shown as the final item on the command-line. Unless combined using
-o which stands forORall previous conditions must be satisfied if the-print is
to be activated. Conditions may be negated using! .

The conditions-atime , -mtime and-ctime test the access, modification or
creation times of files. They are followed by an integer. If written unsigned they
accept files exactly that many days old. If it is written with a+ sign they accept
files older than that, and a- asks for files younger. A condition-name is followed

5Some implementations offind have an implicit-print if no other action is specified, but
do not rely on that even if the one that you usually use does it

9

by a pattern much like those previously seen in file-name expansion, and checks
the name of the file. You will normally need to put a backslash before any special
characters in the pattern. There are lots of other options, including ones to execute
arbitrary programs whenever a file is accepted, but those of you who want to use
them can read the full documentation.

Plausible uses are illustrated in the following examples:

1. List all files that have not been accessed for at least 150 days. These are ob-
vious candidates for moving to an archive, or compressing oreven deleting!
Note that by searching in the current directory (.) even files whose names
start with a dot will be listed here.

find . -atime +150 -print

2. List files that have been created during the last week. File-name expansion
means that the* is turned into a list of all files in the current directory
apart from those whose name starts with dot. Reminding oneself of recently
created or modified files may be useful when you want to consider what to
back up.

find * -ctime -7 -print

3. Delete all files in the current directory or any sub-directory thereof if their
name end in “.old ”. The -i flag to therm command gets it to ask the user
for confirmation in each case, which makes this command a little safer to
issue. Observe the back-quotes to get the output fromfind presented as
command-line arguments to therm command.

rm -i ‘find . -name \ * .old -print‘

Alternatively thexargs command could be used to build the call torm.
This command builds a command from an initial command name together
with whater if finds on its standard input, and works better than the previous
scheme when there are a very large number of arguments to be passed6:

find . -name \ * .old -print | xargs rm -i

4. List any files in myprogram directory that are empty and whose name does
not start with atmp .

6Specifically when you issue an ordinary command, including via the backquote construction,
there may be a limit on the lenth of the command-line that can be handled.xargs goes to some
trouble to invoke programs properly even when they are to be passed utterly huge numbers of
arguments.

10

find program -size 0 ! -name tmp\ * -print

find is obviously valuable as an interactive tool, perhaps especially for help-
ing keep your file-space tidy. It is also a valuable building-block in scripts.

6.2 grep

grep is the first tool that I will describe here that makes serious use of the Unix
interpretation of regular expressions. Its use is

grep <options> <regular-expression> <file(s)>

where the options may include-i to make searches case insensitive or-c to make
it just count the number of matches found in each file. Normally grep searches
through all the files indicated and displays each line that contains a match for the
given regular expression. The option-l gets you just a list of the names of files
within which there are matches. You need to be aware that there are related com-
mand calledegrep andfgrep that support different degrees of generality in the
pattern matching. Furthermore on some computers you will find that the program
invoked by thegrep command has either more or less capability than is men-
tioned here. This all arises because matching against very general regular expres-
sions can be an extremely expensive process so the early Unixtool-builders de-
cided to provide three different search engines for trivial(fgrep), typical (grep)
and ambitious (egrep) uses. In describing the regular expression formats that are
available I will mark ones that needegrep with an(♠). Given that todays com-
puters are pretty fast you might like to standardise on usingegrep to reduce your
worry on this front.

All the real interest and cleverness withgrep comes in the regular expressions
that it uses. You will recall the rather spartan definition ofa regular expression
used in the Part IA course that introduced them. Those provided everything that
was actuallyneededto describe any regular language, but in many realistic cases
there is a very great benefit in using additional short-cuts.The following are the
more important of the constructs supported bygrep , and as we will see later most
of them are also used withsed andperl as well as various other Unix-inspired
tools.

a,b,. . . In general characters in a regular expression stand for themselves.
If one of the special characters mentioned below is needed asan ordinary
literal that can be arranged by sticking a backslash in frontof it. Note then
(of course) that to get this backslash through to wheregrep will find it you
may need either quote marks or a yet further backslash, and things can start
to look messy!

11

A B Concatenating regular expressions works in the obvious manner.
An effect is that strings of literal characters can be given and match words
in much the way you might expect;

(A) (♠) Where necessary you may use parentheses to group sub-parts of
a complicated expression;

A | B (♠) Alternation is written using a vertical bar, which may be read as
OR;

A* The star operator applies to the previous character or bracketed
expression, and matches zero or more instances of it;

A+ (♠) Much like the star operator, but accepts one or more instances of
things that match the given pattern;

A? (♠) Zero or one matches for the given item;

A\{ n,m\} Fromn to m repetitions. Amazingly this construct is only guar-
anteed to be available ingrep and foregrep you may be able to achieve
the same effect with a pattern that omits the backslashes. This is a natural
generalisation of the more common cases that use* , + and?.

[a- z] This matches a single character, which must be one of the ones
listed within the brackets. Ranges of characters are shown with a hyphen.
If you put a hyphen or close (square) bracket as the very first character then
it is treated as a literal, not as part of the syntax of the construct. The mark
“ ˆ ” can be used at the start of a pattern to negate the sense of a match;

. A dot matches any single character except a newline. Thus. *
matches any string of characters not including newlines;

ˆ and $ Normally patterns are looked for anywhere within a source line.
If you put aˆ at the start of an expression it will only match at the start ofa
line, while a$ at the end ensures that matches are only accepted at the end
of a line. Use both if you want to match a whole line exactly;

\< and \> These allow you to insist that a certain place within your pattern
matches the start or end of a word. This facility is only supported in some
implementations ofgrep .

Again I think that the possibilities are best explored via some examples. Firstly
I will give just regular expressions, and then I will build them into complete com-
mands showinggrep in a potentially useful context:

12

1. A pattern that matches words that start with a capital letter but where the
rest of the characters (if any) are lower case letters and digits or underscores

[A-Z][a-z0-9_]+

2. The string “#include at the start of a line, apart from possible leading
blanks

ˆ * #include

3. A line consisting of just the single wordEND

ˆEND$

4. A line with at least two equals signs on it with at least one character between
them

=.+=

5. Find which file (and which line within it) the stringclass LostIt is in,
given that it is either in the current directory or in one calledextras

grep ’class LostIt’ * .java extras/ * .java

6. Count the number of lines on which the wordif occurs in each file whose
name is of the form* .txt .

grep -c "\<if\>" * .txt

The output in this case is a list showing each file-name, followed by a colon
and then the count of the number of lines which contain the given string.
The use of\<..\> means thatif embedded within a longer word will not
be recognised.

