Software Engineering Il

or how to write good programs

A C Norman, Easter Term 1997

Part Ia (50%)

1 Introduction

The coursesoftware Engineering presented several major issues. One was that
errors in software can have serious consequences, up tonahdling loss of
life and the collapse of businesses. Another was that theteartion of large
computer-related products will involve teams of programsnegorking to build
and support software over many years, and this raises pnshi®t apparent to
an individual programmer working on a private project. Ardhivas that formal
methods can be used when defining an planning a project d&siiable base for
it to grow on, and this can be a great help. The emphasis wasogngmming in
the large, which is what the term “Software Engineering”ssaily taken to have
at its core. Overall the emphasis was on recognition of tlidife-time costs
associated with software and the management strategiesntght keep these
costs under control.

This course complements that perspective and looks at thefjone person
or a rather small group, working on what may well be a softwam@ponent or
a medium sized program rather than on a mega-scale prodbetinfent of the
course is to collect together and emphasise some of thesisisatlie behind the
skill of programming. Good programmers will probably usermaf the tech-
niques mentioned here without being especially aware of tey are doing, but
for everybody (even the most experienced) it can be veryulisefbring these
ideas out into the open.

One of the major views | would like to bring to the art (or cradt science,
or engineering discipline, depending on how one like to labkt) of program-
ming is an awareness of the value of an idea described by &&mgell in his
book “1984”. This isdoublethink the ability to believe two contradictory ideas
without becoming confused. Of course one of the origindhaslof doublethink
was the useful precepgnorance is Strengttbut collections of views specifically
about the process of constructing programs. These notesavibe about the rest
of the association of computers with surveillance, Newkpeaother efficiency-
enhancing ideas. The potentially conflicting views aboagpamming that | want
to push relate to the prospect of a project succeeding. Tkegép in your minds
both the ided@rogramming is incredibly difficult and this program will reswwork
correctly: 1 am going to have to spend utterly hopeless aggsagd to coax it
into passing even the most minimal test casmas its optimistic other face, which
claims cheerfullyin a couple of days | can crack the core of this problem, and
then it will only take me another few to finish off all the detailrhese days even
young children can all write programd he concise way to express this particular
piece of doublethink (and please remember that you realhg ta believe both
part, for without the first you will make a total botch of evéryng, while without
the second you will be too paralysed ever to start actuahgpdis

1

Writing programs is easy.

A rather closely related bit of doublethink alludes both e joy of achieve-

ment when a program appears to partially work and the simedtas bitter way

in which work with computers persistently fail. Computerewhup our imper-

fections and frailties, which range through unwillingneseead specifications via
inability to think straight all the way to incompetence inmenechanical typing
skills. The short-hand for the pleasure that comes fromodisgng one of your

own mistakes, and having spent many frustrating hours itngakown something

that is essentially trivial comes out as

Writing programs is fun.

A further thing that will be curious about this course is thaloes not present
universal and provable absolute truths. It is much more énstiyle of collected
good advice. Some of this is based on direct experiencer, ptres has emerged
as an often-unstated collective view of those who work witinputers. There are
rather fewer books covering this subject than | might hayeeeted. There is a
very long reading list posted regularly aconp. sof t war e- eng, but most of
it clearly assumes that by the time things get down to actwaliting programs
the reader will know from experience what to do. Despite #et that it is more
concerned with team-work rather than individual progranmgni want to direct
you towards the Mythical Man Month[4], if only for the covdiustration of the
La Brea Tar Pitswith the vision that programmers can become trapped just as
the Ice Age mammoths and so on were. For looking at programmtaisks that
are fairly algorithmic in style the book by Dijkstra[7] is thochallenging and a
landmark. There are places where people have collectetheggome of the es-
pecially neat and clevdittle programs they have come across, and many of these
indeed contain ideas or lessons that may be re-cyclableh &mmmples have
come to be referred to as “pearls’[2][3]. Once one has wordkddvhat program
needs to be written ideas (now so much in the mainstreamhisabook is per-
haps now out of date) can be found in one of the big presentalip some of the
early proponents of structured programming[11]. Stepfagk and looking at
the programming process with a view to estimating progranpreductivity and
the reliability of the end product, Halstead[8] introducgaine interesting sorts
of software metrics, which twenty years on are still not ctetely free of con-
troversy. All these still leave me feeling that there is a gapveen books that
describe the specific detail of how to use one particular amgning language,

You may not be aware that the tar pits are in the middle of aotngily built-up part of
Los Angeles, and when visiting them you can try to imagine eafthe local school-children
venturing too far and getting bogged down, thus luring tfeainilies, out for a week-end picnic,
to a sticky doom.

and those concerned with large scale software engineendgiject manage-
ment. To date this gap has generally been filled by an appeestistem where
trainee programmers are invited to work on progressivelgeiaexercises and
their output is graded and commented on by their superiotgchMike it is done

here! With this course | can at least provide some backgrthumaghts that might
help the apprentices start on their progression a littleensanoothly.

When | started planning this course it was not quite obviows imuch there
was going to be for me to say that avoided recitations of timellvigly obvious and
that was also reasonably generally applicable. As | stameithe notes it became
clear that there are actually a lot of points to be covered.k@&p within the
number of lectures that | have and to restrict these notesiamgeable bulk | am
therefore restricting myself (mostly) to listing points fmnsideration and giving
as concrete and explicit recommendations as | can: | am ohidmg worked
examples or lots of anecdotes that illustrate how badlygthzan go wrong when
people set about tasks in wrong-minded ways. But perhaps $uggest that as
you read this document you imagine it expanded into a boogtlepresentation
with all that additional supporting material and with a fexeecises at the end of
each section. You can also think about all the points thatskrm the context of
the various programming exercises that you are set or otfaetipal work that
you are involved with.

2 Different sorts of programming tasks

When considering software-related projects it is usefuldd svith a classification
of possible sorts of program. There are three justificationhis:

1. Different sorts of computer systems are not all equalbyda build. For
instance industrial experience has shown repeatedlyhibatdnstruction of
(eg) an operating system is very much harder than buildirggaig eg) a
compiler even when the initial specifications and the ameoficbde to be
written seem very similar. Thinking about the category wtoch your par-
ticular problem falls can help you to plan time-scales aretljmt possible
areas of difficulty;

2. The way you go about a project can depend critically on seeng high
level aspects of the task. A fuller list of possibilities isen below, but
two extreme cases might be (a) a software component forsimiun a
safety-critical part of an aero-space application, whesetbpment budget
and timescale are subservient to an over-riding requiréfoemeliability,
and (b) a small program being written for fun as a first expentwith a
new programming language, where the program will be runqast and

3

nothing of any real important hands on the results. It woegdibly to carry
forward either of the above two tasks using a mind-set tundte other:
knowing where one is on the spectrum between can help malsekbetion
of methodology and tools more rational;

3. I will make a point in these notes that program developngenbt some-
thing to be done in an isolated cell. It involves discussdegas and progress
with others and becoming aware of relevant prior art. Thmgkabout the
broad area in which your work lies can help you focus on theueses
worth investigating. Often some of these will not be at akdfc to the
immediate description of what you are suppose to achievevidlton-
cerned with very general areas such as rapid prototypingbvalidation,
real-time responsiveness, user interfaces or whatever.

I will give my list of possible project attributes. These anegeneral not
mutually exclusive, and in all real cases one will find thasia are not yes—no
choices but more like items to be scored from 1 to 10. | wouké ko think
of them as forming an initial survey that you should condwefbbe starting any
detailed work on your program just to set it in context. When yiod one or
two of these scoring 9 or 10 out of 10 for relevance you know lyaxe identified
something important that ought to influence how you apprdahetwork. If you
find a project scores highly dots of these items then you might consider trying
to wriggle out of having to take responsibility for it, sintieere is a significant
chance that it will be a disaster! The list here identifieseptal issues, but does
not discuss ways of resolving them: in many cases the prtgatires identified
here will just tell you which of the later sections in theseasoare liable to be the
more important ones for your particular piece of work. Theduog in each of
my descriptions will be intended to give some flavour of remverenstances of
the issue being discussed can cause trouble, so keep dhimsrdwse usually you
will not be plunging in at the really deep end of the pool.

lll-defined One of the most common and hardest situations to face up thesw
a computer project is not clearly specified. |1 am going to thke case to
include ones where there appears to be a detailed and pspeis#ication
document but on close inspection the requirements as writtsvn boil
down to “I don’t know much about computer systems but | knowatvh
like, so write me a program that | will like, please.” Clearhetfirst thing to
do in such a case is to schedule a sub-project that has theftaktaining a
clear and concise description of what is really required, sametimes this
will of itself be a substantial challenge;

Shifting sands If either project requirements or resources can changes\ghiit-
ware development is under way then this fact needs to beadiéor. Proba-

4

ble only a tiny minority of real projects will be immune frommis sort of dis-
traction, since even for apparently well-specified tasks guite usual that
experience with the working version of the program will leadwouldn’t
it be nice if ...” ideas emerging even in the face of carefdigcussed and
thought out early design decisions that the options nowasigal would not
be supportable.

Safety-critical Itis presumably obvious that safety-critical applicasoeed ex-
ceptional thought and effort put into their validation. Bhistneed for reli-
ability is far from an all-or-nothing one, in that the repiita of a software
house (or indeed the grades obtained by a student) may depesrtsuring
that systems run correctly at least most of the time, andttieit failure
modes appear to the user to be reasonable and soft. At theestineme
it is worth noting that in cases where robustness of code elmbility of
results are not important at all (as can sometimes be the daspite this
seeming unreasonable) that fact can be exploited to giveltloée project a
much lighter structure and sometimes to make everything werch easier
to achieve. A useful question to ask is “Does this progranmehawvork
correctly inall circumstances, or does it just need to workiastcommon
cases, or indeed might it be sufficient to make it work in s¢carefully
chosen case?”

Large It is well established that as the size of a programming tasteases the
amount of work that goes into it grows much more rapidly tHartumber
of lines of code (or whatever other simple measurement y&) does. At
various levels of task size it becomes necessary to integugject teams,
extra layers of formal management and in general to move &way any
pretence that any single individual will have a full undargting of the
whole effort. If your task and the associated time-scalidmaa team of
40 programmers and you try it on your own maybe you will havgocdilty
finishing it off! Estimating the exact size that a programlwiid up or just
how long it will take to write is of course very hard, but idéyihg whether
it can be done by one smart programmer in a month or if it is atdugn
project for five years is a much less difficult call to make.

