
Software Engineering II

or how to write good programs

A C Norman, Easter Term 1997

Part IA (50%)

1 Introduction

The courseSoftware Engineering Ipresented several major issues. One was that
errors in software can have serious consequences, up to and including loss of
life and the collapse of businesses. Another was that the construction of large
computer-related products will involve teams of programmers working to build
and support software over many years, and this raises problems not apparent to
an individual programmer working on a private project. A third was that formal
methods can be used when defining an planning a project to build a stable base for
it to grow on, and this can be a great help. The emphasis was on programming in
the large, which is what the term “Software Engineering” is usually taken to have
at its core. Overall the emphasis was on recognition of the full life-time costs
associated with software and the management strategies that might keep these
costs under control.

This course complements that perspective and looks at the job of one person
or a rather small group, working on what may well be a softwarecomponent or
a medium sized program rather than on a mega-scale product. The intent of the
course is to collect together and emphasise some of the issues that lie behind the
skill of programming. Good programmers will probably use many of the tech-
niques mentioned here without being especially aware of what they are doing, but
for everybody (even the most experienced) it can be very useful to bring these
ideas out into the open.

One of the major views I would like to bring to the art (or craft, or science,
or engineering discipline, depending on how one like to lookat it) of program-
ming is an awareness of the value of an idea described by George Orwell in his
book “1984”. This isdoublethink, the ability to believe two contradictory ideas
without becoming confused. Of course one of the original pillars of doublethink
was the useful preceptIgnorance is Strength, but collections of views specifically
about the process of constructing programs. These notes will not be about the rest
of the association of computers with surveillance, Newspeak or other efficiency-
enhancing ideas. The potentially conflicting views about programming that I want
to push relate to the prospect of a project succeeding. Try tokeep in your minds
both the ideaProgramming is incredibly difficult and this program will never work
correctly: I am going to have to spend utterly hopeless ages trying to coax it
into passing even the most minimal test casesand its optimistic other face, which
claims cheerfullyIn a couple of days I can crack the core of this problem, and
then it will only take me another few to finish off all the details. These days even
young children can all write programs. The concise way to express this particular
piece of doublethink (and please remember that you really have to believe both
part, for without the first you will make a total botch of everything, while without
the second you will be too paralysed ever to start actual coding), is

1

Writing programs is easy.

A rather closely related bit of doublethink alludes both to the joy of achieve-
ment when a program appears to partially work and the simultaneous bitter way
in which work with computers persistently fail. Computers show up our imper-
fections and frailties, which range through unwillingnessto read specifications via
inability to think straight all the way to incompetence in mere mechanical typing
skills. The short-hand for the pleasure that comes from discovering one of your
own mistakes, and having spent many frustrating hours tracking down something
that is essentially trivial comes out as

Writing programs is fun.

A further thing that will be curious about this course is thatit does not present
universal and provable absolute truths. It is much more in the style of collected
good advice. Some of this is based on direct experience, other parts has emerged
as an often-unstated collective view of those who work with computers. There are
rather fewer books covering this subject than I might have expected. There is a
very long reading list posted regularly oncomp.software-eng, but most of
it clearly assumes that by the time things get down to actually writing programs
the reader will know from experience what to do. Despite the fact that it is more
concerned with team-work rather than individual programming I want to direct
you towards the Mythical Man Month[4], if only for the cover illustration of the
La Brea Tar Pits1 with the vision that programmers can become trapped just as
the Ice Age mammoths and so on were. For looking at programming tasks that
are fairly algorithmic in style the book by Dijkstra[7] is both challenging and a
landmark. There are places where people have collected together some of the es-
pecially neat and cleverlittle programs they have come across, and many of these
indeed contain ideas or lessons that may be re-cyclable. Such examples have
come to be referred to as “pearls”[2][3]. Once one has workedout what program
needs to be written ideas (now so much in the mainstream that this book is per-
haps now out of date) can be found in one of the big presentations by some of the
early proponents of structured programming[11]. Steppingback and looking at
the programming process with a view to estimating programmer productivity and
the reliability of the end product, Halstead[8] introducedsome interesting sorts
of software metrics, which twenty years on are still not completely free of con-
troversy. All these still leave me feeling that there is a gapbetween books that
describe the specific detail of how to use one particular programming language,

1You may not be aware that the tar pits are in the middle of a thoroughly built-up part of
Los Angeles, and when visiting them you can try to imagine some of the local school-children
venturing too far and getting bogged down, thus luring theirfamilies, out for a week-end picnic,
to a sticky doom.

2

and those concerned with large scale software engineering and project manage-
ment. To date this gap has generally been filled by an apprentice system where
trainee programmers are invited to work on progressively larger exercises and
their output is graded and commented on by their superiors. Much like it is done
here! With this course I can at least provide some backgroundthoughts that might
help the apprentices start on their progression a little more smoothly.

When I started planning this course it was not quite obvious how much there
was going to be for me to say that avoided recitations of the blindingly obvious and
that was also reasonably generally applicable. As I startedon the notes it became
clear that there are actually a lot of points to be covered. Tokeep within the
number of lectures that I have and to restrict these notes to amanageable bulk I am
therefore restricting myself (mostly) to listing points for consideration and giving
as concrete and explicit recommendations as I can: I am not including worked
examples or lots of anecdotes that illustrate how badly things can go wrong when
people set about tasks in wrong-minded ways. But perhaps I cansuggest that as
you read this document you imagine it expanded into a book-length presentation
with all that additional supporting material and with a few exercises at the end of
each section. You can also think about all the points that I raise in the context of
the various programming exercises that you are set or other practical work that
you are involved with.

2 Different sorts of programming tasks

When considering software-related projects it is useful to start with a classification
of possible sorts of program. There are three justificationsfor this:

1. Different sorts of computer systems are not all equally easy to build. For
instance industrial experience has shown repeatedly that the construction of
(eg) an operating system is very much harder than building a (again eg) a
compiler even when the initial specifications and the amountof code to be
written seem very similar. Thinking about the category intowhich your par-
ticular problem falls can help you to plan time-scales and predict possible
areas of difficulty;

2. The way you go about a project can depend critically on somevery high
level aspects of the task. A fuller list of possibilities is given below, but
two extreme cases might be (a) a software component for inclusion in a
safety-critical part of an aero-space application, where development budget
and timescale are subservient to an over-riding requirement for reliability,
and (b) a small program being written for fun as a first experiment with a
new programming language, where the program will be run justonce and

3

nothing of any real important hands on the results. It would be silly to carry
forward either of the above two tasks using a mind-set tuned to the other:
knowing where one is on the spectrum between can help make theselection
of methodology and tools more rational;

3. I will make a point in these notes that program developmentis not some-
thing to be done in an isolated cell. It involves discussing ideas and progress
with others and becoming aware of relevant prior art. Thinking about the
broad area in which your work lies can help you focus on the resources
worth investigating. Often some of these will not be at all specific to the
immediate description of what you are suppose to achieve butwill con-
cerned with very general areas such as rapid prototyping, formal validation,
real-time responsiveness, user interfaces or whatever.

I will give my list of possible project attributes. These arein general not
mutually exclusive, and in all real cases one will find that these are not yes–no
choices but more like items to be scored from 1 to 10. I would like to think
of them as forming an initial survey that you should conduct before starting any
detailed work on your program just to set it in context. When you find one or
two of these scoring 9 or 10 out of 10 for relevance you know youhave identified
something important that ought to influence how you approachthe work. If you
find a project scores highly onlots of these items then you might consider trying
to wriggle out of having to take responsibility for it, sincethere is a significant
chance that it will be a disaster! The list here identifies potential issues, but does
not discuss ways of resolving them: in many cases the projectfeatures identified
here will just tell you which of the later sections in these notes are liable to be the
more important ones for your particular piece of work. The wording in each of
my descriptions will be intended to give some flavour of howsevereinstances of
the issue being discussed can cause trouble, so keep cheerful because usually you
will not be plunging in at the really deep end of the pool.

Ill-defined One of the most common and hardest situations to face up to is when
a computer project is not clearly specified. I am going to takethis case to
include ones where there appears to be a detailed and precisespecification
document but on close inspection the requirements as written down boil
down to “I don’t know much about computer systems but I know what I
like, so write me a program that I will like, please.” Clearly the first thing to
do in such a case is to schedule a sub-project that has the taskof obtaining a
clear and concise description of what is really required, and sometimes this
will of itself be a substantial challenge;

Shifting sands If either project requirements or resources can change while soft-
ware development is under way then this fact needs to be allowed for. Proba-

4

ble only a tiny minority of real projects will be immune from this sort of dis-
traction, since even for apparently well-specified tasks itis quite usual that
experience with the working version of the program will leadto “wouldn’t
it be nice if . . . ” ideas emerging even in the face of carefullydiscussed and
thought out early design decisions that the options now requested would not
be supportable.

Safety-critical It is presumably obvious that safety-critical applications need ex-
ceptional thought and effort put into their validation. But this need for reli-
ability is far from an all-or-nothing one, in that the reputation of a software
house (or indeed the grades obtained by a student) may dependon ensuring
that systems run correctly at least most of the time, and thattheir failure
modes appear to the user to be reasonable and soft. At the other extreme
it is worth noting that in cases where robustness of code and reliability of
results are not important at all (as can sometimes be the case, despite this
seeming unreasonable) that fact can be exploited to give thewhole project a
much lighter structure and sometimes to make everything very much easier
to achieve. A useful question to ask is “Does this program have to work
correctly inall circumstances, or does it just need to work inmostcommon
cases, or indeed might it be sufficient to make it work in justonecarefully
chosen case?”