7. As above, but then usegrep again on the output to select out the line that
end with:0 , ie those which give the names of files that do not contain the
word if . This also illustrates that if no files are specifiedgrep scans the
standard input.

grep -c "\<if\>" * .txt | grep :0\$

13

8. Start the editor passing it the names of all your source files that mention
some variable , presumably because you want to review or change just
those ones. You could obviously use the same sort of construct to print out
just those files, or perform any other plausible operation onthem.

emacs ‘grep -l some_variable * .java‘

Note thatgrep has its own idea of what a “word” is, and so in some cir-
cumstances you may want to write a more elaborate pattern to cope with
different syntax.

Regular expressions do not provide a sufficiently general wayof describing
patterns to allow you to do real parsing of programming languages, and as present
in grep they do not even make it easy to distinguish between the body of your
program, comments and the contents of strings. However witha modest amount
of ingenuity they can often let you specify things well enough that you can search
for particular constructions that are interesting to you. Some people may even go
to the extreme of laying out their code in stylised manners tomakegrep searches
easier to conduct!

7 make and project building

When building a serious program you will have a number of different source files
and a collection of more or less elaborate commands that compile them all and link
the resulting fragments together. For large projects you may have helper programs
that get run to generate either data files or even fragments ofyour code. When
you have edited one source file you can of course re-build absolutely everything,
but that is obviously clumsy and inefficient.make provides facilities so you can
document which binary files depend on which sources so that bycomparing file
date-stamps it can issue a minimal number of commands to bring your project up
to date.

The information needed has two major components. The first isa catalogue
of which files depend on which other ones. The second is a set ofcommands
that can be executed to rebuild files when the things that theydepend upon are
found to have changed. By default the utility looks for this information in a file
calledMakefile 7. In a practical Makefile there will often be a substantial amount
of common material used to make the actual rules themselves more compact or
easier to maintain. In particular variables will often be used to specify the names

7You can also usemakefile without a capital. Many Unix users (slightly) prefer the capi-
talised version because it results in the file being shown early on in the output fromls when they
inspect the contents of a directory.

14

of the compilers used and all sorts of other options. My first sample (or template)
Makefile will be for use with an imaginary programming language calledfrog .
It imagines that source files are first compiled into object code, and then linked to
form the final application.

Makefile for "princess" program

COMPILE = frogc
OPTS = -optimise -avoid_lillypads=yes
LINK = froglinker

princess: crown.o tadpole.o
$(LINK) crown.o tadpole.o -to princess

crown.o: crown.frog
$(COMPILE) $(OPTS) crown.frog

tadpole.o: tadpole.frog
$(COMPILE) $(OPTS) tadpole.frog

test.log: princess test.data
date > test.log
princess < test.data >> test.log

end of Makefile

The above file starts with a comment. Each line that begins with # is comment.
Next it defined three variables, which are supposed to be the name of the compiler,
options to pass to the compiler and the name of the linker. Separating these off in
this way and then referring to them symbolically makes things a lot easier when
you want to change things, which in the long run you undoubtedly will.

The next few blocks are the key components of the file. Each starts with a line
that has a target file-name followed by a colon, and then a listof the files upon
which it depends. Following that can be a sequence of commands that should
be obeyed to bring the target up to date. These commands must be inset using a
tab character (n.b. not spaces). A blank line marks the end ofsuch a sequence of
commands. More or less anywhere it is possible to refer to variables, and using a
dollar sign you can refer to either something defined in theMakefile itself or to
a variable set up by the shell. Additional variable definitions can be passed down
whenmake is invoked.

To use this you just issue a command such asmake test.log , where you
specify one of the declared targets.make works out how many of the commands

15

need to be executed and so in the above case if nothing at all had been pre-built it
would execute the commands

frogc -optimise -avoid_lillypads=yes crown.frog
frogc -optimise -avoid_lillypads=yes tadpole.frog
froglinker crown.o tadpole.o -to princess
date > test.log
princess < test.data >> test.log

If you do not tellmake what to do it updates whatever target is mentioned first
in your Makefile .

A true Unix enthusiast will feel that the aboveMakefile is too easy to read
and that it does not include enough cryptic sequences of punctuation marks. A
slightly better criticism is that as the number of source files for our princess in-
creases the contents of the file will become repetitive: it might be nice to be able to
write the compilation command sequence just once. This is (of course) possible.
In fact there will usually be a whole host of built-in rules and predefined variables
(they are typically calledmacrosin this context) that know about a wide range
of languages, and the most you will ever want to do will be minor customisation
on them. To illustrate the power ofmake I will stick with my imaginary Frog
language. To tellmake a general rule for making.o files from .frog ones you
include something like the following in yourMakefile :

.frog.o:
$(COMPILE) $(OPTS) $<

where the$< is a macro that expands to the name of the source file that needed
recompilation. There are other slightly cryptic macros that can be used in rules
like this. These funny automatically defined macros are needed so that you can
refer to the files that the general file-suffix-based rule is being used on.

$@ expands to the name of the current target, ie the file that is tobe re-created;

$< expands to the name of the “prerequisite” file, ie the source file that had been
seen to have a newer time-stamp than the target;

$* is like $< except that what it expands to does not include the file suffix.

By defaultmake stops if one of the commands it tries to run fails, and it then
deletes the associated target. The idea here is that if just one of your source files
contains a syntax error then everything will be re-built up to the stage that that is
detected, and things will be left so that a subsequent invocation of make will try
that file again and then continue.

There are in fact a few further thing that I ought to mention with regard to
make: if you use file suffixes other than the ones that are initiallyknown about you

16

may need to declare them and specify their ordering. In the case being discussed
here it would be necessary to specify first an empty list of suffixes (to cancel the
built-in list8) and then list the ones that are desired. The various file suffixes should
be listed in order, with generated files first and original source ones last:

.SUFFIXES:

.SUFFIXES: .o .frog

It is also recommended that you put a line that says

SHELL = /bin/sh

in everyMakefile so that even if it is invoked by somebody who is using a non-
standard shell its internal command processing will behavein a standard manner.

Again (as you might expect) there are other declarations that can be provided
for various specialist uses. I will not even mention them here.