Urgent When are you expected to get this piece of work done? How fotireis
deadline? If time constraints (including the way that thigj@ct will com-
pete with other things you are supposed to do) represents alrallenge it
is best to notice that early on. Note that if, while doing fitesting on your
code, you find that it has a bug in it there may be no guarantge/tiu can
isolate or fix this to any pre-specified time-scale. This isduse (at least
for most people!) there is hardly any limit to the subtletyboigs and the

5

amount of time and re-work needed to remove them. If the eslidate
for code is going to be rigidly enforced (as is the case with @83l year
projects!) this fact may be important: even if there is pjeoitthe project
as a whole a rigid deadline can make it suddenly become uegene last
minute;

Unrealistic Itis quite easy to write a project specification that souramtsiy but is
not grounded in the real world. A program that modelled telstmarkets
and thereby allowed you to predict how to manage your paotfol one to
predict winning numbers in the national lottery, or one tayplvorld-class
chess...Now of course there are programs that play chetig wedl, and
lots of people have made money out of the other two projentsr{e case
the statistics that one might apply nsucheasier than the other!), but the
desirability of the finished program can astonishingly otind one to the
difficulties that would arise in trying to achieve it. In sorm&ses a project
might be achievable in principle but is beyond either todagthnology or
this week’s budget, while in other cases the idea being densd might not
even realistic given unlimited budget and time-scales.r&@lage of course
places where near-unreasonable big ideas can have a vaabl@abpart to
play: in a research laboratory a vision of one of these (adlyeunrealis-
tic goals can provide direction to the various smaller aniebeontained
projects that each take tiny steps towards the ideal. Aepteany favourite
example of something like this is the ideanafnotechnologwith armies of
molecular-scale robots working together to build their dvairs and suc-
cessors. The standard example of a real project that manst?jnealistic
observers judged to be utterly infeasible was the “Star Wairaitegic De-
fence Initiative, but note that at that sort of level the pcdil impact of
even starting a project may be at least as important as dglif@ working
product!

Multi-platform Itis a luxury if a program only has to work on a single fixed com-
puter system. Especially as projects become larger thergbsantial extra
effort required to keep them able to work smoothly on manfediint sys-
tems. This problem can show up with simple issues such as-lsogihs,
byte-arrangements in memory and compiler eccentricitiesit gets much
worse as one looks at windowed user interfaces, multi-nfedetions, net-
work drivers and support for special extra plug-in hardware

Long life-time The easiest sort of program gets written one afternoon and is
thrown away the next day. It does not carry any serious lengr-tsup-
port concerns with it. However other programs (sometimdisisitially
written in little more than an afternoon) end up becoming péawyour life

6

and get themselves worked and re-worked every few yearsyloase the
program | have that has the longest history was written ini@adl972 in
Fortran, based on me having seen one of that year’s Diplossedations
and having (partly unreasonably) convinced myself | codddtter. The
code was developed on Titan, the then University main machitook it

to the USA with me when | spent a year there and tried to remosdatst
few bugs and make it look nicer. When the University moved ugrntéBM

mainframe | ran it on that, and at a much later stage | traedlat(semi
automatically) into BBC basic and ran it (very slowly) on a BBC raidBy

last year | had the code in C with significant parts of the medaflit totally

re-written, but with still those last few bugs to find ways ainking around.
If I had been able to predict when | started how long this wdédof in-

terest to me for maybe | would have tried harder to get it rigist time!

Note the radical changes in available hardware and sernmibgamming
language over the lifetime of this program. The topicalsbua to the prob-
lems of not thinking far enough ahead is to the worry aboutytres 2000
and computer-stored dates;

User interface For programs like modern word processors there is a realkcehan
that almost all of the effort and a very large proportion @& tode will go
into supporting the fancy user interface, and trying to miakes helpful
and intuitive as possible. Actually storing and editing teet could well
be fairly straight forward. When the smoothness of a userfate is a
serious priority for a project then the challenge of definex@ctly what
must happen is almost certainly severe too, and in signifiganjects will
involve putting test users in special usability laboraerwhere their eye-
movement can be tracked by cameras and their key-strokekectimed.
The fact that an interface provides lots of windows and dollxn menus
does not automatically make it easy to use;

Diverse users Many commercial applications need to satisfy multiple aseith
diverse needs as part of a single coherent system. This ¢andeto new
computer systems that need to interwork seamlessly withipreiexisting
operational procedures, including existing computer pgek. Some users
may be nervous of the new technology, while others may finet&siee
explanation an offensive waste of their time. The largerrthmber of in-
terfaces needed and the wider the range of expectationsittertit will be
to make a complete system deliver total satisfaction;

Speed critical Increasingly these days it makes sense to buy a faster cemput
some task seems to take a little longer than is comfortabteveder there
remain some areas where absolute performance is a sesoesasd where

7

getting the very best out of fixed hardware resources canegbanpetitive
edge. The case most in my mind at present is that of (high gcencryp-
tion, where the calculations needed are fairly demandirigMnere there
is real interest in keeping some control over the extra hardwosts that
user are expected to incur. If speed requirements lead floeesignifi-
cant assembly code programming (or almost equivalentiheodiesign of
task-specific silicon) then the resource requirements aobgegt can jump
dramatically. If in the other hand speed is of no importartcaldor some
task it may become possible to use a higher level programsystem,
simpler data structures and algorithms and generally shug@ amount of
aggravation;

Real time Real-time responsiveness is characteristic of many coafplica-
tions. It demands that certain external events be given@onse within
a pre-specified interval. At first this sounds like a variamtasks that are
just speed-critical, but the fine granularity at which parfance is spec-
ified tends to influence the entire shape of software projaatsrule out
some otherwise sensible approaches. Some multi-medi&atmhs and
video games will score highly in this category, as will elggmanagement
software for cars and flight control software for airports;

Memory critical A programming task can be made much harder if you are squeezed

for memory. The very idea of being memory-limited can fedl svhen
we all know that it is easy to go out and but another 16 Mbyteqdar-
rently) of the order o£50. But the computer in your cell-phone will have
an amount of memory selected on the basis of a painful compeobe-
tween cost (measured in pennies), the power drain that theitty puts
on the battery (and hence the expected battery life) andethef$eatures
that can be supported. And the software developers are lpsogeave the
memory budget as a fixed quantity and invited to support ag #lst of
features as is at all possible within it;

Add-on A completely fresh piece of software is entitled to defineoi file
formats and conventions and can generally be designed albwithout
too much hindrance. But next year the extension to that aigiackage
is needed, or the new program is one that has to work gragefitlh data
from other people’s programs. When building an add-on itisfpéy often
the case that the existing software base is not very wellected, and that
the attempted new use of it reveals previously unknown budjsdations
in the core system. Thus the effort that will need to be put the second
package may be much greater than would have been predicted oz
experience from the first;

Embedded If the computer you are going to program is one in an electyg:- e
timer (or maybe a toy racing car, or an X-ray scanner) thetinggsnay
involve be a quite different experience from that you becorsed to when
debugging ordinary applications that run on standard vetakions. In par-
ticular it may become necessary to become something of agrexpthe
hardware and electronics and also in the application aredaeoystem
within which your code will be placed,;

Tool-weak environment This is a follow-on from the “embedded” heading, in
that it is perhaps easiest the envisage an electric popagpetowhere any-
thing that slowed down or enlarged the code being run wouligesystem
timing enough to burn the toast, and where the target haslisarot auto-
matically equipped with printers and flashing lights that ba used to help
sense what is going on inside its CPU. For some such casesadsssbte
to buy or build real-time emulators or to wire in extra prob@s a debug-
gable version of the hardware. There are other cases whhes sachnol-
ogy or budget mean that program development has to be doheasiow
turn-around on testing and with only very limited ability dcscover what
happened when a bug surfaced. It is incredibly easy to stmalech a tool-
weak environment for yourself by just avoiding the effors@sated with
becoming familiar with automated testing tools, debuggeisthe like;

Novel One of the best and safest ways of knowing that a task is fleaisilio
observe that somebody else did it before, and their versasatleast more
or less satisfactory. The next best way is to observe thahé¢hetask is
really rather similar to one that was carried out succelysifuthe past. This
clearly leads to the obvious observation that if somethsrizgging attempted
and there are no precedents to rely on then it becomes musérhaipredict
how well things will work out, and the chances of nasty swgsiincreases
substantially.

There are two sort of program not listed above which desgrgeial mention.
The first is the implementation of a known algorithm. Thislwgually end up as
a package or a subroutine rather than a complete free-atapdigram, and there
are plenty of algorithms that are complicated enough thaggamming them is
a severe challenge. However the availability of a clearetaagd well specified
direction will often make such programming tasks relagivehctable. It is how-
ever important to distinguish between programming up a dete@nd known
algorithm (easyish) from developing and then implemenéntgew one, and un-
comfortably often things that we informally describe aailipms are in fact just
strategies, and lots of difficult and inventive fine detas ha be filled into make
them realistic.

The second special sort of program is the little throw-awasy, @and the recog-
nition that such programs can be lashed together reallyafasgtvithout any fuss
is important, since it can allow one to automate other pdrtseoprogram devel-
opment task through strategic use of such bits of jiffy code.

3 Analysis and description of the objective

Sometimes a programming task starts with you being predavita a complete,
precise and coherent explanation of exactly what has to bievad. When this
is couched in language so precise that there is not possiolet dibout what is
required you might like to ask why you are being asked to ddahang, since
almost all you need to do is to transcribe the specificatitmtime particular syntax
of the (specified) programming language. Several of thelRditkable problems
come fairly close to this pattern, and there the reason yewasked to do them
is exactly so you get practical experience with the syntathefgiven language
and the practical details of presenting programs to the coenpBut that hardly
counts as serious programming!

Assuming that we are not in one of these artificial cases, rieisessary to
think about what one should expect to find in a specificatiash\ahat does not
belong there. It is useful to discuss the sorts of languagd us specifications,
and to consider who will end up taking prime responsibildy €verything being
correct.

A place to start is with the observation that a specificatiooutd describe
what is wanted, rather than how the desired effect is to bieaett. This ideal can
be followed up rather rapidly by the observation that it infamazingly difficult
to know what is really wanted, and usually quite a lot of intpat aspects of
the full list of requirements will be left implicit or as itesrwhere you have to
apply your own judgement. This is where it is useful to thimkkto the previous
section and decide what style of project was liable to benohtéel and where the
main pressure points are liable to be.

3.1 Important Questions

| have already given a check-list that should help work ouatndeneral class of
problem you are facing. The next stage is to try to identifg aoncentrate on
areas of uncertainty in your understanding of what has todoe d Furthermore
initial effort ought to go into understanding aspects of pheblem that are liable
to shape the whole project: there is no point in agonising ocesmetic details
until the big picture has become clear. Probably the bestofiagrting this out is

to imagine that some magic wand has been waved and it hasrednjp a body

10

of code and documentation that (if the fairy really was a good!) probably
does everything you need. However as a hard-headed antlystighical person
you need to check it first. Deciding what you are going to looktb see if the
submitted work actually satisfied the project’s needs cagda make explicit a
lot of the previously slightly woolly expectations you midtave. This viewpoint
moves you from the initial statement “The program must ach)’ a little closer

to “I must end up convinced that the program achieves X and isghe basis for
how that conviction might be carried”. Other things that higor indeed might
not) reveal themselves at this stage are:

1. Is user documentation needed, and if so how detailed }p&cated to be?
Is there any guess for how bulky the user manual will be?