Large It is well established that as the size of a programming task increases the
amount of work that goes into it grows much more rapidly than the number
of lines of code (or whatever other simple measurement you like) does. At
various levels of task size it becomes necessary to introduce project teams,
extra layers of formal management and in general to move awayfrom any
pretence that any single individual will have a full understanding of the
whole effort. If your task and the associated time-scales call for a team of
40 programmers and you try it on your own maybe you will have difficulty
finishing it off! Estimating the exact size that a program will end up or just
how long it will take to write is of course very hard, but identifying whether
it can be done by one smart programmer in a month or if it is a bigteam
project for five years is a much less difficult call to make.

Urgent When are you expected to get this piece of work done? How form isthe
deadline? If time constraints (including the way that this project will com-
pete with other things you are supposed to do) represents a real challenge it
is best to notice that early on. Note that if, while doing finaltesting on your
code, you find that it has a bug in it there may be no guarantee that you can
isolate or fix this to any pre-specified time-scale. This is because (at least
for most people!) there is hardly any limit to the subtlety ofbugs and the

5

amount of time and re-work needed to remove them. If the delivery date
for code is going to be rigidly enforced (as is the case with CSTfinal year
projects!) this fact may be important: even if there is plenty of the project
as a whole a rigid deadline can make it suddenly become urgentat the last
minute;

Unrealistic It is quite easy to write a project specification that sounds good, but is
not grounded in the real world. A program that modelled the stock markets
and thereby allowed you to predict how to manage your portfolio, or one to
predict winning numbers in the national lottery, or one to play world-class
chess. . . Now of course there are programs that play chess pretty well, and
lots of people have made money out of the other two projects (in one case
the statistics that one might apply ismucheasier than the other!), but the
desirability of the finished program can astonishingly often blind one to the
difficulties that would arise in trying to achieve it. In somecases a project
might be achievable in principle but is beyond either today’s technology or
this week’s budget, while in other cases the idea being considered might not
even realistic given unlimited budget and time-scales. There are of course
places where near-unreasonable big ideas can have a very valuable part to
play: in a research laboratory a vision of one of these (currently) unrealis-
tic goals can provide direction to the various smaller and better contained
projects that each take tiny steps towards the ideal. At present my favourite
example of something like this is the idea ofnanotechnologywith armies of
molecular-scale robots working together to build their ownheirs and suc-
cessors. The standard example of a real project that many (most?) realistic
observers judged to be utterly infeasible was the “Star Wars” Strategic De-
fence Initiative, but note that at that sort of level the political impact of
even starting a project may be at least as important as delivery of a working
product!

Multi-platform It is a luxury if a program only has to work on a single fixed com-
puter system. Especially as projects become larger there issubstantial extra
effort required to keep them able to work smoothly on many different sys-
tems. This problem can show up with simple issues such as word-lengths,
byte-arrangements in memory and compiler eccentricities,but it gets much
worse as one looks at windowed user interfaces, multi-mediafunctions, net-
work drivers and support for special extra plug-in hardware;

Long life-time The easiest sort of program gets written one afternoon and is
thrown away the next day. It does not carry any serious long-term sup-
port concerns with it. However other programs (sometimes still initially
written in little more than an afternoon) end up becoming part of your life

6

and get themselves worked and re-worked every few years. In my case the
program I have that has the longest history was written in around 1972 in
Fortran, based on me having seen one of that year’s Diploma dissertations
and having (partly unreasonably) convinced myself I could do better. The
code was developed on Titan, the then University main machine. I took it
to the USA with me when I spent a year there and tried to remove the last
few bugs and make it look nicer. When the University moved up toan IBM
mainframe I ran it on that, and at a much later stage I translated it (semi
automatically) into BBC basic and ran it (very slowly) on a BBC micro. By
last year I had the code in C with significant parts of the middle of it totally
re-written, but with still those last few bugs to find ways of working around.
If I had been able to predict when I started how long this wouldbe of in-
terest to me for maybe I would have tried harder to get it rightfirst time!
Note the radical changes in available hardware and sensibleprogramming
language over the lifetime of this program. The topical allusion to the prob-
lems of not thinking far enough ahead is to the worry about theyear 2000
and computer-stored dates;

User interface For programs like modern word processors there is a real chance
that almost all of the effort and a very large proportion of the code will go
into supporting the fancy user interface, and trying to makeit as helpful
and intuitive as possible. Actually storing and editing thetext could well
be fairly straight forward. When the smoothness of a user interface is a
serious priority for a project then the challenge of definingexactly what
must happen is almost certainly severe too, and in significant projects will
involve putting test users in special usability laboratories where their eye-
movement can be tracked by cameras and their key-strokes canbe timed.
The fact that an interface provides lots of windows and pull-down menus
does not automatically make it easy to use;

Diverse usersMany commercial applications need to satisfy multiple users with
diverse needs as part of a single coherent system. This can extend to new
computer systems that need to interwork seamlessly with multiple existing
operational procedures, including existing computer packages. Some users
may be nervous of the new technology, while others may find excessive
explanation an offensive waste of their time. The larger thenumber of in-
terfaces needed and the wider the range of expectations the harder it will be
to make a complete system deliver total satisfaction;

Speed critical Increasingly these days it makes sense to buy a faster computer if
some task seems to take a little longer than is comfortable. However there
remain some areas where absolute performance is a serious issue and where

7

getting the very best out of fixed hardware resources can givea competitive
edge. The case most in my mind at present is that of (high security) encryp-
tion, where the calculations needed are fairly demanding but where there
is real interest in keeping some control over the extra hardware costs that
user are expected to incur. If speed requirements lead to need for signifi-
cant assembly code programming (or almost equivalently to the design of
task-specific silicon) then the resource requirements of a project can jump
dramatically. If in the other hand speed is of no importance at all for some
task it may become possible to use a higher level programmingsystem,
simpler data structures and algorithms and generally save ahuge amount of
aggravation;

Real time Real-time responsiveness is characteristic of many controlapplica-
tions. It demands that certain external events be given a response within
a pre-specified interval. At first this sounds like a variant on tasks that are
just speed-critical, but the fine granularity at which performance is spec-
ified tends to influence the entire shape of software projectsand rule out
some otherwise sensible approaches. Some multi-media applications and
video games will score highly in this category, as will engine management
software for cars and flight control software for airports;

Memory critical A programming task can be made much harder if you are squeezed
for memory. The very idea of being memory-limited can feel silly when
we all know that it is easy to go out and but another 16 Mbytes for (cur-
rently) of the order of£50. But the computer in your cell-phone will have
an amount of memory selected on the basis of a painful compromise be-
tween cost (measured in pennies), the power drain that the circuitry puts
on the battery (and hence the expected battery life) and the set of features
that can be supported. And the software developers are probably give the
memory budget as a fixed quantity and invited to support as long a list of
features as is at all possible within it;

Add-on A completely fresh piece of software is entitled to define itsown file
formats and conventions and can generally be designed and build without
too much hindrance. But next year the extension to that original package
is needed, or the new program is one that has to work gracefully with data
from other people’s programs. When building an add-on it is painfully often
the case that the existing software base is not very well documented, and that
the attempted new use of it reveals previously unknown bugs or limitations
in the core system. Thus the effort that will need to be put into the second
package may be much greater than would have been predicted based on
experience from the first;

8

Embedded If the computer you are going to program is one in an electric egg-
timer (or maybe a toy racing car, or an X-ray scanner) then testing may
involve be a quite different experience from that you becomeused to when
debugging ordinary applications that run on standard work-stations. In par-
ticular it may become necessary to become something of an expert in the
hardware and electronics and also in the application area ofthe system
within which your code will be placed;

Tool-weak environment This is a follow-on from the “embedded” heading, in
that it is perhaps easiest the envisage an electric pop-up toaster where any-
thing that slowed down or enlarged the code being run would perturb system
timing enough to burn the toast, and where the target hardware is not auto-
matically equipped with printers and flashing lights that can be used to help
sense what is going on inside its CPU. For some such cases it is possible
to buy or build real-time emulators or to wire in extra probesinto a debug-
gable version of the hardware. There are other cases where either technol-
ogy or budget mean that program development has to be done with a slow
turn-around on testing and with only very limited ability todiscover what
happened when a bug surfaced. It is incredibly easy to simulate such a tool-
weak environment for yourself by just avoiding the effort associated with
becoming familiar with automated testing tools, debuggersand the like;

Novel One of the best and safest ways of knowing that a task is feasible is to
observe that somebody else did it before, and their version was at least more
or less satisfactory. The next best way is to observe that thenew task is
really rather similar to one that was carried out successfully in the past. This
clearly leads to the obvious observation that if something is being attempted
and there are no precedents to rely on then it becomes much harder to predict
how well things will work out, and the chances of nasty surprises increases
substantially.

There are two sort of program not listed above which deserve special mention.
The first is the implementation of a known algorithm. This will usually end up as
a package or a subroutine rather than a complete free-standing program, and there
are plenty of algorithms that are complicated enough that programming them is
a severe challenge. However the availability of a clear target and well specified
direction will often make such programming tasks relatively tractable. It is how-
ever important to distinguish between programming up a complete and known
algorithm (easyish) from developing and then implementinga new one, and un-
comfortably often things that we informally describe as algorithms are in fact just
strategies, and lots of difficult and inventive fine detail has to be filled into make
them realistic.

9

The second special sort of program is the little throw-away one, and the recog-
nition that such programs can be lashed together really fastand without any fuss
is important, since it can allow one to automate other parts of the program devel-
opment task through strategic use of such bits of jiffy code.