Some versions ofmake provide extra facilities, notably the opportunity to
build conditions into the file so that different things happen based on the values of
macros. Another extension is the ability to reference otherfiles so that it is as if
their contents had formed part of the originalMakefile . I suggest that you avoid
any such features even when they do make life a lot easier, at least until you have
had significant experience moving programs from one computer to another. Some
people would disagree with me here, perhaps suggesting thatwhenever you move
to a new computer you should fetch and install a copy of the GNUversion ofmake

on it so you can be certain that all of its capabilities are available. I will re-phrase
my advice to suggest that you stick withvery plain and simpleMakefiles at
least until you feel comfortable re-building GNUmake from source and installing
it on new computers!

It is well worth using aMakefile as the repository for many more commands
than just those to recompile your code. You can usefully put in a target that tidies
up by deleting all object and executable files (leaving just the original sources
present), ones to run test cases, commands for formatting and printing the manual,
scripts that pack up a version of your program for distribution and interfaces to
whatever backup/archive discipline you adhere to. The one file can then end up
as documentation of all the major procedures associated with the management of
your program: it is perhaps sensible then to make sure it has plenty of informative
comments in it.

It is perhaps at this stage worth noting the commandtouch that resets the date
on a file to make it look as if it is new. Use of this can sometimesallow you to
trick make into assuming that some binary files are new enough that they do not
need re-building even though the general rules given suggest otherwise. This can

8At least some version ofmake appear to require this.

17

be helpful if you make changes in some source files that you arecertain do not
really call for re-compilation: eg correction of spelling errors in their comments.

8 rcs and friends

The most common cause of corrupted or lost files these days is not liable to be
hardware failure, viruses or rogue software. It will be carelessness on the part
of the owner of the files. The proper protection against ill-conceived editing and
false-starts towards program upgrades are best based on keeping a fairly detailed
incremental record of changes made to all files. Because most changes are rather
small these can be stored quite compactly by keeping a base version of each file
and a list of changes made to it. The programdiff which is discussed later on can
compare two versions of a file to generate just such a list of changes. If properly
organised such a scheme could have just one file representinga base version of a
module, the most recently released fully-tested version and several experimental
versions. Any one of the versions stored could be re-createdby applying the
relevant set of stored edits to the base version of the file. Having got that far
it would seem natural to attach commentary to each set of updates to document
their author and intent, and to accept the fact that several programmers might be
working on just one project, and all of them might be making their own separate
changes. With all this in place editing a file shouldneverdestroy information,
because it will always be possible to reconstruct the state the file was in before it.
It is still necessary to back up files to protect against system failure or wholesale
deletion of the code database, but overall everything should feel a lot safer. What I
have just described is arevision control system, and the Unix toolrcs is the prime
example9. Note thatrcs is at least as relevant when developing documentation
(or indeed literary works) as when writing programs.

Getting started withrcs is easy. Change directories into the one where your
source files live. Create a sub-directory calledRCSwhich will be where the system
keeps its database. You thennevermess about inside that directory directly, and
periodically copy its contents to floppy disc, magnetic tapeor some other fully
secure and for choice remotely stored medium. Now suppose you have a set of
files that make up the base-line version of your program: imagine they are called
Arthur.java andNorman.java . You issue the commands:

ci Arthur.java
ci Norman.java

and when you have finished typing in the description of the twofiles that you
are asked for and you look at what has happened you find that your files seem to

9sccs is another, but at least locallyrcs is distinctly preferred.

18

have vanished. In fact they have been entered into the database with a “revision
number” set to 1.1.

ci stands forcheck-in. Given that it is perhaps not too much of a surprise that
the converse command is calledco for check out. This has two rather different
uses. The first is when you just want to read the file (and the most recent version
of it at that). Then you say just

co Arthur.java

and you should find that the file has re-appeared. You can printit or compile it. If
you want to edit it you ought to say

co -l Arthur.java

where the-l stands forlock. Part of whatrcs does for you is to arrange that
only one user can lock a file at any one time, so if you are working in a multi-user
project10 and this succeeds then you know that none of your colleagues will be
able to lock that particular file until you have finished making your edits and have
checked it back in again. If you specify the lock flag (-l) with ci it checks the
file in but leaves a copy outside the database for you to continue editing.

Note that with this scheme you may need to have a suitably elaborateMakefile

that checks out (without locking) all the files that it needs to compile. Unlocked
checking out is possible at any time. All that locking does isto ensure that the only
person subsequently allowed to check a file back in is the person who successfully
obtained a lock for it.

The commandrcsdiff compares the version of a file that you have checked
out with the version in the database so you can get a quick reminder of what you
have just changed.

Each time a file is checked in it is given a new revision number.These numbers
normally run 1.1, 1.2, 1.3, You can check out a specific one of these by saying
(eg)

co -r1.4 Norman.java

While checking in a filercs scans it for the stringId and if it finds that it
replaces it with a longer string that gives the name of the file, its author, revision
number and the date. This is a textual substitution so you should normally place
the marker within a comment or a string. If you put it in a string you may be able
to access this version information when your program is run.

If the stringLog is present in your source file the explanations you type in
whenci prompts you are collected there, (almost) painlessly accumulating update
history as part of your source files. Some other similar substitutions are made for
other words enclosed in pairs of dollar signs.

10Such as the Lent Term group project. . .

19

There are (of course) rather more facilities and options than just that, and in
particular special provision is made for the case where a project is totally under
the control of just one programmer and so the full disciplineof locking is too
heavy handed. The only option I will mention here isco -d datewhere the date
can be specified in almost any even half-plausible syntax (the only trick is that
the suffixLT is often useful, and indicates that the clock should be measured in
local time rather than (say) the time zone relevant for California or Japan. In this
country you may like to useGMTinstead, and allow for summer time yourself?
This option recovers the latest version of the file whose dateis no later than the
one given. Eg

co "-d monday" file1.xxx
co "-d 2 july" file2.yyy
co "-d 8:00 pm gmt" file3.zzz

For the schemes that permit branches in the tree of versions see the manual
pages: the need for that should not arise until you have had time to get thoroughly
comfortable with the basic commands.

Especially for projects that involve collaboration between programmers who
do not share a common computer or who are otherwise mildly remote from one
another it may make sense to investigatecvs . This is not available on all Unix
systems but where it is it provides an alternative interfaceto the facilities ofrcs

which may prove more convenient.
One issue that has not been addressed so far is that of what to do if you fail

to obtain a lock on a file that you want to change. The easy answer is to contact
the person who does have a lock and see how long they expect to be working with
that file. In some cases you may instead choose to check the fileout unlocked and
edit it locally. Then when (later on) you do succeed in locking the file you can try
to merge your own edits with the changes that the other programmer made.cvs

goes to some trouble to help with this, and if you and the otherprogrammer made
sufficiently well separated changes to the file it may be able to propose a good
merged version for you.