2. How formal should documentation of the inner workingshaf tode be?

3. Was the implementation language to be used pre-speafmedf not what
aspects of the problem or environment are relevant to thieefo

4. Is the initial specification a water-tight one or does thplementer have to
make detailed design decisions along the way?

With regard to choice of programming language note thatengd from stud-
ies that have watched the behaviour of real programmersestsgythat to a good
first approximation it is possible to deliver the same nunidfdmes of working
documented code per week almost whatever language it iewin. A very
striking consequence of this is that languages that areaiBtaoncise and which
provide biuilt-in support for more of the high-level thingsu want to do can give
major boosts to productivity.

The object of all this thought is to lead to a proper specificadf the task.
Depending on circumstances this may take one of a numberssfige forms:

3.2 Informal specifications

Documents written in English, however pedantically phdaged however volu-
minous, must be viewed as informal specifications. Thoselvelve a lot of spare
time might try reading the original description of the lange C[9] where Appen-
dix A is called a reference manual and might be expected to éouseful basis for
fresh implementations of the language. Superficially ikbpretty good, but it is
only when you examine the careful (though still “informat’the current context)
description in the official ANSI standard[12] that it becaéear just how much
is left unsaid in the first document. Note that ANSI C is notshene language as
that defined by Kernighan and Ritchie, and so the two docunjasttsnentioned

11

can not be compared quite directly, and also be aware th#irgpand making
clear places where specifications written in English areonetise is a great skill,
and one that some people enjoy exercising more than othérEhdodescription
in section 19 is another rather more manageable example iof@mal textual
specification. When you get to it you might like to check to séat tells you
what to do about tabs and back-spaces, which are clearlpcieas that have an
effect on horizontal layout. What? It fails to mention themi? d2ar!

3.3 Formal descriptions

One response to the fact that almost all informal speciboatare riddled with
holes (not all of which will be important: for instance it rhigbe taken as under-
stood by all that messages that are printed so that they ik@kéntences should
be properly spelt and punctuated) has been to look for waysiofy formal de-
scription languages. The ZED language (developed at O%fambt sometimes
written as just Z) is one such and has at times been taughtfiv&e Engineer-
ing courses here. The group concerned with the developniéme tanguage ML
were keen to use formal mathematically-styled descriptie¢ghods to define ex-
actly what ML ought to do in all possible circumstances. Late in the CST
there are whole lecture courses on Specification and Veirditand so | am not
going to give any examples here, but will content myself byasbing that a good
grounding in discrete mathematics is an absolute pre-segquor anybody think-
ing of working this way.

3.4 Executable specifications

One group of formal specification enthusiasts went off anclibped ever more
powerful mathematical notations to help them describestagkother group ob-
served that sometimes a careful description of what mustcheewed looks a
bit like a program in a super-compact super-high-level pgogning language.
It may not look like a realistic program, in that it may omittidoof explana-

tion about how objectives should be achieved and espediaillythey should be
achieved reasonably efficiently. This leads to the idea aba@tutable specifica-
tion, through building an implementation of the specificatiamgiaage. This will

permitted to run amazingly slowly, and its users will be ameged to go all out
for clarity and correctness. To give a small idea of whathight entail, consider
the job of specifying a procedure to sort some data. Thealnitformal spec-

ification might be that the output should be a re-orderinghefihput such that
the values in the output be in non-descending order. An ¢ablrispecification

2htt p: // ww. com ab. ox. ac. uk/ oucl / prg. ht m

12

might consist of three components. The first would creatstafiall the different
permutations of the input. The second would be a procedurespect a list and
check to see if its elements were in non-descending ordes. fihlal part would
compose these to generate all permutations than scan thtbem on at a time
and return the first non-descending one found. This wouldaat good practical
sorting algorithm, but could provide a basis for very traargmt demonstrations
that the process shown did achieve the desired goal! It dimifemembered that
an executable specification needs to be treated as suchotasiamodel for how
the eventual implementation will work. A danger with theheitjue is that it is
quite easy for accidental or unimportant consequenceswfhe specification is
written to end up as part of the project requirements.

4 Ethical Considerations

Quite early on when considering a programming project yadrte take explicit
stack of any moral or ethical issues that it raises. Earhethe year you have
had more complete coverage of the problems of behaving §siofeally, so here
I will just give a quick check-list of some of the things thaigt give cause for
concern:

1. Infringement of other people’s intellectual properwghts, be they patents,
copyright or trade secrets. Some companies will at leasb fpyevent others
from creating new programs that look too much like the oagjinWWhen
licensed software is being used the implications of thenkeeagreement
may become relevant;

2. Responsibility to your employer or institution. It may Ibat certain sorts
of work are contrary to local policy. For instance a companghtnot be
willing to permit its staff to politically motivated virtuaeality simulations
using company resources, and this University has viewstahewwommer-
cial use of academic systems;

3. A computing professional has a responsibility to givedstradvice to their
“customer” when asked about the reasonableness or fegsdsia project,
and to avoid taking on work that they know they are not qualifeedo;

4. It can be proper to take a considered stance against tredogevent of
systems that are liable to have a seriously negative impasboiety as a
whole. | have known some people who consider this reasondial any
involvement with military or defence-funded computing,ilglothers will
object to technology that seems especially liable to madeking, surveil-
lance or eavesdropping easier. Those of you with lurid imaigpns can no

13

doubt envisage plenty more applications of computers thghtbe seen as
so undesirable that one should if necessary quit a job ratiaerwork on
them.

5 How much of the work has been done already?

The points that | have covered so far probably do not feel@®if really help you

get started when faced with a hard-looking programming, takkough | believe
that working hard to make sure you really understand theifspetoon you are

faced with is in fact always a very valuable process. From nowards | move

closer to the concrete and visible parts of the programnaisky. tThe first question
to ask here is “Do | actually have to do this or has it been daierb?”

There are three notable cases where something has beenefore it it is
still necessary to do it again. Student exercises are omesét and undue reliance
on the efforts of your predecessors is gently discouragethemes a problem
has been solved before, but a solution needs to be re-ciwitexlit reference to
the original version because the original is encumberel aitkward commer-
cial restrictions or is not locally available. The final causerfsimplementation
is if the previous version of the program concerned was araénd so much of a
mess that any attempt to rely on it would start the new pra#ad wrong-minded
directions.

Apart from these cases the best way to write any program & &l adopt,
adapt and improve as much existing technology as you card ddm range from
making the very second program that you ever write a vanabio that initial
“Hello World” example you were given through to exploitingigting large soft-
ware libraries. The material that can be reclaimed may beiagrras a bunch of
initial comments saying who you (the author) are and inclgdipace to describe
what the program does. It might just be some stylised “inf@tatements needed
at the head of almost any program you write. If you need a treetsire in today’s
program do you have one written last week which gives you #ta type defin-
ition and some of the basic operations on trees? Have youpresided with a
collection of nice neat sample programs (or do you have a bo@D ROM with
some) that can help? Many programming languages are patkegea fairly
extensive collection of chunks of sample code.

Most programming languages come with standardised lgsdhat (almost al-
ways) mean there is no need for you to write your own sorting@dure or code to
convert floating point values into or out of textual form. l@ny important areas

3Remember that if the restriction is in the form of a patenbthe amount of re-implementation
frees you from obligations to the patent-owner, and in otlases you may need to be able to give a
very clear demonstration that your new version really hantmeeated completely independently.

14

there will be separate libraries that contain much much rertensive collections
of facilities. For instance numerical libraries (eg the dran NAG) are where
you should look for code to solve sets of simultaneous egunatdr to maximise
a messy function of several variables. When you need to imgi¢m windowed
interface with pull-down menus and all that sort of stuff iag@ok to existing

library code to cope with much of the low-level detail for ydsimilarly for data

compression, arbitrary precision integer arithmetic,gsenanipulation. ..

Observing that there is a lot of existing support around dussmake the
problem of program construction go away: knowing what éxgstode is avail-
able is not always easy, and understanding both how to ued ivhat constraints
must be accepted if it is used can be quite a challenge. Ramnios with the NAG
(numerical) library it may take beginners quite a while lvefthey discover that
EO4ACF (say, and not one of the other half-dozen closelyedletdutines) is the
name of the function they need to call and before they unaledséxactly what
arguments to pass to it.

As well as existing pre-written code (either in source ordiy form) that
can help along with a new project there are also packagesiitat significant
bodies of code for you, basing what they do one on either a achgescriptive
input file or interaction with the user through some cleveeiface. The well-
established examples of this are the tog@s c andl ex that provide a convenient
and reliable way of creating parsers. Current users of MaftssVisual C++
system will be aware of the so-called “Wizards” that it pa®es that help create
code to implement the user interface you want, and there they commercial
program generators in this and a variety of business apiglicareas. To use one
of these you first have to know of its availability, and theartehow to drive it:
both of these may involve an investment of time, but with ltiekt will be re-paid
with generous interest even on your first real use. In somesdd® correct use
of a program generation tool is to accept its output uneiiyc while on other
occasions the proper view is to collect what it creates, ystudnd eventually
adjust the generated code until you can take direct respibtysior subsequent
support. Before deciding which to do you need to come to a joge about the
stability and reliability of the program generator and hdéen you will need to
adjust your code by feeding fresh input in to the very start.

Another way in which existing code can be exploited is whew ©ede is
written so that it converts whatever input it accepts in®itiput format for some
existing package, one that solves a sufficiently relatedblpro that this makes
some sense. For instance it is quite common to make an eaphgnnentation
of a new programming language work by translating the neguage into some
existing one and then feeding the translated version intexating compiler. For
early versions of ML the existing language was Lisp, while Néodula 3 some
compilers work by converting the Modula 3 source into C. Ddimg may result

15

in a complete compiler that is slower and bulkier than migheowise be the case,
but it can greatly reduce the effort in building it.

6 What skills and knowledge are available?

A balance needs to be drawn between working through a newaroging project
using only the techniques and tools that you already knowpastiing it forward
using valuable but unfamiliar new methods. Doing somethiegy may slow you
down substantially, but an unwillingness to accept thdtrt@y lead to a very
pedestrian style of code development using only a limitegezof idioms. There
is a real possibility that short-term expediency can be imflozi with longer term
productivity. Examples where this may feel a strain include of formal meth-
ods, new programming languages and program generatiog tbbe main point
to be got across here is that almost everything to do with emenp changes every
five years or so, and so all in the field need to invest some af ¢ffert in con-
tinual personal re-education so that their work does ndt too much as if it has
been chipped out using stone axes. The good news is thatightuetailed tech-
nology changes the skills associated with working througtigaificant project
should grow with experience, and the amount of existing dbdéan old hand
will have to pillage may be quite large, and so there is a re@sie prospect for
a long term future for those with skills in software desigml @onstruction. Re-
member that all the books on Software Engineering tell ustheacompetence of
the people working on a project can make more differencestsuitcess than any
other single factor.

It is useful to have a conscious policy of collecting knovgedabout what
can be done and where to find the fine grubby details. For exathplstandard
textbook[6] contains detailed recipes for solving all sast basic tasks. Only
rarely will any one of these be the whole of a program you needrite, but quite
often a larger task will be able to exploit one or more of th@imese and many of
the other topics covered in the CST are there because thdreasta chance that
they may occasionally be useful! It is much more importarkriow what can be
done than how to do it, because ti@wcan always be looked up when you need
it.