3 Analysis and description of the objective

Sometimes a programming task starts with you being presented with a complete,
precise and coherent explanation of exactly what has to be achieved. When this
is couched in language so precise that there is not possible doubt about what is
required you might like to ask why you are being asked to do anything, since
almost all you need to do is to transcribe the specification into the particular syntax
of the (specified) programming language. Several of the PartIA tickable problems
come fairly close to this pattern, and there the reason you are asked to do them
is exactly so you get practical experience with the syntax ofthe given language
and the practical details of presenting programs to the computer. But that hardly
counts as serious programming!

Assuming that we are not in one of these artificial cases, it isnecessary to
think about what one should expect to find in a specification and what does not
belong there. It is useful to discuss the sorts of language used in specifications,
and to consider who will end up taking prime responsibility for everything being
correct.

A place to start is with the observation that a specification should describe
what is wanted, rather than how the desired effect is to be achieved. This ideal can
be followed up rather rapidly by the observation that it is often amazingly difficult
to know what is really wanted, and usually quite a lot of important aspects of
the full list of requirements will be left implicit or as items where you have to
apply your own judgement. This is where it is useful to think back to the previous
section and decide what style of project was liable to be intended and where the
main pressure points are liable to be.

3.1 Important Questions

I have already given a check-list that should help work out what general class of
problem you are facing. The next stage is to try to identify and concentrate on
areas of uncertainty in your understanding of what has to be done. Furthermore
initial effort ought to go into understanding aspects of theproblem that are liable
to shape the whole project: there is no point in agonising over cosmetic details
until the big picture has become clear. Probably the best wayof sorting this out is
to imagine that some magic wand has been waved and it has conjured up a body

10

of code and documentation that (if the fairy really was a goodone!) probably
does everything you need. However as a hard-headed and slightly cynical person
you need to check it first. Deciding what you are going to look for to see if the
submitted work actually satisfied the project’s needs can let you make explicit a
lot of the previously slightly woolly expectations you might have. This viewpoint
moves you from the initial statement “The program must achieve X” a little closer
to “I must end up convinced that the program achieves X and here is the basis for
how that conviction might be carried”. Other things that might (or indeed might
not) reveal themselves at this stage are:

1. Is user documentation needed, and if so how detailed is it expected to be?
Is there any guess for how bulky the user manual will be?

2. How formal should documentation of the inner workings of the code be?

3. Was the implementation language to be used pre-specified,and if not what
aspects of the problem or environment are relevant to the choice?

4. Is the initial specification a water-tight one or does the implementer have to
make detailed design decisions along the way?

With regard to choice of programming language note that evidence from stud-
ies that have watched the behaviour of real programmers suggests that to a good
first approximation it is possible to deliver the same numberof lines of working
documented code per week almost whatever language it is written in. A very
striking consequence of this is that languages that are naturally concise and which
provide biuilt-in support for more of the high-level thingsyou want to do can give
major boosts to productivity.

The object of all this thought is to lead to a proper specification of the task.
Depending on circumstances this may take one of a number of possible forms:

3.2 Informal specifications

Documents written in English, however pedantically phrased and however volu-
minous, must be viewed as informal specifications. Those whohave a lot of spare
time might try reading the original description of the language C[9] where Appen-
dix A is called a reference manual and might be expected to form a useful basis for
fresh implementations of the language. Superficially it looks pretty good, but it is
only when you examine the careful (though still “informal” in the current context)
description in the official ANSI standard[12] that it becomes clear just how much
is left unsaid in the first document. Note that ANSI C is not thesame language as
that defined by Kernighan and Ritchie, and so the two documentsjust mentioned

11

can not be compared quite directly, and also be aware that spotting and making
clear places where specifications written in English are notprecise is a great skill,
and one that some people enjoy exercising more than others do! The description
in section 19 is another rather more manageable example of aninformal textual
specification. When you get to it you might like to check to see what it tells you
what to do about tabs and back-spaces, which are clearly characters that have an
effect on horizontal layout. What? It fails to mention them? Oh dear!

3.3 Formal descriptions

One response to the fact that almost all informal specifications are riddled with
holes (not all of which will be important: for instance it might be taken as under-
stood by all that messages that are printed so that they look like sentences should
be properly spelt and punctuated) has been to look for ways ofusing formal de-
scription languages. The ZED language (developed at Oxford2, and sometimes
written as just Z) is one such and has at times been taught in Software Engineer-
ing courses here. The group concerned with the development of the language ML
were keen to use formal mathematically-styled descriptivemethods to define ex-
actly what ML ought to do in all possible circumstances. Later on in the CST
there are whole lecture courses on Specification and Verification and so I am not
going to give any examples here, but will content myself by observing that a good
grounding in discrete mathematics is an absolute pre-requisite for anybody think-
ing of working this way.

3.4 Executable specifications

One group of formal specification enthusiasts went off and developed ever more
powerful mathematical notations to help them describe tasks. Another group ob-
served that sometimes a careful description of what must be achieved looks a
bit like a program in a super-compact super-high-level programming language.
It may not look like a realistic program, in that it may omit lots of explana-
tion about how objectives should be achieved and especiallyhow they should be
achieved reasonably efficiently. This leads to the idea of anexecutable specifica-
tion, through building an implementation of the specification language. This will
permitted to run amazingly slowly, and its users will be encouraged to go all out
for clarity and correctness. To give a small idea of what thismight entail, consider
the job of specifying a procedure to sort some data. The initial informal spec-
ification might be that the output should be a re-ordering of the input such that
the values in the output be in non-descending order. An executable specification

2http://www.comlab.ox.ac.uk/oucl/prg.html

12

might consist of three components. The first would create a list of all the different
permutations of the input. The second would be a procedure toinspect a list and
check to see if its elements were in non-descending order. The final part would
compose these to generate all permutations than scan through them on at a time
and return the first non-descending one found. This would notbe a good practical
sorting algorithm, but could provide a basis for very transparent demonstrations
that the process shown did achieve the desired goal! It should be remembered that
an executable specification needs to be treated as such, and not as a model for how
the eventual implementation will work. A danger with the technique is that it is
quite easy for accidental or unimportant consequences of how the specification is
written to end up as part of the project requirements.

4 Ethical Considerations

Quite early on when considering a programming project you need to take explicit
stack of any moral or ethical issues that it raises. Earlier in the year you have
had more complete coverage of the problems of behaving professionally, so here
I will just give a quick check-list of some of the things that might give cause for
concern:

1. Infringement of other people’s intellectual property rights, be they patents,
copyright or trade secrets. Some companies will at least tryto prevent others
from creating new programs that look too much like the original. When
licensed software is being used the implications of the license agreement
may become relevant;

2. Responsibility to your employer or institution. It may be that certain sorts
of work are contrary to local policy. For instance a company might not be
willing to permit its staff to politically motivated virtual reality simulations
using company resources, and this University has views about the commer-
cial use of academic systems;

3. A computing professional has a responsibility to give honest advice to their
“customer” when asked about the reasonableness or feasibility of a project,
and to avoid taking on work that they know they are not qualified to do;

4. It can be proper to take a considered stance against the development of
systems that are liable to have a seriously negative impact on society as a
whole. I have known some people who consider this reason to avoid any
involvement with military or defence-funded computing, while others will
object to technology that seems especially liable to make tracking, surveil-
lance or eavesdropping easier. Those of you with lurid imaginations can no

13

doubt envisage plenty more applications of computers that might be seen as
so undesirable that one should if necessary quit a job ratherthan work on
them.

5 How much of the work has been done already?

The points that I have covered so far probably do not feel as ifthey really help you
get started when faced with a hard-looking programming task, although I believe
that working hard to make sure you really understand the specification you are
faced with is in fact always a very valuable process. From nowonwards I move
closer to the concrete and visible parts of the programming task. The first question
to ask here is “Do I actually have to do this or has it been done before?”

There are three notable cases where something has been done before but it is
still necessary to do it again. Student exercises are one of these, and undue reliance
on the efforts of your predecessors is gently discouraged. Sometimes a problem
has been solved before, but a solution needs to be re-createdwithout reference to
the original version because the original is encumbered with awkward commer-
cial3 restrictions or is not locally available. The final cause forre-implementation
is if the previous version of the program concerned was a failure and so much of a
mess that any attempt to rely on it would start the new projectoff in wrong-minded
directions.

Apart from these cases the best way to write any program at allis to adopt,
adapt and improve as much existing technology as you can! This can range from
making the very second program that you ever write a variation on that initial
“Hello World” example you were given through to exploiting existing large soft-
ware libraries. The material that can be reclaimed may be as minor as a bunch of
initial comments saying who you (the author) are and including space to describe
what the program does. It might just be some stylised “import” statements needed
at the head of almost any program you write. If you need a tree structure in today’s
program do you have one written last week which gives you the data type defin-
ition and some of the basic operations on trees? Have you beenprovided with a
collection of nice neat sample programs (or do you have a bookor CD ROM with
some) that can help? Many programming languages are packaged with a fairly
extensive collection of chunks of sample code.

Most programming languages come with standardised libraries that (almost al-
ways) mean there is no need for you to write your own sorting procedure or code to
convert floating point values into or out of textual form. In many important areas

3Remember that if the restriction is in the form of a patent then no amount of re-implementation
frees you from obligations to the patent-owner, and in othercases you may need to be able to give a
very clear demonstration that your new version really has been created completely independently.

14

there will be separate libraries that contain much much moreextensive collections
of facilities. For instance numerical libraries (eg the onefrom NAG) are where
you should look for code to solve sets of simultaneous equations or to maximise
a messy function of several variables. When you need to implement a windowed
interface with pull-down menus and all that sort of stuff again look to existing
library code to cope with much of the low-level detail for you. Similarly for data
compression, arbitrary precision integer arithmetic, image manipulation. . .