Observe in any case that it is anti-social to lock a file for longer than you have
to. It will generally count as good practice to plan your changes first, and then
lock the file, make them and check it back in so as to keep the central tree free for
as much of the time as possible.

On starting to usercs you are liable to find two general frustrations. The first
is that it is not integrated with or especially comfortable to use withmake unless
you fill your Makefile with lots of uglyco commands and then extra commands
to delete the source files after you have compiled them. The second is that it
stores its database in a rather rigidly defined location (ie the subdirectoryRCS

of the currently selected directory), and this means that all of the group of users

20

working on a project tend to need to work in this one directory. To a small extent
the optionco -p which checks out a file but sends its contents to the standard
output (whence it can be re-directed to any file anywhere) canbe useful in scripts
that allow for this. Another plausible strategy is to have a single common directory
that all members of a group usejust for rcs , and then each group members keeps
their own private copy of all the files that make up the project. Files can then
be copied to and from the common repository as need be (but without automatic
protection against the possibility of two users performingclashing operations).
Where availablecvs provides distinctly better support for co-operative working.

9 Job control

The features mentioned here are probably ones that you are already familiar with,
but for completeness I will mention them again.

Under Unix you can have several tasks running at once: one foreground task
that you are interacting with and many background ones. Somebackground jobs
will be active and running while others may be suspended. Thecommandjobs

displays information about the current situation, whileps can give information
about tasks at a finer grain (eg when one job that you have launched in fact end up
generating a number of sub-tasks).

To start some task in the background you append an ampersand (&) to the com-
mand that starts it. Alternatively you can start the task as usual and then interrupt
it using control-Z. This suspends its work. A suspended job can be allowed to
proceed in the background usingbg and any job can be made into the one that
is directly connected to your terminal usingfg . The jobs you have to work with
may be referred to as %1, %2, . . . , and thejobs command lists them so you can
be reminded of the numbers allocated to each particular activity. To cancel a job
you can usekill on it.

Especially on multi-user systems it is polite to prefix long and non-urgent
commands withnice , which gets them run at a lowish priority thereby interfering
less with other interactive work. Putting the wordtime before a command records
the CPU and elapsed time it takes to execute it, splitting the computation time into
that used directly by the task and that consumed by way of system overhead. It
is unreasonable to expect timings to be accurately repeatable, if only because of
effects of multi-tasking, virtual memory and caches.

nice make & # make in background at low priority
fg # bring it to the foreground
ˆZ # suspend it...
bg # .. and put back into background
time program < test.data > test.output # test time

21

jobs # see what jobs I have active
kill %3 # kill job number 3

The disposition of background tasks that have not completedat the time that
you log out and other such oddities can also be controlled, but such matters fall
beyond the scope of this introduction.

Having multiple background jobs running and controlled in this manner is
probably less common than it used to be: nowadays many peoplewill use Unix
via X-windows and if they have several tasks that they want performed they will
run them each in a separate window. This leaves the basic Unixjob-control mech-
anisms to be used for starting new X windows and applications, as in

xterm -fn 10x20 -sb -sl 300 &
xclock &

where thexterm command launches a new command window (using a big font
and providing 300 lines of scroll-back), while the second command pops up a
clock for you. In each case the ampersand is important so thatthe new task runs
concurrently with the shell from which it has been invoked.

Creating totally excessive numbers of Unix tasks can overload and ultimately
crash the system and so is discouraged. Trying to speed up compilation by starting
many jobs at the same time (one for each input file) is not in general useful: the
jobs will compete for memory and disc access and can easily slow things down.

These days British University use of international networksis charged for, but
transfers during the middle of the night are (at present) free. Some large tests
might be better run at times when a computer is not otherwise loaded. The com-
mandat allows you to schedule something to be executed later. Suppose that
you have a program you would like recompiled overnight, and aset of commands
stored inscript.file that you want executed later on you could issue the com-
mands:

at -f script.file noon tomorrow
at 02:00am

cd /home/acn1/project
make
ˆD

The first form specifies the commands to be obeyed by indicating a file that they
live in. The second will prompt you to type in commands (I havedisplayed them
indented), and you end the list by typing control-D (ie the commands terminate at
an end-of-file mark). As withrcs the format for dates and times that is supported
is astonishingly flexible and general. The commandatq should show you all the
jobs you still have pending, but with luck you will not need touse it sinceat

generally send e-mail to you when your task runs.

22

10 More shell facilities: history

If you usebash as your shell (as distinct from the original Bourne Shell) it keeps
track of all the commands that you have issued and makes it easy for you to acti-
vate them again. This is achieved by making text that starts with an exclamation
mark(!) expand into some variation on a previous command (much as things that
start with a dollar get replaced by the value of a variable). The easiest cases arise
when you want to repeat a command exactly as it was. Then the only issue is how
to indicate which previous command is to be re-issued. Thereare five recipes:

1. !! just repeats the most recent command, whatever it had been;

2. !- n generalises on the above and repeats the commandn back. The
simple case!! is in fact an abbreviation for!-1 ;

3. ! n re-plays command numbern wheren starts counting at the start
of your session. The commandhistory displays the commands that are
stored along with their numbers in case you are not good at counting;

4. ! string is a search. When you follow the exclamation mark with a string
the shell searches back for the most recent command that starts with this
string, and uses that one. This may well be the most generallyuseful variant;

5. !? string? is also a search, but by enclosing the string win question marks
you indicate that the string should be looked for anywhere within the stored
commands, not just at the start of the line.

When you have identified an old command with one of these recipes you can
change the command. After all you may well be wanting to re-play it because
you did not get it quite right last time. You can put an edit request after a history
reference, and this is of the form:s/ pattern/ replacement/ where it is legal to
use almost any character as the delimiter where I have used “/ ”. As might be
imagined this makes the indicated change to the old command.A special syntax
is available if you want to make an edit to the most recent command. For instance
if you had just typed in the mis-spelt commandhistery and wanted to correct it
you could issue either of the following equivalent forms

!! :s/e/o/
ˆeˆoˆ

and it is clear that the short-hand usingˆ saves a useful amount of typing.
Because history substitutions are a part of the general shellcommand-line

expansion process (along with file-name wild cards and variable references) you
can put other text before or after a history reference again allowing you to get

23

a modified version of a previous command. You can even make several history
references on one line if that is at all useful.