7 Design of methods to achieve a goal

Perhaps the biggest single decision to be made when sténgngdetailed design
of a program is where to begin. The concrete suggestionsithcdide here are to
some extent caricatures; in reality few real projects wilidw any of them totally

16

but all should be recognisable as strategies. The crusia¢iss that it will not be
possible to design or write the whole of a program at once snecessary to
split the work into phases or chunks.

7.1 Top-Down Design

In Top Down Design work on a problem starts by writing a “pragf’ that is just
one line long. Its text is:

begi n Sol veMyProbl enm(); end:;

where of course the detailed punctuation may be selectectonthe program-
ming language being used. At this stage it is quite reasertaldde very informal

about syntax. A next step will be to find some way of partitignihe whole task
into components. Just how these components will be bromghiexistence is at
present left in the air, however if we split things up in tooessonable a way we
will run into trouble later on. For many simple programs tleeand stage could
look rather like:

(» My nanme, today’'s date, purpose of program x)
I nport Standard-Ilibraries;
begi n

(* declare variables here *)

data : = Readl nData();

results := Cal cul ate(data);
Di spl ayResul ts(resul ts)
end;

The ideal is that the whole development of the program shtalld place in
baby-sized steps like this. At almost every stage thereheilh whole collection
of worrying-looking procedures that remain undefined andyedthought about,
such asCal cul at e above. It is critical not to worry too much about these,
because each time a refinement is made although the numitersef inresolved
problems may multiply the expected difficulty of each wildtee. Well it had
better, since all the ones that you introduce should be sacgsteps towards
the solution of your whole original task, and it makes sensexpect parts to be
simpler than the whole.

After a rather few steps in the top-down development prooassshould ex-
pect to have a fully syntactically correct main program twdt not need any
alterations later as the low level details of the procedtiiesit calls get sorted
out. And each of the components that remain to be implemestiedld have
a clearly understood purpose (for choice that should beemriiown) and each

17

such component should be clearly separated from all thethEhat is not to
say that the component procedures might not call each othretyoon what they
each can do, but the internal details of any one componentigimot matter to
any other. This last point helps focus attention on inter$adn my tiny example
above the serious interfaces are represented by the \@sadtl a andr esul t s
which pass information from one part of the design to the .n@xrking out ex-
actly what must be captured in these interfaces would bergiynaeed to be done
fairly early on. After enough stages of elaboration the leitisover from top-down
design are liable to end up small enough that you just codua thewithout need
to worry: anything that is trivial you code up, anything tiséitl looks murky you
just apply one more expansion step to. With luck eventualyprocess ends.

There are two significant worries about top-down design. s€hare “How
do | know how to split the main task up?” and “But | can't test noale until
everything is finished!”. Both of these are proper concerns.

Splitting a big problem up involves finding a strategy forvsag it. Even
though this can be quite hard, it is almost always easienvenina high-level idea
for how to solve a problem than it is to work through all theailet and this is
what top-down programming is all about. In many cases skajabn a piece of
paper what you would do if you had to solve the problem by haathér than
by computer) can help. Quite often the partition of a probjem make may end
up leading your design into some uncomfortable dead endalincase you need
to look back and see which steps in your problem refinememesepted places
where you had real choice and which ones were pretty mucltaide. It is then
necessary to go back to one of the stages where a choice w&iblpa@nd to re-
think things in the light of your new understanding. To mahis process sensible
you should refuse to give up fleshing out one particular versif a top-down
design until you are in a position to give a really clear erptéon of why the
route you have taken represents failure, because with@itittderstanding you
will not know how far back you need to go in the re-planning. asexample
of what might go wrong, the code | sketched earlier here wewd up being
wrongly structured if user interaction was needed, andititataction might be
based on evaluation of partial results. To make that somtefface possible it
might be necessary to re-work the design as (say)

(* My name, today’s date, purpose of program *)
i nport Standard-Ilibraries;
begi n

(* declare variables here x)

(r set enpty data and results =)

while not finished do

begi n

18

extra : = Readl nMoreDat a() ;
i f EndO Userlnput(extra) then finished := true;
el se
begi n
data : = Conbi ne(data, extra);
results := UpdateResults(results, data);
D spl aySonet hi ng(results);
end;
end;
Di spl ayFi nal Resul ts(results);
end;

which is clearly getting messier! And furthermore my earéiad shorter version
looked generally valid for lots of tasks, while this one wibuleed careful extra
review depending on the exact for of user interaction rexglir

There is a huge amount to be said in favour of being able t@atpsbgram as
it is built. Anybody who waits right to the end will have a dd#al mix of errors
at all possible levels of abstraction to try to disentaglefir’st sight it seems that
top-down design precludes any early testing. This pessirgsiot well founded.
The main way out is to writestubsof code that fill in for all the parts of your
program that have not yet been written. A stub is a short amgblsi piece of
code that takes the place of something that will later on belnmiore messy. It
does whatever is necessary to simulate some minimal bealratiat will make
it possible to test the code around it. Sometimes a stub watl print a warning
message and stop when it gets called! On other occasionsighémeke a stub
print out its parameters and wait for human interventiohén reads something
back in, packages it up a bit and returns it as a result. Thehwssistant actually
did all the clever work.

There are two other attitudes to take to top-down design. @nieese is to
limit it to designrather than implementation. Just use it to define a skeletgdes
for your code, and then make the coding and testing a sepantatédy. Obviously
this only makes sense when you have enough confidence thaaypdee sure that
the chunks left to be coded will in fact work out well. The fivaw is to think
of top-down design as an ideal to be retrofitted to any pra@ace it is complete.
Even if the real work on a project went in fits and starts witts lof false trails
and confusion, there is a very real chance that it can benaltsed afterwards and
explained top-down. If that is done then it is almost certhat a clear framework
has been built for anybody who needs to make future changés fmrogram.

19

7.2 Bottom-Up Implementation

Perhaps you are uncertain about exactly what your prograoimng to do or how
it will solve its central problems. Perhaps you want to make shat every line
of code you ever write is documented, tested and validatetb&bh before you
move on from it and certainly before you start relying on itellthese concerns
lead you towards a bottom-up development strategy. Thehdeais to identify
a collection of smallish bits of functionality that will (@lost) certainly be needed
as part of your complete program, and to start by implemgritiase. This avoids
having to thing about the hard stuff for a while. For instaaceompiler-writer
might start by writing code to read in lines of program anccdis comments,
or to build up a list of all the variable names seen. Somebdtalyiisg to write a
word processor might begin with pattern-matching codeydaduse in search-
and-replace operations. In almost all large projects thezggoing to be quite a
few fundamental units of code that are obviously going to $eful regardless of
the high level structure you end up with.

The worry with bottom-up construction is that it does notrespond to having
any overall vision of the final result. That makes it all toye#s end up with a
collection of ill-co-ordinated components that do not gdit together and that do
not really combine to solve the original problem. At the viegst | would suggest
a serious bout of top-down design effort be done before amtpimeup work to
try to put an overall framework into place. There is also acfgospect that some
of the units created during bottom-up work may end up notdgaecessary after
all so the time spend on them was wasted.

An alternative way of thinking about bottom-up programmaam soften the
impact of these worries. It starts by viewing a programmargguage not just as a
collection of fragments of syntax, but as a range of waysratstring data and of
performing operations upon it. The fact that some of theseaiwns happen to be
hard-wired into the language (as integer arithmetic ugusiiwhile others exist as
collections of subroutines (floating point arithmetic o®8&ligit numbers would
normally be done that way) is of secondary importance. Censdlthis way each
time you define a new data type or write a fresh procedure yoa >ended and
customised your programming language by giving it suppmrsbmething new.
Bottom-up programming can then be seen as gradually buildyey upon layer
of extra support into your language until it is rich in the cgg@ns most important
in your problem area. Eventually one then hopes that the ttestkat first had
seemed daunting becomes just half a dozen lines in the eeddadguage. If
some of the procedures built along the way do not happen tcéeé this time,
they may well come in handy the next time you have to write y@m in the
same application area, so the work they consumed has nét besn wasted
after all. The language Lisp is notable for having sustaaedlture based on this

20

idea of language extension.

7.3 Data Centred Programming

Both top-down and bottom-up programming tend to focus on wbat program

looks like and the way in which it is structured into procezhirAn alternative is
to concentrate not on the actions performed by the code btiteoway in which

data is represented and the history of transformationsatinabit of data will be

subject to. These days this idea is often considered almyasngmous with an
Object Oriented approach where the overall design of thesdaucture for a pro-
gram is the most fundamental feature that it will have. Eaand pre-dating the
widespread use of Object Oriented languages) convinciggnaents for design
based on the entities that a program must manipulate or nsode from Jackson
Structured Programming and Design[5]. More recently SSALJMas probably

become one of the more widespread design and specificatitrodwogies for

commercial projects.

7.4 lterative Refinement

My final strategy for organising the design of a complete pragdoes not even
expect to complete the job in one session. It starts by astomgthe initial prob-
lem can be restricted or simplified to make it easier to addrésd perhaps it
will spot how the most globally critical design decisions tbe whole program
could me made in two or three different ways, with it hard tbiteadvance which
would work out best in the end. The idea is then to start witthector a scruffy
mock-up of a watered down version of the desired prograngysst one of these
sets of design decisions. The time and effort needed to arjeogram grows
much faster then linearly with the size of the program: thire (but less obvi-
ous) consequence of this is that writing a small program eanuxh quicker and
easier than completing the full version. It may in some casase sense even to
write several competing first sketches of the code. When thesletch version
is working it is possible to step back and evaluate it, to §@s overall shape is
sound. When it has been adjusted until it is structurallyeszdyreffort can go into
adding in missing features and generally upgrading it utréilentually gets trans-
formed into the beautiful butterfly that was really wanted aDthe methods that
| have described this is the one that comes closest to algpfein‘experimental”
programming. The discipline to adhere to is that experimant¢ worthy of that
tag if the results from them can be evaluated and if somettamghus be learned
from them.

21

7.5 Which of the above is best?

The “best” technique for getting a program written will dageon its size as well
as its nature. | think that puritanical adherence to anye#gtiove would be unrea-
sonable, and | also believe that inspiration and experi¢mee good taste) have
important roles to play. However if pushed into an opinionill wote for present-
ing a design or a program (whether already finished or stidlemrconstruction)
as if it were prepared top-down, with an emphasis on the etygn of what
information must be represented and where it must pass franpart of the code
to another.