Observing that there is a lot of existing support around doesnot make the
problem of program construction go away: knowing what existing code is avail-
able is not always easy, and understanding both how to use it and what constraints
must be accepted if it is used can be quite a challenge. For instance with the NAG
(numerical) library it may take beginners quite a while before they discover that
E04ACF (say, and not one of the other half-dozen closely related routines) is the
name of the function they need to call and before they understand exactly what
arguments to pass to it.

As well as existing pre-written code (either in source or library form) that
can help along with a new project there are also packages thatwrite significant
bodies of code for you, basing what they do one on either a compact descriptive
input file or interaction with the user through some clever interface. The well-
established examples of this are the toolsyacc andlex that provide a convenient
and reliable way of creating parsers. Current users of Microsoft’s Visual C++
system will be aware of the so-called “Wizards” that it provides that help create
code to implement the user interface you want, and there are other commercial
program generators in this and a variety of business application areas. To use one
of these you first have to know of its availability, and then learn how to drive it:
both of these may involve an investment of time, but with luckthat will be re-paid
with generous interest even on your first real use. In some cases the correct use
of a program generation tool is to accept its output uncritically, while on other
occasions the proper view is to collect what it creates, study it and eventually
adjust the generated code until you can take direct responsibility for subsequent
support. Before deciding which to do you need to come to a judgement about the
stability and reliability of the program generator and how often you will need to
adjust your code by feeding fresh input in to the very start.

Another way in which existing code can be exploited is when new code is
written so that it converts whatever input it accepts into the input format for some
existing package, one that solves a sufficiently related problem that this makes
some sense. For instance it is quite common to make an early implementation
of a new programming language work by translating the new language into some
existing one and then feeding the translated version into anexisting compiler. For
early versions of ML the existing language was Lisp, while for Modula 3 some
compilers work by converting the Modula 3 source into C. Doingthis may result

15

in a complete compiler that is slower and bulkier than might otherwise be the case,
but it can greatly reduce the effort in building it.

6 What skills and knowledge are available?

A balance needs to be drawn between working through a new programming project
using only the techniques and tools that you already know andpushing it forward
using valuable but unfamiliar new methods. Doing somethingnew may slow you
down substantially, but an unwillingness to accept that toll may lead to a very
pedestrian style of code development using only a limited range of idioms. There
is a real possibility that short-term expediency can be in conflict with longer term
productivity. Examples where this may feel a strain includeuse of formal meth-
ods, new programming languages and program generation tools. The main point
to be got across here is that almost everything to do with computers changes every
five years or so, and so all in the field need to invest some of their effort in con-
tinual personal re-education so that their work does not look too much as if it has
been chipped out using stone axes. The good news is that although detailed tech-
nology changes the skills associated with working through asignificant project
should grow with experience, and the amount of existing codethat an old hand
will have to pillage may be quite large, and so there is a reasonable prospect for
a long term future for those with skills in software design and construction. Re-
member that all the books on Software Engineering tell us that the competence of
the people working on a project can make more difference to its success than any
other single factor.

It is useful to have a conscious policy of collecting knowledge about what
can be done and where to find the fine grubby details. For example the standard
textbook[6] contains detailed recipes for solving all sorts of basic tasks. Only
rarely will any one of these be the whole of a program you need to write, but quite
often a larger task will be able to exploit one or more of them.These and many of
the other topics covered in the CST are there because there is at least a chance that
they may occasionally be useful! It is much more important toknow what can be
done than how to do it, because thehowcan always be looked up when you need
it.

7 Design of methods to achieve a goal

Perhaps the biggest single decision to be made when startingthe detailed design
of a program is where to begin. The concrete suggestions thatI include here are to
some extent caricatures; in reality few real projects will follow any of them totally

16

but all should be recognisable as strategies. The crucial issue is that it will not be
possible to design or write the whole of a program at once so itis necessary to
split the work into phases or chunks.

7.1 Top-Down Design

In Top Down Design work on a problem starts by writing a “program” that is just
one line long. Its text is:

begin SolveMyProblem(); end;

where of course the detailed punctuation may be selected to match the program-
ming language being used. At this stage it is quite reasonable to be very informal
about syntax. A next step will be to find some way of partitioning the whole task
into components. Just how these components will be brought into existence is at
present left in the air, however if we split things up in too unreasonable a way we
will run into trouble later on. For many simple programs the second stage could
look rather like:

(* My name, today’s date, purpose of program *)
import Standard-libraries;
begin

(* declare variables here *)
data := ReadInData();
results := Calculate(data);
DisplayResults(results)

end;

The ideal is that the whole development of the program shouldtake place in
baby-sized steps like this. At almost every stage there willbe a whole collection
of worrying-looking procedures that remain undefined and not yet thought about,
such asCalculate above. It is critical not to worry too much about these,
because each time a refinement is made although the number of these unresolved
problems may multiply the expected difficulty of each will reduce. Well it had
better, since all the ones that you introduce should be necessary steps towards
the solution of your whole original task, and it makes sense to expect parts to be
simpler than the whole.

After a rather few steps in the top-down development processone should ex-
pect to have a fully syntactically correct main program thatwill not need any
alterations later as the low level details of the proceduresthat it calls get sorted
out. And each of the components that remain to be implementedshould have
a clearly understood purpose (for choice that should be written down) and each

17

such component should be clearly separated from all the others. That is not to
say that the component procedures might not call each other or rely on what they
each can do, but the internal details of any one component should not matter to
any other. This last point helps focus attention on interfaces. In my tiny example
above the serious interfaces are represented by the variablesdata andresults
which pass information from one part of the design to the next. Working out ex-
actly what must be captured in these interfaces would be generally need to be done
fairly early on. After enough stages of elaboration the bitsleft over from top-down
design are liable to end up small enough that you just code them up without need
to worry: anything that is trivial you code up, anything thatstill looks murky you
just apply one more expansion step to. With luck eventually the process ends.

There are two significant worries about top-down design. These are “How
do I know how to split the main task up?” and “But I can’t test me code until
everything is finished!”. Both of these are proper concerns.

Splitting a big problem up involves finding a strategy for solving it. Even
though this can be quite hard, it is almost always easier to invent a high-level idea
for how to solve a problem than it is to work through all the details, and this is
what top-down programming is all about. In many cases sketching on a piece of
paper what you would do if you had to solve the problem by hand (rather than
by computer) can help. Quite often the partition of a problemyou make may end
up leading your design into some uncomfortable dead end. In that case you need
to look back and see which steps in your problem refinement represented places
where you had real choice and which ones were pretty much inevitable. It is then
necessary to go back to one of the stages where a choice was possible and to re-
think things in the light of your new understanding. To make this process sensible
you should refuse to give up fleshing out one particular version of a top-down
design until you are in a position to give a really clear explanation of why the
route you have taken represents failure, because without this understanding you
will not know how far back you need to go in the re-planning. Asan example
of what might go wrong, the code I sketched earlier here wouldend up being
wrongly structured if user interaction was needed, and thatinteraction might be
based on evaluation of partial results. To make that sort of interface possible it
might be necessary to re-work the design as (say)

(* My name, today’s date, purpose of program *)
import Standard-libraries;
begin

(* declare variables here *)
(* set empty data and results *)
while not finished do
begin

18

extra := ReadInMoreData();
if EndOfUserInput(extra) then finished := true;
else
begin

data := Combine(data, extra);
results := UpdateResults(results, data);
DisplaySomething(results);

end;
end;
DisplayFinalResults(results);

end;

which is clearly getting messier! And furthermore my earlier and shorter version
looked generally valid for lots of tasks, while this one would need careful extra
review depending on the exact for of user interaction required.

There is a huge amount to be said in favour of being able to testa program as
it is built. Anybody who waits right to the end will have a dreadful mix of errors
at all possible levels of abstraction to try to disentagle. At first sight it seems that
top-down design precludes any early testing. This pessimism is not well founded.
The main way out is to writestubsof code that fill in for all the parts of your
program that have not yet been written. A stub is a short and simple piece of
code that takes the place of something that will later on be much more messy. It
does whatever is necessary to simulate some minimal behaviour that will make
it possible to test the code around it. Sometimes a stub will just print a warning
message and stop when it gets called! On other occasions one might make a stub
print out its parameters and wait for human intervention: itthen reads something
back in, packages it up a bit and returns it as a result. The human assistant actually
did all the clever work.

There are two other attitudes to take to top-down design. Oneof these is to
limit it to designrather than implementation. Just use it to define a skeletal shape
for your code, and then make the coding and testing a separateactivity. Obviously
this only makes sense when you have enough confidence that youcan be sure that
the chunks left to be coded will in fact work out well. The finalview is to think
of top-down design as an ideal to be retrofitted to any projectonce it is complete.
Even if the real work on a project went in fits and starts with lots of false trails
and confusion, there is a very real chance that it can be rationalised afterwards and
explained top-down. If that is done then it is almost certainthat a clear framework
has been built for anybody who needs to make future changes tothe program.

19

7.2 Bottom-Up Implementation

Perhaps you are uncertain about exactly what your program isgoing to do or how
it will solve its central problems. Perhaps you want to make sure that every line
of code you ever write is documented, tested and validated todeath before you
move on from it and certainly before you start relying on it. Well these concerns
lead you towards a bottom-up development strategy. The ideahere is to identify
a collection of smallish bits of functionality that will (almost) certainly be needed
as part of your complete program, and to start by implementing these. This avoids
having to thing about the hard stuff for a while. For instancea compiler-writer
might start by writing code to read in lines of program and discard comments,
or to build up a list of all the variable names seen. Somebody starting to write a
word processor might begin with pattern-matching code ready for use in search-
and-replace operations. In almost all large projects thereare going to be quite a
few fundamental units of code that are obviously going to be useful regardless of
the high level structure you end up with.