The history mechanism inbash also responds to the arrow keys so you can
browse your history that way. Control-R initiates a search through the history
list. One model that has been explored is to view terminal input as just another
(slightly special) document that should respond to the keystrokes that you expect
your editor (specificallyemacs to know about.

11 Data tools (1):tr

There are many editing-style tasks that are slightly beyondthe (easy use of) simple
substitution capabilities of text editors but not complicated enough to make you
want to rush out and write a new program to perform them. Unix provides several
tools that cover common conversion tasks that you may come across. The first of
these performs simple character substitution, and it is called tr . You should note
that the version oftr that I describe here is the one documented in the book[1] and
is as defined for Unix systems that follow the “System V” tradition. The version
of tr on Unix systems descended from the BSD family differs, and theGNU tr

as provided on Linux documents itself as not beingfully compatible with either
tradition. So before you use this command on any particular computer please
check themanpages!

You give tr some simple options and two strings. It reads from its standard
input and writes to the standard output, so it is usually seenwith file redirection
or pipes. Its basic use is to replace each character that is present in its first string
with the corresponding member of the second. Strings can be abbreviated (as with
grep) to show ranges of characters. Two plausible uses follow:

tr ’[A-Z]’ ’[a-z]’ < original.file > lowercase.file
cat message | tr ’[a-z][A-Z]’ ’[b-z][A-Z]a’ | ...

The first of these turns upper case letters into their lower case equivalents, and is
obviously a useful thing to be able to do easily. The second ismore of a joke:
it replaces each letter by the next one in the alphabet to produce a very weakly
obscured version of some text.

With the -d flag the command only needs to be given one string, and it just
deletes any characters listed in this string from the file. For instance if you have
received a file from a DOS/Windows site it probably has newlines represented
as carriage return/linefeed pairs and it may be padded at theend with control-Z
characters. It can be cleaned up using

tr -d ’\015\032’ < dos.file

24

where the bad news is that I have had to use octal escapes to specify the control
characters that I want to discard.

A final use fortr is with the-s flag where if it finds any repeated strings of
any of the characters from its second string it consolidatesthem into just a single
instance. It can sometimes be useful to remove redundant blanks and newlines.
Such processes are perhaps unexpectedly useful things to have in your armoury
when you are building long pipes that use output generated byone utility as input
to another:tr might be used to clean up the output to make it more digestiblefor
the next use to be made of it.

... | tr -s ’’ ’ \012’ | ...

Not a very complicated tool, but useful to know about!

12 Data tools (2):sed

The next data tool to mention issed , which is one of the world’s crudest and
dullest editors. The reason is still exists and qualifies forinclusion in this course is
that it is intended for use is embedded within scripts where it can do automatic and
systematic editing for you. Thus nobody in their right mind would usesed when
first typing in a program, but uses for it abound where a similar set of edits must
be applied to a large number of files or where the nature of somewholesale change
does not quite match the global-replacement facilities of your normal screen-based
editor.

Since it is expected to be used in scripts,sed reads the original version of the
file it is to process as a stream. It either reads from files listed on the command
line, or if none are given it uses its standard input. The edited version is always
sent to the standard output. Editing commands are either given directly on the
command-line (typically delimited by quote marks) or in a script file that is named
on the command line after them key-f .

When processing a filesed works through the file line by line applying each
of its commands to all lines to which they are relevant. Thus really simple uses
of sed let you perform collections of global exchanges all the way through a file.
For instance to change every dog into a cat and every bone intoa mouse you might
use the command

... | sed ’s/dog/cat/g; s/bone/mouse/g’ | ...

The command being used is just “s” for substitute. The pattern that follows it is a
regular expression (very much as forgrep . After the final “/ ” there can be some
flags, and theg here instructs that the exchange should be made as many timeson
the line as possible: by default only the first match on each input line would be
processed.

25

Any sed command can be preceded by one or two addresses to limit the range
within the file that it will be applied to. If you use a number asan address it is
treated as a line number. The symbol$ stands for the end of the file. So if you
want to make an edit that leaves the first dozen lines of your file alone you might
try a command of the form12,$s/xx/yy/ . The more interesting feature ofsed

is that you can use regular expressions as addresses. If you write just one pattern
it will apply its edit to all lines that match it. Appending anexclamation mark
causes the edit to apply to all linesexceptthose matching the pattern. A pair of
comma-separated patterns will select a region from where the first pattern matches
up to (and including) where the second does.

We have already seen thes command. Next I will mention thatd deletes a
line. It is then clear that the command

/public static void main/,/ˆ * }$/d

deletes all the lines from one containing the words aboutmain down to one that
consists of just a close curly bracket (possibly preceded bysome spaces). Note
that the range specified doesnot do anything to enforce matching of braces, so it
will delete until thefirst close brace that it finds on a line of its own.

Another example, also slightly fragile, supposes that yourcode has a collec-
tion of lines that optionally print a trace statement, and that you want to comment
them all out. Each such statement is supposed to be on just oneline:

/if ?(debug)/{
s/ˆ/ \/ * --- /
s/$/ --- * \//
}

This applies a pair of commands to each line that contains either if(debug) or
if (debug) 11. The first command matches against the first position in the line
and inserts there/ * --- while the second substitution puts--- * / at the end of the
line. You can see that a number of ugly backslash characters have been required
so that various characters in patterns and replacement textare treated literally
rather than as special. The use of multiple commands associated with one address
expression requires that the braces appear on separate lines just as shown in this
example.

Of coursesed has many commands beyond the delete and substitute ones
listed here, but its real power comes not from the richness ofits command set
but from the use of regular expressions. One way in which its variant on regular
expressions differs from that used ingrep is that you can enclose a section of a
pattern within backslashed parentheses, and the effect is that whatever matches
that pattern is captured and stored in a text variable. Up to nine such strings

11With a space in one but not in the other.

26

can be collected, and the replacement text in a substitute command can refer to
them using\1 to \9 . So for instance if a file consisted of data in three columns
separated by blanks it would be possible to rearrange columns ABC into the order
BACA (making a second copy of the first column, A) using

s/ * \([ˆ] * \) * \([ˆ] * \) * \(. * \)/\2 \1 \3 \1/

This looks utterly horrible! But if read through one chunk at atime it can make
sense! The pattern first looks for zero or more blanks. Then wehave a block
enclosed in\(...\) so that its value will be stored. The pattern within looks
for an arbitrary repetition of characters that arenot spaces. Next we match a
further run of blanks, capture a second column of non-blank data, skip further
inter-column space and at the end\(. * \) matches and saves everything up to the
end of the line. That completes the pattern. The replacementtext just plays back
the saved material in the order we want it in. Achieving that effect using a typical
mouse-driven editor would probably be pretty uncomfortable.