8 How do we know it will work?

Nobody should ever write a program unless they have goodmngaselieve that
it ought to work. It is of course proper to recognise that il wot work, because
typographic errors and all sorts of oversights will enstieg.tBut the code should
have been written so that in slightly idealised world whéese accidental imper-
fections do not exist it would work perfectly. Blind and ergrastic hope is not
sufficient to make programs behave well, and so any propégmeseds to have
lurking behind it the seeds of a correctness proof. In easyegtimes this can re-
main untended as little comments that can just remind yowof thinking. When
a program starts to get troublesome it can be worth growiaggftomments into
short essays that explain what identities are being predentact across regions
of code, why your loops are guaranteed to terminate and vesanaptions about
data are important, and why. In yet more demanding circumsstit can become
necessary to conduct formal validation procedures for code

The easiest advice to give here is that before you write ewaiahdozen
lines of code you should write a short paragraph of commaeaattekplains what
the code is intended to achieve and why your method will warke comment
should usually not explaihow it works (the code itself is all about “how”), but
why. To try to show that | (at least sometimes!) follow this adviwere is a short
extract from one of my own programs...

/

Here is a short essay on the interaction between flags and

properties. It is witten because the issue appears to be

delicate, especially in the face of a schenme that | use to

speed things up.

(a) If you use FLAG REMFLAG and FLAGP with sone indicator
then that indicator is known as a flag.

(b) If you use PUT, REMPROP and CGET with an indicator then
what you have is a property.

R T N S S S S

22

* (c) Providing the nanes of flags and properties are disjoint
* no difficulty whatever should arise.

* (d) If you use PLIST to gain direct access to a property |ist
* then flags are visible as pairs (tag . t) and properties
* as (tag . value).

* (e) Using RPLACX operations on the result of PLIST may cause
* system damage. It is to be considered illegal. Al so

* changes nade that way may not be matched in any

* accel erating caches that | keep

* (f) After (FLAG ' (id) tag) [when id did not previously have
* any flags or properties] a call (GET 'id "tag) wll

* return t.

* (g) After (PUT 'id 'tag 'anything) a call (FLAGP 'id 'tag)

* will return t whatever the value of "anything". A cal

* (GET 'id "tag) will return the saved val ue (which m ght
* be nil). Thus FLAGP can be thought of as a function

* that tests if a given property is attached to a synbol.
* (h) As a consequence of (g) REMPROP and REMFLAG are really

* the sane operation

*/

Li sp_Obj ect get(Lisp_Object a, Lisp_Object b)
{
Lisp_Qbject pl, prev, w, nil = Cnil;
int n;
[*
* In CSL node plists are structured |ike association |ists, and
* NOT as lists with alternate tags and values. There is also
* a bitmap that can provide a fast test for the presence of a
* property...
*/
if (!synbolp(a))
{
#i f def RECORD_GET
record_get (b, NO;
errexit();
#endi f
return oneval ue(nil);

}

etc etc

The exact details of what | am trying to do are not importaméhleut the evidence
of mind-clearing so that there is a chance to get the codecdirst time is. Note
how little the comment before the procedure has to say abauldvel implemen-

23

tation details, but how much about specifications, assumgtind limitations.

I would note here that keyboarding is generally one of thstleae-consuming
parts of the whole programming process, and these days tistgs is pretty
cheap, and thus various reasons which in earlier days maydisgouraged lay-
out and explanation in code no longer apply.

Before trying code and as a further check that it ought to wiockm be useful
to “walk through” the code. In other words to pretend to be mpoter executing
it and see if you follow the paths and achieve the resultsytbatwere supposed
to. While doing this it can be valuable to think about whichhsathrough the
code are common and which are not, since when you get togestimy be that
the uncommon paths do not get exercised very much unlessigespecial steps
to cause them to be activated.

The “correctness” that you will be looking for can be at saVeifferent lev-
els. Apartially correctprogram is one that can never give an incorrect answer.
This sounds pretty good until you recognise that there issach that it may just
get stuck in a loop and thereby never give any answer at afi'dinazingly often
much easier to justify that a program is partially correaintho go the whole hog
and show it is correct, ie that not only is it partially cortreat that it will always
terminate. Beyond even the requirements of correctnesbwiierformance de-
mands: in some cases a program will need not only to delieeright answers
but to meet some sort of resource budget. Especially if thiopeance target is
specified as being for performance that is good “on the aegragan be dread-
fully hard to prove, and usually the only proper way to stany designing and
justifying algorithms way before any mention of actual paogming arises.

A final thing to check for is the possibility that your code daaderailed by
unhelpful erroneous input. For instance significant séguroles in operating
systems have in the past been consequences of trusted moflatale being too
trusting of their input, and them getting caught out by (eguit lines so long that
internal buffers overflowed thereby corrupting adjacenada

The proper mind-set to settle in to while designing and istauto implement
code is pretty paranoid: you want the code to deliver eithepraect result or a
comprehensible diagnostic whenever anything imaginabés gvrong in either
the data presented to it or its own internal workings. Thst Eatement leads
to a concrete suggestion: make sure that the code can wstfais sanity and
correctness every so often and insert code that does justTtha assertions that
you insert will form part of your argument for why the prograsnsupposed to
work, and can help you (later on) debug when it does not.

24

9 While you are writing the program

Please remember to get up and walk around, to stretch, dterkypof water,
sit up straight and all the other things mentioned at the iegrDay as relevant
occupational health issues. My experience is that it isequiétrd to do effective
programming in 5 minute snippets, but that after a few hoarstant work pro-
ductivity decreases. A pernicious fact is that you may ndicecahis decrease at
the time, in that the main way in which a programmer can beconpeoductive
is by putting more bugs into a program. It is possible to kdepming out lines of
code all through the night, but there is a real chance thatrieyou will spend
afterwards trying to mend the last few of them will mean thatlbng session did
not really justify itself.

In contrast to programming where long sessions can do reahde (because
of the bugs that can be added by a tired programmer) | havetsoesefound that
long sessions have been the only way | can isolate bugs.d@avican discipline
myself not to try to correct anything but the very simplesty bvhile 1 am tired
a long stretch can let me chase bugs in a painstakingly Ibgiag, and this is
sometimes necessary when intuitive bug-spotting fails.

Thus my general advice about the concrete programming taskdwbe to
schedule your time so you can work in bursts of around an heusgssion, and
that you should plan your work so that as much as possible erfything you
do can be tested fairly enthusiastically while it is frestyour mind. A natural
corollary of this advice is that projects should always laetet in plenty of time,
and pushed forward consistently so that no last-minutecpzam arise and force
sub-optimal work habits.

10 Documenting a program or project

Student assessed exercises are expected to be handed ileteomith a brief

report describing what has been done. Larger undergragugjeets culminate in
the submission of a dissertation, as do PhD studies. All ceroia programming
activities are liable to need two distinct layers of docutagéan: one for the user
and one for the people who will support and modify the prodndhe future.

All these facts serve to remind us that documentation is amgic part of any

program.

Two overall rules can guide the writing of good documentatid he first is
to consider the intended audience, and think about whatrbkeg to know and
how your document can be structured to help them find it. Thers#is to keep a
degree of consistency and order to everything: documenisarxdoherent overall
structure are both easier to update and to browse than sdissyfncratic jottings.

25

To help with the first of these, here are some potential stylegrite-up that
might be needed:

1. Comments within the code to remind yourself or somebody iwladready
familiar with the program exactly what is going on at eacmpa it;

2. Anoverview of the internal structure and organisatiothefwhole program
so that somebody who does not already know it can start to Hieid way
around;

3. Documentation intended to show how reliable a prograrmdscentrating
on discussions of ways in which the code has been built todkeer in the
face of unusual combinations of circumstance;

4. Atechnical presentation of a program in a form suitabieftdlication in a
journal or at a conference, where the audience will con§igeople expert
in the general field but not aware of exactly what your contidm is;

5. Anintroductory user manual, intended to make the progrsatle even by
the very very nervous;

6. A user reference manual, documenting clearly and prgcadieof the op-
tions and facilities that are available;

7. On-line help for browsing by the user while they are trytagise the pro-
gram;

8. A description of the program suitable for presentatioth®venture capi-
talists who are considering investing in the next stagesodi@velopment.

It seems inevitable that the above list is not exhaustiveuguess is that
most programs could be presented in any one of the given \sagshe resulting
document would be quite different in each case. It is not ¢im&t or the other of
these styles is inherently better or more important thartreampmore that if you
write the wrong version you will either not serve your reagetl or you will find
that you have had to put much more effort into the documenntdkian was really
justified.

A special problem about documentation is that of when it &khbe written.
For small projects at least it will almost always be produaely after the program
has been (at least nearly) finished. This can be rationabigethiming “how can
| possibly document it before it exists?”

| will argue here for two ideals. The first is that documemtatought to fol-
low on from design and specification work, but precede dadgirogramming.
The second is that the text of the documentation should lvsety linked to the

26

developing source code. The reasoning behind the first gktigethat writing
the text can really help to ensure that the specification @tthde has been fully
thought through, and once it is done it provides an invakiabhble reference to
keep the detailed programming on track. The second poiogreses some sort
of realism, and that all sorts of details of just what a pragioes will not be
resolved until quite late in the implementation processr iRstance the exact
wording of messages that are printed will often not be detidgil then, and it
will certainly be hard to prepare sample transcripts from tise of the program
ahead of its completidn Thus when the documentation has been written early it
will need completing when some of these final details getesktind correcting
when the code is corrected or extended. The most plausibfeoivenaking it
feasible to keep code and description in step is to keep tbggther. The con-
cept of Literate Programming[10] pursues this goal. A paogis represented as
a composite file that can be processed in (at least) two diffevays. One way
“compiles” it to create typeset-quality human readableutioentation, while the
other leaves just statements in some quite ordinary pragiagilanguage ready
to be fed into a compiler. This goes beyond just having capmmments in the
code in two ways. Firstly it expects that the generated d@ruation should be
able to exploit the full range of modern typography and thagn include pic-
tures or diagrams where relevant. It is supposed to end ufeaslyg presented
and readable as any fully free-standing document couldeBecondly Literate
Programming recognises that the ordering and layout of tbgram that has to
be compiled may not be the same as that in the ideal manuascatie disentan-
gling tool needs to be able to rearrange bits of text in ayfdleixible way so that
description can simultaneously be thought of as close tocdide it relates to and
to the section in the document where it belongs. This ideainvéally developed
as part of the project to implement thgXTtypesetting program that is being used
to prepare these lecture notes.

11 How do we know it does work?

A conceptual difficulty that many people suffer from is a agibn between
whether a program should work and whether it does. A progriaould work

if it has been designed so that there are clear and easilgiaggl reasons why it
can achieve what it should. Sometimes the term “easily @xgt#i may conceal
the mathematical proof of the correctness of an algorithuhableast in theory it
would be possible to talk anybody through the justificatifs.to programs that
actually do work, well the reality seems to be that the onlgaf these that you

4Even though these samples can be planned and sketched early.

27

will ever see will be no more than around 100 lines long: eroglly any program

much longer than that will remain flawed even after extenshecking. Proper
Oriental rugs will always have been woven with a deliberatstake in them,

in recognition of the fact that only Allah is perfect. Exparce has shown very
clearly indeed that in the case of writing programs we allehamough failings

that there is no great need to insert extra errors — therebailblenty inserted
however hard we try to avoid them. Thus (at least at the ptedate of the art)

there is no such thing as a (non-trivial) program that works.