The worry with bottom-up construction is that it does not correspond to having
any overall vision of the final result. That makes it all to easy to end up with a
collection of ill-co-ordinated components that do not quite fit together and that do
not really combine to solve the original problem. At the veryleast I would suggest
a serious bout of top-down design effort be done before any bottom-up work to
try to put an overall framework into place. There is also a clear prospect that some
of the units created during bottom-up work may end up not being necessary after
all so the time spend on them was wasted.

An alternative way of thinking about bottom-up programmingcan soften the
impact of these worries. It starts by viewing a programming language not just as a
collection of fragments of syntax, but as a range of ways of structuring data and of
performing operations upon it. The fact that some of these operations happen to be
hard-wired into the language (as integer arithmetic usually is) while others exist as
collections of subroutines (floating point arithmetic on 3000-digit numbers would
normally be done that way) is of secondary importance. Considered this way each
time you define a new data type or write a fresh procedure you have extended and
customised your programming language by giving it support for something new.
Bottom-up programming can then be seen as gradually buildinglayer upon layer
of extra support into your language until it is rich in the operations most important
in your problem area. Eventually one then hopes that the taskthat at first had
seemed daunting becomes just half a dozen lines in the extended language. If
some of the procedures built along the way do not happen to be used this time,
they may well come in handy the next time you have to write a program in the
same application area, so the work they consumed has not really been wasted
after all. The language Lisp is notable for having sustaineda culture based on this

20

idea of language extension.

7.3 Data Centred Programming

Both top-down and bottom-up programming tend to focus on whatyour program
looks like and the way in which it is structured into procedures. An alternative is
to concentrate not on the actions performed by the code but onthe way in which
data is represented and the history of transformations thatany bit of data will be
subject to. These days this idea is often considered almost synonymous with an
Object Oriented approach where the overall design of the class structure for a pro-
gram is the most fundamental feature that it will have. Earlier (and pre-dating the
widespread use of Object Oriented languages) convincing arguments for design
based on the entities that a program must manipulate or modelcome from Jackson
Structured Programming and Design[5]. More recently SSADM[1] has probably
become one of the more widespread design and specification methodologies for
commercial projects.

7.4 Iterative Refinement

My final strategy for organising the design of a complete program does not even
expect to complete the job in one session. It starts by askinghow the initial prob-
lem can be restricted or simplified to make it easier to address. And perhaps it
will spot how the most globally critical design decisions for the whole program
could me made in two or three different ways, with it hard to tell in advance which
would work out best in the end. The idea is then to start with code for a scruffy
mock-up of a watered down version of the desired program using just one of these
sets of design decisions. The time and effort needed to writea program grows
much faster then linearly with the size of the program: the natural (but less obvi-
ous) consequence of this is that writing a small program can bemuch quicker and
easier than completing the full version. It may in some casesmake sense even to
write several competing first sketches of the code. When the first sketch version
is working it is possible to step back and evaluate it, to see if its overall shape is
sound. When it has been adjusted until it is structurally correct, effort can go into
adding in missing features and generally upgrading it untilit eventually gets trans-
formed into the beautiful butterfly that was really wanted. Of all the methods that
I have described this is the one that comes closest to allowing for “experimental”
programming. The discipline to adhere to is that experiments are worthy of that
tag if the results from them can be evaluated and if somethingcan thus be learned
from them.

21

7.5 Which of the above is best?

The “best” technique for getting a program written will depend on its size as well
as its nature. I think that puritanical adherence to any of the above would be unrea-
sonable, and I also believe that inspiration and experience(and good taste) have
important roles to play. However if pushed into an opinion I will vote for present-
ing a design or a program (whether already finished or still under construction)
as if it were prepared top-down, with an emphasis on the earlydesign of what
information must be represented and where it must pass from one part of the code
to another.

8 How do we know it will work?

Nobody should ever write a program unless they have good reason to believe that
it ought to work. It is of course proper to recognise that it will not work, because
typographic errors and all sorts of oversights will ensure that. But the code should
have been written so that in slightly idealised world where these accidental imper-
fections do not exist it would work perfectly. Blind and enthusiastic hope is not
sufficient to make programs behave well, and so any proper design needs to have
lurking behind it the seeds of a correctness proof. In easy-going times this can re-
main untended as little comments that can just remind you of your thinking. When
a program starts to get troublesome it can be worth growing these comments into
short essays that explain what identities are being preserved intact across regions
of code, why your loops are guaranteed to terminate and what assumptions about
data are important, and why. In yet more demanding circumstances it can become
necessary to conduct formal validation procedures for code.

The easiest advice to give here is that before you write even half a dozen
lines of code you should write a short paragraph of comment that explains what
the code is intended to achieve and why your method will work.The comment
should usually not explainhow it works (the code itself is all about “how”), but
why. To try to show that I (at least sometimes!) follow this advice here is a short
extract from one of my own programs. . .

/*
* Here is a short essay on the interaction between flags and

* properties. It is written because the issue appears to be

* delicate, especially in the face of a scheme that I use to

* speed things up.

* (a) If you use FLAG, REMFLAG and FLAGP with some indicator

* then that indicator is known as a flag.

* (b) If you use PUT, REMPROP and GET with an indicator then

* what you have is a property.

22

* (c) Providing the names of flags and properties are disjoint

* no difficulty whatever should arise.

* (d) If you use PLIST to gain direct access to a property list

* then flags are visible as pairs (tag . t) and properties

* as (tag . value).

* (e) Using RPLACx operations on the result of PLIST may cause

* system damage. It is to be considered illegal. Also

* changes made that way may not be matched in any

* accelerating caches that I keep.

* (f) After (FLAG ’(id) ’tag) [when id did not previously have

* any flags or properties] a call (GET ’id ’tag) will

* return t.

* (g) After (PUT ’id ’tag ’anything) a call (FLAGP ’id ’tag)

* will return t whatever the value of "anything". A call

* (GET ’id ’tag) will return the saved value (which might

* be nil). Thus FLAGP can be thought of as a function

* that tests if a given property is attached to a symbol.

* (h) As a consequence of (g) REMPROP and REMFLAG are really

* the same operation.

*/

Lisp_Object get(Lisp_Object a, Lisp_Object b)
{

Lisp_Object pl, prev, w, nil = C_nil;
int n;

/*
* In CSL mode plists are structured like association lists, and

* NOT as lists with alternate tags and values. There is also

* a bitmap that can provide a fast test for the presence of a

* property...

*/
if (!symbolp(a))
{

#ifdef RECORD_GET
record_get(b, NO);
errexit();

#endif
return onevalue(nil);

}
... etc etc

The exact details of what I am trying to do are not important here, but the evidence
of mind-clearing so that there is a chance to get the code correct first time is. Note
how little the comment before the procedure has to say about low-level implemen-

23

tation details, but how much about specifications, assumptions and limitations.
I would note here that keyboarding is generally one of the least time-consuming

parts of the whole programming process, and these days disc storage is pretty
cheap, and thus various reasons which in earlier days may have discouraged lay-
out and explanation in code no longer apply.

Before trying code and as a further check that it ought to work it can be useful
to “walk through” the code. In other words to pretend to be a computer executing
it and see if you follow the paths and achieve the results thatyou were supposed
to. While doing this it can be valuable to think about which paths through the
code are common and which are not, since when you get to testing it may be that
the uncommon paths do not get exercised very much unless you take special steps
to cause them to be activated.

The “correctness” that you will be looking for can be at several different lev-
els. A partially correct program is one that can never give an incorrect answer.
This sounds pretty good until you recognise that there is a chance that it may just
get stuck in a loop and thereby never give any answer at all! Itis amazingly often
much easier to justify that a program is partially correct than to go the whole hog
and show it is correct, ie that not only is it partially correct but that it will always
terminate. Beyond even the requirements of correctness willbe performance de-
mands: in some cases a program will need not only to deliver the right answers
but to meet some sort of resource budget. Especially if the performance target is
specified as being for performance that is good “on the average” it can be dread-
fully hard to prove, and usually the only proper way to start is by designing and
justifying algorithms way before any mention of actual programming arises.

A final thing to check for is the possibility that your code canbe derailed by
unhelpful erroneous input. For instance significant security holes in operating
systems have in the past been consequences of trusted modules of code being too
trusting of their input, and them getting caught out by (eg) input lines so long that
internal buffers overflowed thereby corrupting adjacent data.

The proper mind-set to settle in to while designing and starting to implement
code is pretty paranoid: you want the code to deliver either acorrect result or a
comprehensible diagnostic whenever anything imaginable goes wrong in either
the data presented to it or its own internal workings. This last statement leads
to a concrete suggestion: make sure that the code can test itself for sanity and
correctness every so often and insert code that does just that. The assertions that
you insert will form part of your argument for why the programis supposed to
work, and can help you (later on) debug when it does not.

24

9 While you are writing the program

Please remember to get up and walk around, to stretch, drink plenty of water,
sit up straight and all the other things mentioned at the Learning Day as relevant
occupational health issues. My experience is that it is quite hard to do effective
programming in 5 minute snippets, but that after a few hours constant work pro-
ductivity decreases. A pernicious fact is that you may not notice this decrease at
the time, in that the main way in which a programmer can becomeunproductive
is by putting more bugs into a program. It is possible to keep churning out lines of
code all through the night, but there is a real chance that thetime you will spend
afterwards trying to mend the last few of them will mean that the long session did
not really justify itself.