I think that typical strings ofsed commands are dense enough in punctuation
that they deserve to go into files so they can be prepared carefully and tested.
Comment lines in such files begin with# and are somewhat desirable!

13 Data tools (3):diff

You probably already know that when you want to compare two files you use
diff . By default it displays the differences between the two files by quoting line
numbers and then listing lines that have been added, deletedor changed. A fully-
fledged Unix tool-user will also be aware of at least some of the command-line
options it can be given:

-i Ignore upper/lower case distinctions when making the comparison;

-b Treat multiple spaces as if they had been one space, and multiple newlines
as if they had been just one. This can be useful if you have recently adjusted
the layout in a file and do not want to be overwhelmed with reports that are
just whitespace changes;

-r When the “files” given todiff are in fact directories this recurses through
them and runsdiff on all files in any common sub-directories;

-Dsymbol This merges the two files by inserting C-style conditional compi-
lation directives of the form#ifdef symbol. It is arranged that ifsymbol
is defined the generated file would be equivalent to the secondfile, while
otherwise it would match the first one. Even if you are not using C this can

27

be useful since you can edit the merged file and search for the string symbol
to find where discrepancies had occurred;

-e Generate a simple edit script (intended for the Unix editored) that would
change the first file into the second. In effect this is what is being done
internally in rcs where is stores files as base versions and sequences of
updates.

Note that if the two files being compared have identical content thendiff will
generate no output at all.

14 perl as a super-set ofgrep

Thus far I have concentrated on tools that are fairly small and fairly specialised.
Even when used individually these solve problems that wouldotherwise require
a lot of manual work. Linked together with pipes they can do yet more. It is
possible to use the Unix shell to run quite complicated sequences of sub-tasks,
with conditional execution, recursion and most of the framework that you would
expect in a real programming language. When used this way you would let the
shell call upon the various lower level tools to perform eachelementary operation:
of itself it would do just the co-ordinating. Both the inefficiency of this and the
fact that there are at least half a dozen different Unix shells in use has led to a
slightly more integrated language,perl gaining popularity.perl can simulate
and generalise most of the tools mentioned so far, includingquite elaborate shell
scripting. Typical (badly-written!)perl programs tend to look utterly horrible,
being utterly full of significant punctuation characters, but if you build up to it
slowly you should find that you can start using it quite easily. Since it is a full-
scale programming language I will not start to pretend to cover more than a very
tiny fragment of it here. I can suggest the introductory bookby Schwartz and
Christiansen[2] and leave the definitive guide by Larry Wall[3] for those who
want to become real experts.

I will illustrate the language by givingperl scripts that simulate behaviour
similar to that which can be obtained using one of the more specialist tools. So
first I will cover grep .

The first version of this shows the “program” passed toperl on its command-
line after the key-e :

perl -n -e ’print if /regexp/’ < somefile.txt

In this very concise example the-n flag causes the command given following-e

to be applied to every line of the input. The command given prints a line if it
contains a match against the given expression.

28

The same effect can be expanded out into something that looksmore like a
program: Aperl script lives in a file, and contains

#!/usr/bin/perl -w
while (<>) {

if (/regexp/) {
print $_;

}
}

When the name of this file is presented to the shell it reads datafrom either
each file named on its command line, or if there are none of those from its standard
input. The first line marks it as aperl script12, and the-w flag asks for warnings
about dubious constructs. Since almost anything is valid inperl you have to
do something quite seriously weird to get much of a warning! The body of the
program we have here is a loop. The diamond (<>) causes the next line of input to
be read and saved in a standard place. Theif statement matches this text against
the given regular expression (and regular expressions inperl are as extended as
you could ever dream of). If there is a match then the print statement is activated
to send something to the standard output. The “$_” references the location where
the most recent input line had been stored. The effect is thatall lines matching the
regular expression get printed.

It is perhaps obvious that there will then be arithmetic statements, variables,
arrays and the ability to nest arbitrary mixtures of conditionals and loops. You
can defineperl procedures and call them recursively. In consequence and atthe
cost of writing a slightly longer scriptperl can perform much more complicated
pattern detection than cangrep . But because the full power of regular expression
matching is available withinperl those tasks that just need that remain quite easy
to express.

15 perl for scripting

There are three things thatperl does that make it a really useful language for
writing system maintenance utilities in. The first is that ithas a rich built-in col-
lection of directory and file manipulation primitives. If the variable$filename

is the name of a file you are interested in then there are over two dozen each tests
you can perform on it. Important examples are:

-r $filename yields true if the file exists and is readable;

12Well, you need to indicate there whatever place on your Unix systemperl is actually in-
stalled.

29

-w $filename is true if the file is writeable;

-e $filename is true if it exists;

-z $filename is true if it exists but has zero size;

-d $filename if it is a directory rather than a simple file.

and other similar short operators can find the age of a file or the size (in bytes)
that it currently has. There are then further facilities fortraversing directories,
expanding file-name wild-cards and changing file-access permissions.

The second feature is that it is easy to launch sub-processesand retrieve their
output. If you want the output from the program you are going to run to be sent to
a file or to the standard output you can use asystem function, as in

system "javac Testfile.java";

but on other occasions you want yourperl program to capture, parse and respond
to the output generated by the program. In such cases you justwrite an expression
which is the command you want executed enclosed in backquotes. In my example
here I just print the output straight away — normally you would store it in a
variable and process it further:

print ‘javac Testfile.java‘;

The final strength thatperl brings is the use of regular expressions to decom-
pose program output and a neat (?) syntax that lets you separate out the parts
of your sub-program’s output. In fact this just comes from its general patter-
matching ability, but I will illustrate it here based on a sub-call to grep . Actually
one would normally dogrep -like thingswithin your perl program, but I just
want an illustration of calling a program and then parsing the output. So suppose
I have a file called"funny.data" and within it there are a number of lines that
contain the stringXXX. I can causeperl to invokegrep by putting

‘grep -n XXX funny.data‘

in my perl script. With the-n flag the output fromgrep might be something like

108: while ((c = XXX getc(fmakebase)))
150: return 1; XXX
179: fXXXor (i=0; i<n_user_words; i++)

with a line number, then a colon, and then the line that the pattern was found in.
The output fromgrep gets passed back toperl as an array of lines, and within
each line it is useful to search (using a very simple regular expression) for the
colon and split the line into two parts there. As a simple if frivolous demonstration
I will just filter things so that I only display things that arefound within the first
160 lines, and I will annotate the output a little:

30

#!/usr/bin/perl -w
@grepresults = ‘grep -n XXX funny.data‘;
chomp @grepresults
foreach $line (@grepresults) {

($linenumber, $contents) = split(/:/, $line);
if ($linenumber < 160) {

print "line=$linenumber, data=<$contents>\n";
}

}

The output might then be

line=108, data=< while ((c = XXX getc(fmakebase)))>
line=150, data=< return 1; XXX>

A more realistic application that might start off in a similar style would run a
compiler and then retrieve and parse the error messages for you. . .