If, however, a progranshouldwork (in the above sense) then the residual
errors in it will be ones that can be corrected without disitug the concepts
behind it or its overall structure. | would like to think of duproblems as “little
bugs”. The fact that they are little does not mean that theghtmot be important,
in that missing commas or references to the wrong variablecaase aeroplanes
to crash just as convincingly as can errors at a more conaejavel. But the
big effort must have been to get to a first testable versioroaf gode with only
little bugs left in it. What is then needed is a testing sggt®d help locate as
many of these as possible. Note of course that testing canewelr generate
evidence for the presence of a bug: in general it can not patnsence. But
careful and systematic testing is something we still neeengkier there has been
human involvement in the program construction protess

The following thoughts may help in planning a test regime:

1. Even obvious errors in output can be hard to notice. Perhaman society
has been built up around a culture of interpreting slighthbayuous input
in the “sensible” way, and certainly we are all very used w@irsg what we
expect to see even when presented with something ratheretiff By the
time you see this document | will have put some effort intookngg its
spelling, punctuation, grammar and general coherencel, laope that you
will not notice or be upset by the residual mistakes. But adybwho has
tried serious proof-reading will be aware that blatant akets can emerge
even when a document has been checked carefully severat time

2. If you are checking your own code and especially if you kngw can
stop work once it is finished then you have a clear incentveto notice
mistakes. Even if a mistake you find is not going to cause yduai to
spend time fixing it it does represent you having found yetla@rnstance
of your own lack of attention, and so it may not be good for yego;

3. Itis very desirable to make a clear distinction betweenjtt of testing a
program to identify the presence of bugs and the separatéyof correct-

5Some see this observation as a foundation for hope for thesfut

28

ing things. It can be useful to take the time to try to spot asymaistakes
as you can before changing anything at all;

4. A program can contain many more bugs and oddities thanworst night-
mares would lead you to believe!

5. Testing strategies worked out as part of the initial desifja program are
liable to be better than ones invented only once code hasdmepleted;

6. It can be useful to organise explicit test cases for ex¢reonditions that
your program may face (eg sorting data where all the numbdrs sorted
have the same value), and to collect test cases that causeahchrough
your code to be exercised. It is easy to have quite a largadparof test
cases but still have some major body of code unvisited.

7. Regressions tests are a good thing. These are test casgothap during
project development, and at each stage after any changelis afiaof them
are re-run, and the output the produce is checked. When aoyisrde-
tected a new item in the regression suite is prepared sdiic tan remain
a definite verification that the error does not re-appearraesoiture stage.
Automating the application of regression tests is a verydgihing, since
otherwise laziness can too easily cause one to skip runherg;t

8. When you find one bug you may find that its nature gives yousittaather
funny cases to check. You should try to record your thoughtsat you do
not forget this insight;

9. Writing extra programs to help you test your main body ofectsdoften a
good investment in time. On especially interesting schesrte generate
pseudo-random test cases. | have done that while testinlyagooial fac-
torising program and suffered randomly-generated tests ©fcompiler |
was involved with, and in each case the relentless randoerage of cases
turned out to represent quite severe stress;

10. You do not know how many bugs your code has in it, so do nowkuhen
to stop looking. One theoretical way to attack this worry ‘dole to get
some fresh known bugs injected into your code before testind then see
what proportion of the bugs found were the seeded-in onesvaich had
been original. That may allow you to predict the total bugeleemaining.

Having detected some bugs there are several possible toidgs One is to sit
tight and hope that nobody else notices! Another is to docurie deficiencies
at the end of your manual. The last is to try to correct somdeft The first

29

two of these routes are more reasonable than might at finst pesgper given that
correcting bugs so very often introduces new ones.

In extreme cases it may be that the level of correctness #mabe achieved
by bug-hunting will be inadequate. Sometimes it may thendssible to attempt
a formal proof of the correctness of your code. In all remlisircumstances this
will involve using a large and complicated proof assistangpam to help with all
the very laborious details involved. Current belief is thawill be very unusual
for bugs in the implementation of this tool to allow you to enq@with a program
that purports to be proved but which in fact still containstakes!

12 Is it efficient?

| have made this a separate section from the one on detetngresence of
errors because performance effects are only rarely thé mdgimple oversights.
Let me start by stressing the distinction between a prograhis expensive to
run (eg the one that computego 20,000,000,000 decimal places) and ones that
are inefficient (eg one that takes over half a second to cagnpuabrrect to four
places). The point being made is that unless you have atieaisa of how long a
task ought to take it is hard to know if your program is takinmgasonable amount
of time. And similarly for memory requirements, disc I/O aryaother important
resource. Thus as always we are thrown back to design andisgien time
predictions as our only guideline, and sometimes even thiéldee based on little
more than crude intuition.

If a program runs fast enough for reasonable purposes tleea thay be no
benefit in making it more efficient however much scope for iovpment there is.
In such cases avoid temptation. It is also almost always bigdat to concentrate
on getting code correct first and only worry about perforneaaiterwards, taking
the view that a wrong result computed faster is still wromgl eorrect results may
be worth waiting for.

When collecting test cases for performance measurementayitba useful
to think about whether speed is needed in every single casstan most cases
when the program is run. It can also be helpful to look at hostxare expected to
(and do) grow as larger and larger test cases are attempuiechdst programming
tasks it will be possible to make a trade between the amoutiinef a program
takes to run and the amount of memory it uses. Frequentlystiogvs up in a
decision as to whether some value should be stored away eités needed
later or whether any later user should re-calculate it. Reisogy this potential
trade-off is part of performance engineering.

For probably the majority of expensive tasks there will be simgle part of the
entire program that is responsible for by far the largestarhof time spent. One

30

would have expected that it would always be easy to predeadlof time where
that would be, but it is not! For instance when an early TITAbftFan compiler
was measured in an attempt to discover how it could be spaguédvas found
that over half of its entire time was spent in a very short lobmstructions that
were to do with discarding trailing blanks from the end ofuhpines. Once the
programmers knew that it was easy to do something about titpihe suspects
they were expecting to find a hot-spot in some more arcaneopdine code. It
is thus useful to see if the languages and system you usedgrmstrumentation
that makes it easy to collect information to reveal whichtgaf your code are
most critical. If there are no system tools to help you you bable to add in
time-recording statements to your code so it can collecbwts break-down to
show what is going on. Cunning optimisation of bits of codé treadly ever get
used is probably a waste of effort.

Usually the best ways to gain speed involve re-thinking datactures to pro-
vide cheap and direct support for the most common operatidhs can some-
times mean replacing a very simple structure by one that bhgs amounts of al-
gorithmic complexity (there are examples of such casesarPtrt B Complexity
course and the Part Il one on Advanced Algorithms). In almbstircumstances
a structural improvement that gives a better big-O growth far some critical
cost is what you should seek.

In a few cases the remaining constant factor improvemerpaeed may still
be vital. In such cases it may be necessary to re-write fratgra your code in
less portable ways (including the possibility of use of maeltode) or do other
things that tend to risk the reliability of your package. Tbtal effort needed to
complete a program can increase dramatically as the lagbéegent in absolute
performance gets squeezed out.

13 Identifying errors

Section 8 was concerned with spotting the presence of efrene | want to talk
about working out which part of your code was responsibléifem. The sections
are kept separate to help you to recognise this, and hendewoyau to separate
noticing incorrect behaviour from spotting mistakes in yoade. Of course fif,
while browsing code, you find a mistake you can work on frono is¢e if it can
ever cause the program to yield wrong results, and this stfidgde is one valid
error-hunting activity. But even in quite proper programssipossible to have
errors that never cause the program to misbehave in any wagah be noticed.
For instance the mistake might just have a small effect onpréormance of
some not too important subroutine, or it may be an illogtgaihat could only
be triggered into causing real trouble by cases that sontierclare of code had

31

filtered out.

You should also recognise that some visible bugs are not s mhue to any
single clear-cut error in a program but to an interactiomieen several parts of
your code each of which is individually reasonable but whicbombination fail.
Most truly serious disasters caused by software failurgedsecause of compli-
cated interactions between multiple “improbable” circtanses.

The first thing to try to locate the cause of an error is to $tarh the original
test case that revealed it and to try to refine that down to@wenimal clear-cut
demonstration of the bad behaviour. If this ends up smallghdat may then be
easy to trace through and work out what happened.

Pure thought and contemplation of your source code is thedete Decide
what Sherlock Holmes would have made of it! Run your compilenshatever
mode causes them to give as many warning messages as thepabdecof, and
see if any of those give valuable clues.

If this fails the next thought is to arrange to get a view on éixecution of
your code as it makes its mistake. Even when clever langspgeific debuggers
are available it will often be either necessary or easieslotthis by extra print
statements into your code so it can display a trace of it®@astiThere is a great
delicacy here. The trace needs to be detailed enough to gtiavo spot the first
line in it where trouble has arisen, but concise enough to beageable. My
belief is that one should try to judge things so that the t@agput from a failing
test run is about two pages long.

There are those who believe that programs will end up witlotst reliability
if they start off written in as fragile way as possible. Codewdd always make as
precise a test as possible, and should frequently includla esoss checks which,
if failed, cause it to give up. The argument is that this wapr@ér number of
latent faults will emerge in early testing, and the embedaeskrtions can point
the programmer directly to the place where an expectatibedféo be satisfied,
which is at least a place to start working backwards from imiat fior the actual
bug.

With many sorts of bugs it can be possible to home in on thecditff by some
sort of bisection search. Each test run should be designkdlve the range of
code within which the error has been isolated.

Some horrible problems seem to vanish as soon as you enabtebngging
features in your code or as soon as you insert extra prirgratits into it. These
can be amazingly frustrating! They may represent your ussainsafe language
and code that writes beyond the limit of an array, or they@autolve reliance on
the unpredictable value of an un-initialised variable. $mes such problems
turn out to be bugs in the compiler you are using, not in youn cade. | believe
that | have encountered trouble of some sort (often fairlganibut trouble nev-
ertheless) with every C compiler | have ever used, and | hbselate confidence

32

that no other language has attained perfection in this de@r sometimes trying
your code on a different computer or with a different compiVél either give you
a new diagnostic that provides the vital clue, or will behdiféerently thereby
giving scope for debugging-by-comparison.

Getting into a panic and trying random changes to your codenloaproper
part to play either in locating or identifying bugs.

14 Corrections and other changes

With a number of bugs spotted and isolated the time comeditpate them. The
ideal should be that when a bug is removed it should be remtmtatly and it
should never ever be able to come back. Furthermore itsdsi@md offspring
should be given the same treatment at the same time, and kgfecna new mis-
takes should be allowed to creep in while the changes arg lbeaue. This last
is often taken for granted, but when concentrating on onegoiar bug it is all
too easy to lose sight of the overall pattern of code and eveaduce more new
bugs than were being fixed in the first case. Regression tastatdeast one line
of defence that one should have against this, but just takiagorrection slowly
and thinking through all its consequences what is mostlytecanSmall bugs (in
the sense discussed earlier) that are purely local in scopdayest problems.
However sometimes testing reveals a chain of difficulties thust eventually be
recognised as a sign that the initial broad design of therprodhad been incor-
rect, and that the proper correction strategy does notvevising the problems
one at a time but calls for an almost fresh start on the whalgept. | think that
would be the proper policy for the program in section 19, drad ts part of why
the exercise there asks you to identify bugs but not to cotineen.