In contrast to programming where long sessions can do real damage (because
of the bugs that can be added by a tired programmer) I have sometimes found that
long sessions have been the only way I can isolate bugs. Provided I can discipline
myself not to try to correct anything but the very simplest bug while I am tired
a long stretch can let me chase bugs in a painstakingly logical way, and this is
sometimes necessary when intuitive bug-spotting fails.

Thus my general advice about the concrete programming task would be to
schedule your time so you can work in bursts of around an hour per session, and
that you should plan your work so that as much as possible of everything you
do can be tested fairly enthusiastically while it is fresh inyour mind. A natural
corollary of this advice is that projects should always be started in plenty of time,
and pushed forward consistently so that no last-minute panic can arise and force
sub-optimal work habits.

10 Documenting a program or project

Student assessed exercises are expected to be handed in complete with a brief
report describing what has been done. Larger undergraduateprojects culminate in
the submission of a dissertation, as do PhD studies. All commercial programming
activities are liable to need two distinct layers of documentation: one for the user
and one for the people who will support and modify the productin the future.
All these facts serve to remind us that documentation is an intrinsic part of any
program.

Two overall rules can guide the writing of good documentation. The first is
to consider the intended audience, and think about what theyneed to know and
how your document can be structured to help them find it. The second is to keep a
degree of consistency and order to everything: documents with a coherent overall
structure are both easier to update and to browse than sets ofidiosyncratic jottings.

25

To help with the first of these, here are some potential stylesof write-up that
might be needed:

1. Comments within the code to remind yourself or somebody whois already
familiar with the program exactly what is going on at each point in it;

2. An overview of the internal structure and organisation ofthe whole program
so that somebody who does not already know it can start to find their way
around;

3. Documentation intended to show how reliable a program is,concentrating
on discussions of ways in which the code has been built to be resilient in the
face of unusual combinations of circumstance;

4. A technical presentation of a program in a form suitable for publication in a
journal or at a conference, where the audience will consist of people expert
in the general field but not aware of exactly what your contribution is;

5. An introductory user manual, intended to make the programusable even by
the very very nervous;

6. A user reference manual, documenting clearly and precisely all of the op-
tions and facilities that are available;

7. On-line help for browsing by the user while they are tryingto use the pro-
gram;

8. A description of the program suitable for presentation tothe venture capi-
talists who are considering investing in the next stage of its development.

It seems inevitable that the above list is not exhaustive, but my guess is that
most programs could be presented in any one of the given ways,and the resulting
document would be quite different in each case. It is not thatone or the other of
these styles is inherently better or more important than another, more that if you
write the wrong version you will either not serve your readerwell or you will find
that you have had to put much more effort into the documentation than was really
justified.

A special problem about documentation is that of when it should be written.
For small projects at least it will almost always be producedonly after the program
has been (at least nearly) finished. This can be rationalisedby claiming “how can
I possibly document it before it exists?”

I will argue here for two ideals. The first is that documentation ought to fol-
low on from design and specification work, but precede detailed programming.
The second is that the text of the documentation should live closely linked to the

26

developing source code. The reasoning behind the first of these is that writing
the text can really help to ensure that the specification of the code has been fully
thought through, and once it is done it provides an invaluable stable reference to
keep the detailed programming on track. The second point recognises some sort
of realism, and that all sorts of details of just what a program does will not be
resolved until quite late in the implementation process. For instance the exact
wording of messages that are printed will often not be decided until then, and it
will certainly be hard to prepare sample transcripts from the use of the program
ahead of its completion4. Thus when the documentation has been written early it
will need completing when some of these final details get settled and correcting
when the code is corrected or extended. The most plausible way of making it
feasible to keep code and description in step is to keep them together. The con-
cept of Literate Programming[10] pursues this goal. A program is represented as
a composite file that can be processed in (at least) two different ways. One way
“compiles” it to create typeset-quality human readable documentation, while the
other leaves just statements in some quite ordinary programming language ready
to be fed into a compiler. This goes beyond just having copious comments in the
code in two ways. Firstly it expects that the generated documentation should be
able to exploit the full range of modern typography and that it can include pic-
tures or diagrams where relevant. It is supposed to end up as cleanly presented
and readable as any fully free-standing document could everbe. Secondly Literate
Programming recognises that the ordering and layout of the program that has to
be compiled may not be the same as that in the ideal manual, andso the disentan-
gling tool needs to be able to rearrange bits of text in a fairly flexible way so that
description can simultaneously be thought of as close to thecode it relates to and
to the section in the document where it belongs. This idea wasinitially developed
as part of the project to implement the TEX typesetting program that is being used
to prepare these lecture notes.

11 How do we know it does work?

A conceptual difficulty that many people suffer from is a confusion between
whether a program should work and whether it does. A program should work
if it has been designed so that there are clear and easily explained reasons why it
can achieve what it should. Sometimes the term “easily explained” may conceal
the mathematical proof of the correctness of an algorithm, but at least in theory it
would be possible to talk anybody through the justification.As to programs that
actually do work, well the reality seems to be that the only ones of these that you

4Even though these samples can be planned and sketched early.

27

will ever see will be no more than around 100 lines long: empirically any program
much longer than that will remain flawed even after extensivechecking. Proper
Oriental rugs will always have been woven with a deliberate mistake in them,
in recognition of the fact that only Allah is perfect. Experience has shown very
clearly indeed that in the case of writing programs we all have enough failings
that there is no great need to insert extra errors — there willbe plenty inserted
however hard we try to avoid them. Thus (at least at the present state of the art)
there is no such thing as a (non-trivial) program that works.

If, however, a programshouldwork (in the above sense) then the residual
errors in it will be ones that can be corrected without disturbing the concepts
behind it or its overall structure. I would like to think of such problems as “little
bugs”. The fact that they are little does not mean that they might not be important,
in that missing commas or references to the wrong variable can cause aeroplanes
to crash just as convincingly as can errors at a more conceptual level. But the
big effort must have been to get to a first testable version of your code with only
little bugs left in it. What is then needed is a testing strategy to help locate as
many of these as possible. Note of course that testing can only ever generate
evidence for the presence of a bug: in general it can not proveabsence. But
careful and systematic testing is something we still need whenever there has been
human involvement in the program construction process5.

The following thoughts may help in planning a test regime:

1. Even obvious errors in output can be hard to notice. Perhaps human society
has been built up around a culture of interpreting slightly ambiguous input
in the “sensible” way, and certainly we are all very used to seeing what we
expect to see even when presented with something rather different. By the
time you see this document I will have put some effort into checking its
spelling, punctuation, grammar and general coherence, andI hope that you
will not notice or be upset by the residual mistakes. But anybody who has
tried serious proof-reading will be aware that blatant mistakes can emerge
even when a document has been checked carefully several times;

2. If you are checking your own code and especially if you knowyou can
stop work once it is finished then you have a clear incentivenot to notice
mistakes. Even if a mistake you find is not going to cause you tohave to
spend time fixing it it does represent you having found yet another instance
of your own lack of attention, and so it may not be good for yourego;

3. It is very desirable to make a clear distinction between the job of testing a
program to identify the presence of bugs and the separate activity of correct-

5Some see this observation as a foundation for hope for the future

28

ing things. It can be useful to take the time to try to spot as many mistakes
as you can before changing anything at all;

4. A program can contain many more bugs and oddities than yourworst night-
mares would lead you to believe!

5. Testing strategies worked out as part of the initial design of a program are
liable to be better than ones invented only once code has beencompleted;

6. It can be useful to organise explicit test cases for extreme conditions that
your program may face (eg sorting data where all the numbers to be sorted
have the same value), and to collect test cases that cause each path through
your code to be exercised. It is easy to have quite a large barrage of test
cases but still have some major body of code unvisited.

7. Regressions tests are a good thing. These are test cases that grow up during
project development, and at each stage after any change is made all of them
are re-run, and the output the produce is checked. When any error is de-
tected a new item in the regression suite is prepared so that there can remain
a definite verification that the error does not re-appear at some future stage.
Automating the application of regression tests is a very good thing, since
otherwise laziness can too easily cause one to skip running them;

8. When you find one bug you may find that its nature gives you ideas for other
funny cases to check. You should try to record your thoughts so that you do
not forget this insight;

9. Writing extra programs to help you test your main body of code is often a
good investment in time. On especially interesting scheme is to generate
pseudo-random test cases. I have done that while testing a polynomial fac-
torising program and suffered randomly-generated tests ofa C compiler I
was involved with, and in each case the relentless random coverage of cases
turned out to represent quite severe stress;

10. You do not know how many bugs your code has in it, so do not know when
to stop looking. One theoretical way to attack this worry would be to get
some fresh known bugs injected into your code before testing, and then see
what proportion of the bugs found were the seeded-in ones andwhich had
been original. That may allow you to predict the total bug level remaining.

Having detected some bugs there are several possible thingsto do. One is to sit
tight and hope that nobody else notices! Another is to document the deficiencies
at the end of your manual. The last is to try to correct some of them. The first

29

two of these routes are more reasonable than might at first seem proper given that
correcting bugs so very often introduces new ones.

In extreme cases it may be that the level of correctness that can be achieved
by bug-hunting will be inadequate. Sometimes it may then be possible to attempt
a formal proof of the correctness of your code. In all realistic circumstances this
will involve using a large and complicated proof assistant program to help with all
the very laborious details involved. Current belief is that it will be very unusual
for bugs in the implementation of this tool to allow you to endup with a program
that purports to be proved but which in fact still contains mistakes!