16 perl as a general-purpose language

Again I must stress that this course is at best a taster forperl , and so rather than
giving a proper presentation of its syntax and capabilitiesI will just give a couple
of annotated sample programs. The ones I present are taken from the suggested
book[2].

16.1 Counting repetitions

My first example program counts the number of times each word in present in a
file, where the file contains just one word per line:

#!/usr/bin/perl -w
chomp(@words = <STDIN>);
foreach $word (@words) {

$count{$words}++;
or: $count{$word} = $count{$word} + 1;
or: $count{$word} += 1; (all 3 are equivalent)

}
foreach $word (keys %count) {

print "$word was seen $count{$word} times\n";
}

The first line is one we have seen before and marks this as aperl script.
On the next line@words refers to a variable that is anarray type, and when we

31

assign to it from<STDIN> it ends up with each line of the input file in a separate
element. The built-in functionchomp removes the newline characters that are
initially present in this array. Theforeach statement iterates over all items in the
array. The reference$count{$word} is the use of ahash tablewhich is a bit like
an array but can be indexed by arbitrary things (in this case our words) not just
by numbers. Note that inperl references to scalar variables include a$ in the
variable name to show that a scalar rather than an array valueis involved. Note
also that the table of counts did not need to be initialised first: in an arithmetic
context an unset value is treated13 as zero! Finally the built-in functionkeys is
used on the hash table of counts. In this case it is necessary to reference the whole
hash table, not just some entry in it, and this is why the text readskeys %count

with a percent mark. Observe that the output text is created by having variable
references expanded within the string.

16.2 Extracting data from a table

Suppose you have a file whose contents are arranged as a numberof fields sepa-
rated by colons. The fifth such column contains a name, which is followed (op-
tionally) by an address and phone numbers (separated off by commas). This curi-
ous format is illustrated by a two-line (non-real) file:

acn1:x:1000:1000:Arthur C Norman,T34,,:/home/acn1:/bi n/bash
am:x:1003:1003:Alan Mycroft,,,:/home/am:/bin/bash

and happens to follow the layout used by Unix for password files. The task is
to list just the first names of all the users present. This provides an illustratio of
thesplit operation. This takes a regular expression and a string and creates an
array whose elements are the parts of the string delimited bythings that match the
regular expression:

#!/usr/bin/perl
while (<STDIN>) {

chomp;
($gcos) = (split /:/)[4];
($real) = split(/,/, $gcos);
($first) = split(/\s+/, $real);
print "$first\n";

}

13However here if we use the-w flag we will be presented with a bunch of warn-
ings when this happens. I rather suspect that a normalperl style does not do
the initialisation and only uses the-w flag while testing its code. However a line
if (defined $count {$word }) $count {$word } = 0; could clean things up.

32

This is tolerably dense, but I hope that with some explanation it will become
readable. It starts by reading in lines from its standard input. Thewhile loop
reads one line at a time. The line that has been read is left in adefault variable
called$_ and other operations work on this if not told to use somethingelse. This
saves typing somewhat. As beforechomp removes the newline that is at the end
of each line. Here it works on$_. The right hand side of the next line starts by
splitting the input line at each colon. This hands back an array and so the element
with index 4 is selected. Since the first item has index 0 this gets the field that we
want. It is assigned to$gcos where this name hints at a traditional Unix name
for this field in a password file. The next use ofsplit find a comma, and can
omit an explicit subscript[0] because some cleverness in the assignment puts
the first item from the right-hand-side array into the scalarvariable$real . The
final use ofsplit uses a regular expression that looks for a string of one or more
non-space characters. The escape sequence\s is one of very many pre-defined
escape sequences that give you very concise ways of specifying words, numbers,
whitespace and other common things you may need to match. Finally I just print
the result.

16.3 A bit more pattern matching

In a bit ofperl pattern matching you can enclose parts of your regular expression
in parentheses, and the result (without backslashes this time) is that the parts of
the pattern that match those little fragments get stored in variables for you. For
instance when you use the C shell the display you get when you use time to
record how long a command takes to execute looks something like:

44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+0w

where the fields show user-mode time, operating system overheads, total elapsed
time and various statistics relating to memory and processor utilisation. I present
this example even though it comes from a different shell because it provides a
plausible example of some murky text string that needs to be decomposed. To
skip the issue of capturing the data I will put it into aperl variable by hand. In
this display I will underline the parts that I will suppose are wanted (for some
reason):

$data = "44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+0w";
== ==== =====

The relevant fields can be extracted by matching the data against a regular expres-
sion

$data =˜ /:([ˆ\.] *)\S * ([ˆ%] *)%. * io (. *)pf/;
print "field1 = $1 field2 = $2 field3 = $3\n";

33

The operator=˜ asks for a pattern match. Within the horrid looking regular
expression there are a couple of patterns that represent ranges of characters, so for
instance the sub-pattern[ˆ\.] * is looking for an arbitrary number of characters
that are not dots. The predefined escape\S matches any character that is not a
space. And then some parts of the regular expression are in parentheses so that
the corresponding fragments of matched text can be retrieved as$1 etc in what
follows. Perhaps a little cryptic but very powerful!

There are many hundreds ofperl modules available on archive sites for
downloading. These provide ready-written facilities for ahuge range of oper-
ations you might imagine wanting: image compression, network management,
database connectivity, extra data-types and algorithms. .. the list goes on and on.
One of the strengths of the language is the wide range of things that you do not
have to write for yourself but can pick up in this way.

A context where you are especially liable to hearperl mentiones is that of so-
calledcgi-bin scripts, which are ways in which a web-server can run programs
in response to clicks made by the remote user who is browsing apage.perl sees
major use as a programming language in this special but very important niche.