Upgrading a program to add new features is at least as dargasaorrecting
bugs, but in general any program that lasts for more than moreso will end up
with a whole raft of alterations having been made to it. Theme very easily
damage its structure and overall integrity, and the effact lse thought of as a
form of software rotthat causes old code to decay. Of course software rot would
not arise if a program never needed correcting and neveredegoigrading, but
in that case the program was almost certainly not being usddvas fossilised
rather than rotting. NOte that for elderly programs the persho makes correc-
tions is never the original program author (even if they hidneesame name and
birthday, the passage of time has rendered them differ&€hi3. greatly increases
the prospect of a would-be correction causing damage.

All but the most frivolous code should be kept under the admirsome source
management tool (perhapss) that can provide an audit trail so that changes can
be tracked. In some cases a discussion of a bug that has nawdraeved might

33

properly remain as a comment in the main source code, but mack often a
description of what was found to be wrong and what was chamgedend it
belongs in a separate project log. After all if the bug rebdg been removed who
has any interest in being reminded of the mistake that itesgrted?

Whenever a change is made to a program, be it a bug-fix or andmgteere
is a chance that some re-work will be needed in documentdtglp files, sample
logs and of course the comments. Once again the idea oftétpragramming
comes to the fore in suggestion that all these can be kepthigeo that none of
them get missed out.

15 Portability of software

Most high level languages make enthusiastic claims thafraros written in them
will be portable from one brand of computer to another, jestn@st make claims
that their compilers are “highly optimising”.

In reality achieving portability for even medium sized prags is not as easy
as all that. To give a gross example of a problem not addressstlby program-
ming language or standard library design, a Macintosh camsestandard with
a mouse with a single button, while most Unix X-windows sygstehave three-
button mice. In one sense the difference is a frivolity, duar@other it invites a
quite substantial re-think of user interface design. Atuber interface level a de-
sign that makes good use of a screen with 640 by 480 pixels@&nd256 colours
(as may be the best available on many slightly elderly coeigiimay look silly
on a system with very much higher resolution and more colours

For most programming languages you will find that implemeos provided
by different vendors do not quite match. Even with the moshdardised lan-
guages hardly any compiler supplier will manage to hold biackn providing
some private extra goodies that help distinguish them fiait tompetitors. Such
extras will often be things that it is very tempting to make 0$. Around Easter
1997 a good example of such a feature is “Active-X” which Moft is promot-
ing. To use such a feature tends to lock you to one vendor tiopta, while to
ignore it means that you can not benefit from the advantagedttbrings. By
now you will know what my suggested response to conflictstlkewill be. Yes,
it is to make your decisions explicitly and consciously eatthan by default, to
make them in view of stated ideas about what the users of yade will need,
and to include all the arguments you use to support your iecis your design
portfolio.

There are frequently clever but non-portable tricks thatlead to big perfor-
mance gains in code but at cost in portability. Sometimeptbper response to
these is to have two versions of the program, one slow but periable and the

34

other that takes full advantage of every trick available ome platform that is
especially important to you.

16 Team-work

Almost all of this course is about programming in the smaithva concentration
on the challenges facing a lone programmer. It is still usefthink for a while
how to handle the transition from this state into a largertearporate mentality.
One of the big emotional challenges in joining a team rel&bethe extent to
which you end up “owning” the code you work on. It is very eagyget into a
state where you believe (perhaps realistically) that yauthe only person who
can properly do anything to the code you write. It is also éasyecome rather
defensive about your own work. A useful bit of jargon thaersfto breaking out
of these thought patternsego-free programmingn this ideal you step back and
consider the whole project as the thing you are contributingot just the part
that you are visibly involved in implementing. It may alsoumeful to recognise
that code will end up with higher quality if understandingtaé shared between
several people, and that bugs can be viewed as things to hd émd overcome
and never as personal flaws in the individual who happenediite thiat fragment
of code.

When trying to design code or find a difficult bug it can be verijugale to
explain your thoughts to somebody else. It may be that theg met say much
more than er and um, and maybe they hardly need to listen ¢oupsobably need
to believe that they are). By agreeing that you will listentieit problems at a
later stage this may be a habit you can start right now withasreegroup of your
contemporaries.

Reading other people’s code (with their permission, of acguend letting
them read yours can also help you settle on a style or idiotrvibheks well for
you. It can also help get across the merits of code that islaiellout and where
the comments are actually helpful to the reader.

If you get into a real group programming context, it may madese to con-
sider partitioning the work in terms of function, for instasystem architect, pro-
grammer, test case collector, documentation experttherghan trying to distrib-
ute the management effort and split the programming in® dbtittle modules,
but before you do anything too rash read some more books tmasefengineer-
ing so that once again you can make decisions in an informddcansidered
way.

35

17 Lessons learned, Conclusion

One of the oft-repeated observations about the demons gé-Erale software
construction is thathere is no silver bulletin other words we can not expect to
find a single simple method that, as if by magic, washes awayuaMdifficulties.
This situation also applies for tasks that are to be carrigdbg an individual
programmer or a very small team. No single method gives a tkatyrhakes it
possible to sit down and write perfect programs withoutréffdhe closest | can
come to an idea for something that is generally valuablepsegnce — experience
on a wide range of programming projects in several diffel@mguages and with
various different styles of project. This can allow you t@sfeatures of a new
task that have some commonalty with one seen before. Tiiswgver, obviously
no quick fix. The suggestions | have been putting forward hegdo try to make
your analysis of what you are trying to achieve as explicyaar mind as possible.
The various sections in these notes provide headings thathelp you organise
your thoughts, and in general | have tried to cover topicsnimier that might
make sense in real applications. Of course all the detailscanclusions will be
specific to your problem, and nothing | can possibly say hareshiow you how
to track down your own very particular bug or confusion! | &adw fall back on
generalities. Keep thinking rather than trying random g¢jesnto your code. Try
to work one step at a time. Accept that errors are a part of tineaim condition,
and however careful you are your code will end up with them.

But always remember the two main slogans:

Programming is easy
and

Programming is fun.

18 Some challenges

Some of you may already consider yourselves to be seasongthptmers able
to cope with even quite large and complicated tasks. In wtéd®e | do not you to
feel this course is irrelevant, and so | provide here at tlileoéthe notes some pro-
gramming problems which | believe are hard enough to reptesal challenges,
even though the code that eventually has to be written wilbecespecially long.
There is absolutely no expectation that anybody will atyuebmplete any of
these tasks, or even find good starting points. However tesm@ples may help
give you concrete cases to try out the analysis and desigis ideave discussed:
identifying the key difficulties and working out how to paidn the problems into

36

manageable chunks. In some cases the hardest part of a ptapevould be the
design of a good enough testing strategy. The tasks deddniéxe are all both
reasonably compact and fairly precisely specified. | hauglid most of these
myself and found that producing solutions that were neatcamgtincing as well

as correct involved thought as well as more coding skill. réleee no prizes and
no ticks, marks or other bean-counter’s credit associatiéiul attempting these
tasks, but | would be jolly interested to see what any of yau @ame up with,

provided it can be kept down to no more than around 4 sidespdrpa

18.1 MULDIV

The requirement here is to produce a piece of code that actmptintegers and
computes(a * b + ¢)/d and also the remainder from the division. It should be
assumed that the computer on which this code is to be run hb# BR2egers, and
that integer arithmetic including shift and bitwise maslegions are available,
but the difficulty in this exercise arises becauseb will be up to 64-bits long
and so it can not be computed directly. “Solutions” that wegg the direct 64-bit
integer capabilities of a DEC Alpha workstation are not ¢érast!

It should be fairly simple to implememtul di v if efficiency where not an
issue. To be specific this would amount to writing parts of ekpge that did
double-length integer arithmetic. Here the additionale=tation is that speed
does matter, and so the best solution here will be one thaésniéle most effec-
tive possible use of the 32-bit arithmetic that is availatete also that code of
this sort can unpleasantly easily harbour bugs, for ingtahe to some integer
overflow of an intermediate result, that only show up in vasercircumstances,
and that the pressure to achieve the best possible perfoeparshes towards code
that comes very close to the limits of the underlying 32-bithanetic. Thought
will be needed when some or all of the input values are negalitie desired be-
haviour is one where the calculated quotient was roundedrtts\zero, whatever
its sign.

18.2 Overlapping Triangles

A point in the X-Y plane can be specified by giving its co-ordinatesy). A
triangle can then be defined by giving three points. Giventtiamgles a number
of possibilities arise: they may not overlap at all or theyymaeet in a point or
a line segment, or they may overlap so that the area whereotrexlap forms a
triangle, a quadrilateral, a pentagon or a hexagon. Writle tieat discovers which
of these cases arises, returning co-ordinates that desbetoverlap (if any).

A point to note here is that any naive attempt to calculatepihiat where
two lines intersect can lead to attempts to divide by zerbeflines are parallel.

37

Near-parallel lines can lead to division by very small numsb@ossibly leading
to subsequent numeric overflow. Such arithmetic odditiestmat be allowed to
arise in the calculations performed.

18.3 Matrix transposition

One way of representing an by n matrix in a computer is to have a single vector
of lengthmn and place the array element; at offsetm:+7 in the vector. Another
would be to store the same element at offsetn;j. One of these representation
means that items in the same row of the matrix live close tagethe other that
items in the same column are adjacent.

In some calculations it can make a significant differencepied which of
these layouts is used. This is especially true for computétsvirtual memory.
Sometimes one part of a calculation would call for one layand a later part
would prefer the other.

The task here is therefore to take integerandn and a vector of lengtin,
and rearrange the values stored in the vector so that if tfaeycff in one of as
one representation of a matrix they end up as the other. Bethesnatrix should
be assumed to be quite large you are not allowed to use anficigin amount of
temporary workspace (you can not just allocate a fresh veétengthmn and
copy the data into it in the new order — you may assume you magxisa space
of aroundm + n if that helps, but not dramatically more than that).

If the above explanation of the probléreels out of touch with today’s com-
puter uses, note how the task relates to takingraby n matrix representing
a picture and shuffling the entries to get the effect of rotathe image by 90
degrees. Just that in the image processing case you may kegavith data
arranged in sub-word-sized bite-fields, say at 4 bits pezlpix

18.4 Sprouts

The following is a description of a garhéo be played by two players using a
piece of paper. The job of the project here is to read in a gesun of a position
in the game and make a list of all the moves available to thé pleyer. This
would clearly be needed as part of any program that playedyémee against
human opposition, but the work needed here does not haventidew any issues
concerning the evaluation of positions or the identifiaatsd good moves.