12 Is it efficient?

I have made this a separate section from the one on detecting the presence of
errors because performance effects are only rarely the result of simple oversights.
Let me start by stressing the distinction between a program that is expensive to
run (eg the one that computesπ to 20,000,000,000 decimal places) and ones that
are inefficient (eg one that takes over half a second to compute π correct to four
places). The point being made is that unless you have a realistic idea of how long a
task ought to take it is hard to know if your program is taking areasonable amount
of time. And similarly for memory requirements, disc I/O or any other important
resource. Thus as always we are thrown back to design and specification time
predictions as our only guideline, and sometimes even thesewill be based on little
more than crude intuition.

If a program runs fast enough for reasonable purposes then there may be no
benefit in making it more efficient however much scope for improvement there is.
In such cases avoid temptation. It is also almost always by far best to concentrate
on getting code correct first and only worry about performance afterwards, taking
the view that a wrong result computed faster is still wrong, and correct results may
be worth waiting for.

When collecting test cases for performance measurements it may be useful
to think about whether speed is needed in every single case orjust in most cases
when the program is run. It can also be helpful to look at how costs are expected to
(and do) grow as larger and larger test cases are attempted. For most programming
tasks it will be possible to make a trade between the amount oftime a program
takes to run and the amount of memory it uses. Frequently thisshows up in a
decision as to whether some value should be stored away in case it is needed
later or whether any later user should re-calculate it. Recognising this potential
trade-off is part of performance engineering.

For probably the majority of expensive tasks there will be one single part of the
entire program that is responsible for by far the largest amount of time spent. One

30

would have expected that it would always be easy to predict ahead of time where
that would be, but it is not! For instance when an early TITAN Fortran compiler
was measured in an attempt to discover how it could be speededup it was found
that over half of its entire time was spent in a very short loopof instructions that
were to do with discarding trailing blanks from the end of input lines. Once the
programmers knew that it was easy to do something about it, but one suspects
they were expecting to find a hot-spot in some more arcane partof the code. It
is thus useful to see if the languages and system you use provide instrumentation
that makes it easy to collect information to reveal which parts of your code are
most critical. If there are no system tools to help you you maybe able to add in
time-recording statements to your code so it can collect itsown break-down to
show what is going on. Cunning optimisation of bits of code that hardly ever get
used is probably a waste of effort.

Usually the best ways to gain speed involve re-thinking datastructures to pro-
vide cheap and direct support for the most common operations. This can some-
times mean replacing a very simple structure by one that has huge amounts of al-
gorithmic complexity (there are examples of such cases in the Part IB Complexity
course and the Part II one on Advanced Algorithms). In almostall circumstances
a structural improvement that gives a better big-O growth rate for some critical
cost is what you should seek.

In a few cases the remaining constant factor improvement in speed may still
be vital. In such cases it may be necessary to re-write fragments of your code in
less portable ways (including the possibility of use of machine code) or do other
things that tend to risk the reliability of your package. Thetotal effort needed to
complete a program can increase dramatically as the last fewpercent in absolute
performance gets squeezed out.

13 Identifying errors

Section 8 was concerned with spotting the presence of errors. Here I want to talk
about working out which part of your code was responsible forthem. The sections
are kept separate to help you to recognise this, and hence to allow you to separate
noticing incorrect behaviour from spotting mistakes in your code. Of course if,
while browsing code, you find a mistake you can work on from it to see if it can
ever cause the program to yield wrong results, and this studyof code is one valid
error-hunting activity. But even in quite proper programs itis possible to have
errors that never cause the program to misbehave in any way that can be noticed.
For instance the mistake might just have a small effect on theperformance of
some not too important subroutine, or it may be an illogicality that could only
be triggered into causing real trouble by cases that some earlier line of code had

31

filtered out.
You should also recognise that some visible bugs are not so much due to any

single clear-cut error in a program but to an interaction between several parts of
your code each of which is individually reasonable but whichin combination fail.
Most truly serious disasters caused by software failure arise because of compli-
cated interactions between multiple “improbable” circumstances.

The first thing to try to locate the cause of an error is to startfrom the original
test case that revealed it and to try to refine that down to givea minimal clear-cut
demonstration of the bad behaviour. If this ends up small enough it may then be
easy to trace through and work out what happened.

Pure thought and contemplation of your source code is then needed. Decide
what Sherlock Holmes would have made of it! Run your compilersin whatever
mode causes them to give as many warning messages as they are capable of, and
see if any of those give valuable clues.

If this fails the next thought is to arrange to get a view on theexecution of
your code as it makes its mistake. Even when clever language-specific debuggers
are available it will often be either necessary or easiest todo this by extra print
statements into your code so it can display a trace of its actions. There is a great
delicacy here. The trace needs to be detailed enough to allowyou to spot the first
line in it where trouble has arisen, but concise enough to be manageable. My
belief is that one should try to judge things so that the traceoutput from a failing
test run is about two pages long.

There are those who believe that programs will end up with thebest reliability
if they start off written in as fragile way as possible. Code should always make as
precise a test as possible, and should frequently include extra cross checks which,
if failed, cause it to give up. The argument is that this way a larger number of
latent faults will emerge in early testing, and the embeddedassertions can point
the programmer directly to the place where an expectation failed to be satisfied,
which is at least a place to start working backwards from in a hunt for the actual
bug.

With many sorts of bugs it can be possible to home in on the difficulty by some
sort of bisection search. Each test run should be designed tohalve the range of
code within which the error has been isolated.

Some horrible problems seem to vanish as soon as you enable any debugging
features in your code or as soon as you insert extra print statements into it. These
can be amazingly frustrating! They may represent your use ofan unsafe language
and code that writes beyond the limit of an array, or they could involve reliance on
the unpredictable value of an un-initialised variable. Sometimes such problems
turn out to be bugs in the compiler you are using, not in your own code. I believe
that I have encountered trouble of some sort (often fairly minor, but trouble nev-
ertheless) with every C compiler I have ever used, and I have absolute confidence

32

that no other language has attained perfection in this regard. So sometimes trying
your code on a different computer or with a different compiler will either give you
a new diagnostic that provides the vital clue, or will behavedifferently thereby
giving scope for debugging-by-comparison.

Getting into a panic and trying random changes to your code has no proper
part to play either in locating or identifying bugs.

14 Corrections and other changes

With a number of bugs spotted and isolated the time comes to extirpate them. The
ideal should be that when a bug is removed it should be removedtotally and it
should never ever be able to come back. Furthermore its friends and offspring
should be given the same treatment at the same time, and of course no new mis-
takes should be allowed to creep in while the changes are being made. This last
is often taken for granted, but when concentrating on one particular bug it is all
too easy to lose sight of the overall pattern of code and even introduce more new
bugs than were being fixed in the first case. Regression testingis at least one line
of defence that one should have against this, but just takingthe correction slowly
and thinking through all its consequences what is mostly wanted. Small bugs (in
the sense discussed earlier) that are purely local in scope give fewest problems.
However sometimes testing reveals a chain of difficulties that must eventually be
recognised as a sign that the initial broad design of the program had been incor-
rect, and that the proper correction strategy does not involve fixing the problems
one at a time but calls for an almost fresh start on the whole project. I think that
would be the proper policy for the program in section 19, and that is part of why
the exercise there asks you to identify bugs but not to correct them.

Upgrading a program to add new features is at least as dangerous as correcting
bugs, but in general any program that lasts for more than a year or so will end up
with a whole raft of alterations having been made to it. Thesecan very easily
damage its structure and overall integrity, and the effect can be thought of as a
form of software rotthat causes old code to decay. Of course software rot would
not arise if a program never needed correcting and never needed upgrading, but
in that case the program was almost certainly not being used and was fossilised
rather than rotting. NOte that for elderly programs the person who makes correc-
tions is never the original program author (even if they havethe same name and
birthday, the passage of time has rendered them different).This greatly increases
the prospect of a would-be correction causing damage.

All but the most frivolous code should be kept under the control of some source
management tool (perhapsrcs) that can provide an audit trail so that changes can
be tracked. In some cases a discussion of a bug that has now been removed might

33

properly remain as a comment in the main source code, but muchmore often a
description of what was found to be wrong and what was changedto mend it
belongs in a separate project log. After all if the bug reallyhas been removed who
has any interest in being reminded of the mistake that it represented?

Whenever a change is made to a program, be it a bug-fix or an upgrade, there
is a chance that some re-work will be needed in documentation, help files, sample
logs and of course the comments. Once again the idea of literate programming
comes to the fore in suggestion that all these can be kept together so that none of
them get missed out.

15 Portability of software

Most high level languages make enthusiastic claims that programs written in them
will be portable from one brand of computer to another, just as most make claims
that their compilers are “highly optimising”.

In reality achieving portability for even medium sized programs is not as easy
as all that. To give a gross example of a problem not addressedat all by program-
ming language or standard library design, a Macintosh comesas standard with
a mouse with a single button, while most Unix X-windows systems have three-
button mice. In one sense the difference is a frivolity, but at another it invites a
quite substantial re-think of user interface design. At theuser interface level a de-
sign that makes good use of a screen with 640 by 480 pixels and 16 or 256 colours
(as may be the best available on many slightly elderly computers) may look silly
on a system with very much higher resolution and more colours.