17 A brief note aboutemacs

There is one tool that is very widely used on Unix (and of course elsewhere) which
draws on some of the tradition of these tools, but which embeds all of its power
within a single comprehensive interface. This isemacs. If you are only using this
as a simple screen editor, clicking on your mouse every time you want to open or
save a file and doing most of your navigation by dragging a scroll-bar then you
are not following the use-pattern that the originalemacs designers had in mind
and you may be missing out on understanding just how much it can do for you.

emacs provides an astonishingly large collection of editing commands, vari-
ous of them based on searches using regular expressions of the form we have seen
here. It can also provide a model for file-management based onthe idea that you
are “editing” your directory structure, and it provides an editor-like environment
for reading e-mail (which thus naturally permits easy searches through incoming
or stored mail, and makes the commands to display or delete mail rather like those
to display or delete files). Its scripting facilities are based on it having an embed-
ded language —emacs lisp — which makes it possible to write quite general
programs based upon the basic (and indeed not so basic) editing commands that
are pre-defined. Perhaps the best illustration of the power and benefit of the script-
ing capabilities is the way in which the editor can be customised for the language
that you are editing, so that there are simple commands to move across blocks and
procedures, to recompile parts of your code and to re-position the editing focus

34

at the first place that the compiler spotted a syntax editor. Simple users can of
course benefit from these language-specificemacs modes without understanding
where they came from, but the open nature of emacs means that those who are
more experienced can first customise existing modes, and then design new ones
to suit their own exact preferences or to perform new tasks.

My belief is that gaining initial experience withgrep and the like is useful
even if you intend to end up as an ultimateemacs wizard who uses it for every-
thing.

18 “Unix” tools and Microsoft Windows

The Unix tools discussed here represent a particular perspective on the world. It
starts with an expectation that serious users are going to bewilling to take time
to learn how to use the systems that are at their disposal. It is perhaps rooted in
the “no pain, no gain” world view, which expects that anything that goes truly out
of its way to be easy for an utter novice to use will necessarily only have limited
capabilities. An elaboration on this is that the Unix tools are attempting to provide
fundamental building blocks of functionality (such as pattern matching), rather
than complete solutions (like writing your program for you automatically). Big
tools will be wonderful when what you want to is something that has been thought
of and supported by the tool author, but when it does not you are in trouble. Small
but generic tools provide at least some leverage even in new or unusual situations.

A second part of the Unix philosophy is that it should be possible to automate
tasks. Again setting up the scripts with all their pipes, redirections and messy
parameters may be a painful cost, but is can be seen as an investment since then
the operations concerned can be performed over and over again with the greatest
of ease. This applies just as much to slightly complicated and repetitive edits
on a large file as it does to the process of recompiling your program, running all
your standard tests and checking their output to see that it is as expected. For
tiny tasks where you write a short program, run it once and do not worry about
documentation all this seems unnecessary, but for bigger projects it is of course
vital.

A third aspect of Unix is perhaps a legacy of the fact that mostof these tools
have been around for a long while. However the tools described here represent
an emphasis on command-line working, with hands firmly positioned above a
keyboard. For one who has taken the time to learn how to use thetools and
who has set up a set of well designed scripts andMakefile s almost all common
operations can be performed using a quite short sequence of keystrokes. Hands
do not have to move between keyboard and mouse, and the accurate positioning
needed when selecting test visually is avoided. The shell history mechanism saves

35

keystrokes compared to the DOS/Windows equivalent that tends to lead to long
sequences of repeated presses on arrow keys.

A final thing to note about these Unix tools (and to contrast, if you have used
it, with the Microsoft Development Studio) is that the toolsI have discussed here
are by and large neutral.make does not mind whose compiler it is going to in-
voke. Indeed it can be used to automate anything where one filegets re-built from
another and where date-stamps define dependencies.rcs stores updates to your
files, but leaves you to decide which editor you will use to change them. It does
not lock you in to one vendor or style.grep , sed and the rest are all general
purpose.

Some tasks, however, do not fit in at all well with this style ofwork. The
prime example is probably desk-top publishing where fine adjustment of the vi-
sual appearance of documents matters, and the automated testing of windowed
applications where text-based scripts find it a little hard to simulate full interac-
tive input and to check that the programs’s behaviour is correct.

19 Conclusion

As previously mentioned, all the “Unix” tools are in fact pretty generic, and
although they original arose as part of the Unix project theyhave been ported
to other platforms, notably Windows. There (of course) theyare run from a
command-line. Amazingly you can even get a version of thebash shell that
runs under Windows, although I would suggest that if you really want that envi-
ronment you should probably install Linux on your computer instead! Better than
the fact that they are available is the fact that there are generally freeversions of
everything, in particular versions from the Free Software Foundation issued under
the GNU public license. You should perhaps be aware that there are also a load
of slightly half-baked approximations to the real Unix tools out there too, where
somebody has wanted (say)grep and implemented some subset of it for them-
selves. You may like to try to ensure that you find definitive versions of at least the
more important tools. A useful place to look to find one fairlycomplete collection
is

http://sunsite.doc.ic.ac.uk/Mirrors/ftp.cygnus.com/
pub/gnu-win32/gnu-win32/

Cygnus spearhead a project intended to make it easy to host programs that were
originally written for Unix on a Windows machine, and in the process they have
gone quite a long way towards making it possible to simulate aUnix development
environment within Windows. They have an implementation ofbash as well
as pretty well all the tools discussed in this course, and theassociated free C,
C++ and Fortran compilers are of respectable quality. However at present their

36

software counts as a “beta” release, ie it is known to have some instabilities, and
use of it should be for experimentation rather than for the support of some large
or important project.

Everything you might want relating toperl is at

http://sunsite.doc.ic.ac.uk/packages/CPAN/

where perhaps the sub-directoryports/win32/ActiveState may be of inter-
est. Note that as with all references to material on the web there is little guarantee
of stability in what you will find, but I would expect that the mirrors at SunSITE
would normally hold copies of all the most commonly useful and most robust
software collections.

20 Bibliography

References

[1] Arnold Robbins.Unix in a Nutshell. O’Reilly & Associates, 1999.

[2] Randal L Schwartz and Tom Christiansen.Learning Perl. O’Reilly & Asso-
ciates, 1997.

[3] Larry Wall, Tom Christiansen, and Randal L Schwartz.Programming Perl.
O’Reilly & Associates, 1996.

Thanks are due to Piete Brooks who spotted
some places where I had things utterly wrong
in an earlier draft of these notes.

37