The game starts with some number of marks made on a piece ef, Egch
mark in the form of a capital ‘Y’. Observe that each juncticastexactly three

5This is an almost standard classical problem and if you digf@ugh back in the literature
you will find explanations of a solution. If you thought to dwat for yourself, well done!
"Due to John Conway

38

little edges jutting from it. A move is made by a player idéyitig two free edges
and drawing a line between them. The line can snake aroungsliiat have been
drawn before as much as the player making the move likest buist not cross
any line that was drawn earlier. The player finishes the mgvdrawing a dot
somewhere along the new line and putting the stub of a newjetigey out from

it in one of the two possible directions. Or put a different éguivalent way, the
player draws a new ‘Y’ and joins two of its legs up to existimglss with lines that
do not cross any existing lines. The players make movesaltely and the first
player unable to make a further legal move will be the loser.

A variation on the game has the initial state of the game joss ¢hot ‘Y’
shapes) and has each player draw a new dot on each edge they, ¢tnat still
demands that no more that three edges radiate from each dhat.difference
is that in one case a player can decide which side of a new hgdwure line
must emerge from. | would be equally happy whichever versibthe game
was addressed by a program, provided the accompanying @éotation makes it
clear which has been implemented!

The challenge here clearly largely revolves around findimgag to describe
the figures that get drawn. If you want to try sprouts out asaggaetween people
before automating it, | suggest you start with five or sixtgtgrpoints.

18.5 ML development environment

The task here is not to write a program, but just to sketch loeitspecification
of one. Note clearly that an implementation of the task asitsalit here would
be quite a lot of work and | do not want to provide any encounagy& to you to
attempt all that!

In the Michaelmas Term you were introduced to the languageavid invited
to prepare and test various pieces of test code using a mexgiming under Mi-
crosoft Windows. You probably used the regular Windows épaid” as a little
editor so you could change your code and then paste backctedreersions of
it into the ML window. Recall that once you have defined a fumtior value in
ML that definition remains fixed for ever, and so if it is inaect you probably
need to re-type not only it but everything you entered atteAll in all the ML
environment you used was pretty crude (although | am proutieofreek letters
in the output it generates), and it would become intoler&neise in medium or
large-scale projects. Design a better environment, andrapfo your descrip-
tion of it a commentary about which aspects of it represesttgugenerically nice
programmer’s work-bench and which are motivated by theiappooperties of
ML.

39

19 An example from the literature

The following specification is given as a paragraph of reabtyreadable English
text, and there is then an associated program written inathgulage C. The fact
that the code is in C rather than any other language may slowwmderstanding
of it down somewhat, but decoding programs written in shglkmfamiliar lan-
guages is a valuable skill to gain! This quite small chunk @dle can give you
experience of bug-hunting: please do not look up the origantécle in CACM
until you have spent some while working through the code kingchow it works
and finding some of the mistakes. In previous years when | peagented this
material to our students they did almost as well as the psairal programmers
used in the original IBM study, but they still found only a peatibally small pro-
portion of the total number of known bugs!

40

Formatting programfor text input. Converted fromPL/lI to C by
A. C. Norman, January 1989, for use in practical classes.
Oiginal PL/I version froma paper by den Myers, CACMvol 21
no 9, 1978

(a)

(b)

(c)

(d)

(e)

This program conpiles correctly: it is believed not to
contain either syntax errors or abuses of the Clibrary.

A specification is given below You are to imagine that the
code appended was produced by sonebody who had been provided
with the specification and asked to produce an

i mpl ementation of the utility as descri bed.

Your task is one of quality control - it is to check that
the code as given is in agreenent with the specification.

If any bugs or nis-features are discovered they should be
docunmented but it will be up to the original programrer to
correct them

If there are bugs it is desirable that they all be found.

For the purposes of this study, a bug or a ms-feature is
some bad aspect of the code that could be visible to users
of the binary version of the code. Ugly or inefficient code
is deermed not to matter, but even snall deviations fromthe
letter of the specification and the things sensibly inplicit
init do need detecting.

Let nme repeat point (a) again just to stress it - the code
here has had its syntax carefully checked and uses the C

| anguage and library in a legal straightforward way, so
searching for bugs by checking fine details of the C

| anguage specification is not expected to be productive.

| have put in coments to gloss use of Clibrary functions
as an aid to those who know the syntax of C but not the
nanes/ specification of all things in said |ibrary. | have
tried to keep layout of the code neat and consistent.

There are few comments "because the original programer who
wote the code delivered it in that state”

41

/**

* Specification *
* ST T T T TTCT *
* *

*

* G ven an input text consisting of words separated by bl anks or
* new|line characters, the programformats it into a line-by-Ilinex
* formsuch that (1) each output line has a naxi mum of 30 *
* characters, (2) a word in the input text is placed on a single =
* output line, and (3) each output line is filled with as many *

* words as possible. *
* *
* The input text is a streamof characters, where the characters =
* are categorized as break or nonbreak characters. A break *
* character is a blank, a newline character (&, or an end of *
* text character (/). Newline characters have no speci al *
* significance; they ar treated as bl anks by the program & and =
* [should not appear in the output. *
* *
* A wrd is defined as a nonenpty sequence of non-break *
* characters. A break is a sequence of one or nore break *
* characters. A break in the input is reduced to a single blank =
* or start of new line in the output. *
* *
* The input text is a single line entered froma terninal simlar=*
* to a BBC micro wth an 80 character screen node. \Wen the *

* programis invoked it waits for the programto provide input. =
* The user types the input line, followed by a / (end of text) *
* and a carriage return. The programthen formats the text and
* types it on the terninal. *

*

* |f the input text contains a word that is too long to fit on a *
* single output line, an error nmessage is typed and the program =

* termnates. |If the end-of-text character is nissing, an error =
* nmessage is issued and the user is given a chance to type in a =«
* corrected version of the input line. *
* *
* (end of specification) *

**/

42

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

static int gchar(void);
static void pchar(int);

int main()

{

#define LI NESIZE 31

int Kk,

buf pos,
fill,
nmaxpos =
cw,
blank = ' ",
linefeed =%,
eotext = '/,
nor ei nput = 1;

LI NESI ZE,

/+ forward reference to gchar()

cw == eotext)

k++) pchar (buffer[k]);

char buffer[LlI NESI ZE] ;
buf pos = 0;
fill =0;
whi | e (noreinput)
{
cw = gchar();
if (cw==Dblank || cw == linefeed ||
{
if (cw == eotext) noreinput = 0;
if ((fill + 1 + bufpos) <= naxpos)
{
pchar (bl ank) ;
fill =fill + 1;
}
el se
{
pchar (1i nef eed);
fill = 0;
}
for (k = 0; k < bufpos;
fill =fill + bufpos;
buf pos = 0;
}
el se if (bufpos == maxpos)
{

43

x/

nor ei nput = O;
printf("wWrd to long\n");

}
el se
{
buf pos = bufpos + 1;
buf f er[buf pos-1] = cw,
}
}
pchar (1i nef eed);
return O;

static void getrecord(char =);

static int gchar()

{

#def i ne | LENGTH 80
static char buffer[ILENGIH = {’Z};
[+ Static array with first */
/= element starting off as *Z' */
char i nbuf[| LENGTH] ;
static int bcount = 1;

[+ static so persists between calls */
int eotext ="'/";

int c;

if (buffer[0] =="'2Z)

{

getrecord(i nbuf);
| *
* menchr scans the nenory at inbuf to see if the byte (eotext
* here) is present within the first ILENGIH bytes. If not it

* Will return NULL, if it is present it returns a pointer to it.
*/
i f (menchr(inbuf, eotext, ILENGITH) == 0)
{
printf("No end of text mark\n");
buf fer[1l] = eotext;
}

44

| *
* mencpy is used here to copy | LENGTH bytes frominbuf to buffer.
*/
el se nmencpy(buffer, inbuf, |ILENGTH);
}

¢ = buffer[bcount-1];
bcount = bcount + 1;

return c;
}
static void pchar(int c)
{
[*
* The static array outline is filled with blanks to start wth.
* The nunber of blanks in the string given is exactly LINESIZE
* so0 that the array is neatly filled up. No need to count the
* characters, there is no cheating going on here!
*/
static char outline[LI NESIZE] =
static int i = 1,
int linefeed ="'$;
if (c == linefeed)
{
| *

* The format % *s displays a row of characters where the nunber of
* characters is given by a paraneter (LINESIZE in this case).
*/
printf("%*s\n", LINESIZE, outline);
| *
* menset is a good way of setting all the elements of an array to
* the sane val ue, here bl ank.

* [

menset (outline, ' ', LINESIZE);
i = 1;

}

el se

{
outline[i-1] = c;
i =i + 1;

}

45

static void getrecord(char b[ILENGTH])

{
int i, ch = getchar(); [/* getchar() reads fromthe keyboard */
for (i = 0; i < ILENGTH, i++)
{
if (ch =="\n") b[i] =" ";
el se
{ b[i] = ch;
ch = getchar();
}
}
}

[+ End of file =/

20 Final Words

Do | follow my own advice? Hmmm | might have known you would dblat!
Well most of what | have written about here is what | try to dat bam not
especially formal about any of it. | only really go overboaout design and
making documentation precede implementation when stpginme code that |
expect to give me special difficulty. | have never got into shnigng of literate
programming, and suspect that | like the idea more than tléyeAnd | some-
times spend many more hours on a stretch at a keyboard thayblenosaight to. If
this course and these notes help you think about the proé@ssgramming and
allow you to make more conscious decisions about the styllewith adopt then
| guess | should be content. And if there is one very short waspuld like to
encapsulate the entire course, it would be the recommemdtitat you make all
the decisions and thoughts you have about programming asaqkexplicit as
possible.

Good luck!

References

[1] Colin Bentley. Introducing SSADM 4+NCC Blackwell, and also see
http://ww. bl ackwel | publ i shers. co. uk/ssadnfil.htm 1996.

[2] Jon Bentley.Programming PearlsAddison-Wesley, 1986.

[3] Jon Bentley.MoreProgramming PearlsAddison-Wesley, 1988.

46

[4] Fred Brookes.The Mythical Man MonthAddison Wesley, 2 edition, 1996.

[5] J. CameronJSP and JSD: The Jackson Approach to Software Development
IEEE Computer Society Press, 1989.

[6] Leiserson Cormen and RivestAn Introduction to Algorithms MIT and
McGraw-Hill, 1990.

[7] E. W. Dijkstra. A Discipline of ProgrammingPrentice-Hall, 1976.

[8] M. H. Halstead. Elements of Software Sciencé&lsevier North Holland,
1977.

[9] Brian W. Kernighan and Dennis M. Richi@.he C programming language
Prentice-Hall, 1978.

[10] Donald E. Knuth. Literate Programming CSLI Lecture Notes and CUP,
1992.

[11] C.A.R. Hoare O.-J. Dahl, E.W. DijkstraStructured ProgrammingAcad-
emic Press, 1972.

[12] X3J11. ANSI X3.159, ISO/IEC 9899:199(American National Standards
Institute, International Standards Organisation, 1990.

a7