For most programming languages you will find that implementations provided
by different vendors do not quite match. Even with the most standardised lan-
guages hardly any compiler supplier will manage to hold backfrom providing
some private extra goodies that help distinguish them from their competitors. Such
extras will often be things that it is very tempting to make use of. Around Easter
1997 a good example of such a feature is “Active-X” which Microsoft is promot-
ing. To use such a feature tends to lock you to one vendor or platform, while to
ignore it means that you can not benefit from the advantages that it brings. By
now you will know what my suggested response to conflicts likethis will be. Yes,
it is to make your decisions explicitly and consciously rather than by default, to
make them in view of stated ideas about what the users of your code will need,
and to include all the arguments you use to support your decision in your design
portfolio.

There are frequently clever but non-portable tricks that can lead to big perfor-
mance gains in code but at cost in portability. Sometimes theproper response to
these is to have two versions of the program, one slow but veryportable and the

34

other that takes full advantage of every trick available on some platform that is
especially important to you.

16 Team-work

Almost all of this course is about programming in the small, with a concentration
on the challenges facing a lone programmer. It is still useful to think for a while
how to handle the transition from this state into a large-team corporate mentality.
One of the big emotional challenges in joining a team relatesto the extent to
which you end up “owning” the code you work on. It is very easy to get into a
state where you believe (perhaps realistically) that you are the only person who
can properly do anything to the code you write. It is also easyto become rather
defensive about your own work. A useful bit of jargon that refers to breaking out
of these thought patterns isego-free programming. In this ideal you step back and
consider the whole project as the thing you are contributingto, not just the part
that you are visibly involved in implementing. It may also beuseful to recognise
that code will end up with higher quality if understanding ofit is shared between
several people, and that bugs can be viewed as things to be found and overcome
and never as personal flaws in the individual who happened to write that fragment
of code.

When trying to design code or find a difficult bug it can be very valuable to
explain your thoughts to somebody else. It may be that they need not say much
more than er and um, and maybe they hardly need to listen (but you probably need
to believe that they are). By agreeing that you will listen to their problems at a
later stage this may be a habit you can start right now with oneor a group of your
contemporaries.

Reading other people’s code (with their permission, of course) and letting
them read yours can also help you settle on a style or idiom that works well for
you. It can also help get across the merits of code that is welllaid out and where
the comments are actually helpful to the reader.

If you get into a real group programming context, it may make sense to con-
sider partitioning the work in terms of function, for instance system architect, pro-
grammer, test case collector, documentation expert,. . . rather than trying to distrib-
ute the management effort and split the programming into lots of little modules,
but before you do anything too rash read some more books on software engineer-
ing so that once again you can make decisions in an informed and considered
way.

35

17 Lessons learned, Conclusion

One of the oft-repeated observations about the demons of large-scale software
construction is thatthere is no silver bullet. In other words we can not expect to
find a single simple method that, as if by magic, washes away all our difficulties.
This situation also applies for tasks that are to be carried out by an individual
programmer or a very small team. No single method gives a key that makes it
possible to sit down and write perfect programs without effort. The closest I can
come to an idea for something that is generally valuable is experience – experience
on a wide range of programming projects in several differentlanguages and with
various different styles of project. This can allow you to spot features of a new
task that have some commonalty with one seen before. This is,however, obviously
no quick fix. The suggestions I have been putting forward hereare to try to make
your analysis of what you are trying to achieve as explicit inyour mind as possible.
The various sections in these notes provide headings that may help you organise
your thoughts, and in general I have tried to cover topics in an order that might
make sense in real applications. Of course all the details and conclusions will be
specific to your problem, and nothing I can possibly say here can show you how
to track down your own very particular bug or confusion! I have to fall back on
generalities. Keep thinking rather than trying random changes to your code. Try
to work one step at a time. Accept that errors are a part of the human condition,
and however careful you are your code will end up with them.

But always remember the two main slogans:

Programming is easy

and

Programming is fun.

18 Some challenges

Some of you may already consider yourselves to be seasoned programmers able
to cope with even quite large and complicated tasks. In whichcase I do not you to
feel this course is irrelevant, and so I provide here at the end of the notes some pro-
gramming problems which I believe are hard enough to represent real challenges,
even though the code that eventually has to be written will not be especially long.
There is absolutely no expectation that anybody will actually complete any of
these tasks, or even find good starting points. However theseexamples may help
give you concrete cases to try out the analysis and design ideas I have discussed:
identifying the key difficulties and working out how to partition the problems into

36

manageable chunks. In some cases the hardest part of a properplan would be the
design of a good enough testing strategy. The tasks described here are all both
reasonably compact and fairly precisely specified. I have fought most of these
myself and found that producing solutions that were neat andconvincing as well
as correct involved thought as well as more coding skill. There are no prizes and
no ticks, marks or other bean-counter’s credit associated with attempting these
tasks, but I would be jolly interested to see what any of you can come up with,
provided it can be kept down to no more than around 4 sides of paper.

18.1 MULDIV

The requirement here is to produce a piece of code that accepts four integers and
computes(a ∗ b + c)/d and also the remainder from the division. It should be
assumed that the computer on which this code is to be run has 32-bit integers, and
that integer arithmetic including shift and bitwise mask operations are available,
but the difficulty in this exercise arises becausea ∗ b will be up to 64-bits long
and so it can not be computed directly. “Solutions” that use (eg) the direct 64-bit
integer capabilities of a DEC Alpha workstation are not of interest!

It should be fairly simple to implementmuldiv if efficiency where not an
issue. To be specific this would amount to writing parts of a package that did
double-length integer arithmetic. Here the additional expectation is that speed
does matter, and so the best solution here will be one that makes the most effec-
tive possible use of the 32-bit arithmetic that is available. Note also that code of
this sort can unpleasantly easily harbour bugs, for instance due to some integer
overflow of an intermediate result, that only show up in very rare circumstances,
and that the pressure to achieve the best possible performance pushes towards code
that comes very close to the limits of the underlying 32-bit arithmetic. Thought
will be needed when some or all of the input values are negative. The desired be-
haviour is one where the calculated quotient was rounded towards zero, whatever
its sign.

18.2 Overlapping Triangles

A point in theX–Y plane can be specified by giving its co-ordinates(x, y). A
triangle can then be defined by giving three points. Given twotriangles a number
of possibilities arise: they may not overlap at all or they may meet in a point or
a line segment, or they may overlap so that the area where theyoverlap forms a
triangle, a quadrilateral, a pentagon or a hexagon. Write code that discovers which
of these cases arises, returning co-ordinates that describe the overlap (if any).

A point to note here is that any naive attempt to calculate thepoint where
two lines intersect can lead to attempts to divide by zero if the lines are parallel.

37

Near-parallel lines can lead to division by very small numbers, possibly leading
to subsequent numeric overflow. Such arithmetic oddities must not be allowed to
arise in the calculations performed.

18.3 Matrix transposition

One way of representing anm by n matrix in a computer is to have a single vector
of lengthmn and place the array elementai,j at offsetmi+j in the vector. Another
would be to store the same element at offseti + nj. One of these representation
means that items in the same row of the matrix live close together, the other that
items in the same column are adjacent.

In some calculations it can make a significant difference to speed which of
these layouts is used. This is especially true for computerswith virtual memory.
Sometimes one part of a calculation would call for one layout, and a later part
would prefer the other.

The task here is therefore to take integersm andn and a vector of lengthmn,
and rearrange the values stored in the vector so that if they start off in one of as
one representation of a matrix they end up as the other. Because the matrix should
be assumed to be quite large you are not allowed to use any significant amount of
temporary workspace (you can not just allocate a fresh vector of lengthmn and
copy the data into it in the new order — you may assume you may use extra space
of aroundm + n if that helps, but not dramatically more than that).

If the above explanation of the problem6 feels out of touch with today’s com-
puter uses, note how the task relates to taking anm by n matrix representing
a picture and shuffling the entries to get the effect of rotating the image by 90
degrees. Just that in the image processing case you may be working with data
arranged in sub-word-sized bite-fields, say at 4 bits per pixel.

18.4 Sprouts

The following is a description of a game7 to be played by two players using a
piece of paper. The job of the project here is to read in a description of a position
in the game and make a list of all the moves available to the next player. This
would clearly be needed as part of any program that played thegame against
human opposition, but the work needed here does not have to consider any issues
concerning the evaluation of positions or the identification of good moves.

The game starts with some number of marks made on a piece of paper, each
mark in the form of a capital ‘Y’. Observe that each junction has exactly three

6This is an almost standard classical problem and if you dig far enough back in the literature
you will find explanations of a solution. If you thought to do that for yourself, well done!

7Due to John Conway

38

little edges jutting from it. A move is made by a player identifying two free edges
and drawing a line between them. The line can snake around things that have been
drawn before as much as the player making the move likes, but it must not cross
any line that was drawn earlier. The player finishes the move by drawing a dot
somewhere along the new line and putting the stub of a new edgejutting out from
it in one of the two possible directions. Or put a different but equivalent way, the
player draws a new ‘Y’ and joins two of its legs up to existing stubs with lines that
do not cross any existing lines. The players make moves alternately and the first
player unable to make a further legal move will be the loser.

A variation on the game has the initial state of the game just dots (not ‘Y’
shapes) and has each player draw a new dot on each edge they create, but still
demands that no more that three edges radiate from each dot. The difference
is that in one case a player can decide which side of a new line any future line
must emerge from. I would be equally happy whichever versionof the game
was addressed by a program, provided the accompanying documentation makes it
clear which has been implemented!

The challenge here clearly largely revolves around finding away to describe
the figures that get drawn. If you want to try sprouts out as a game between people
before automating it, I suggest you start with five or six starting points.

18.5 ML development environment

The task here is not to write a program, but just to sketch out the specification
of one. Note clearly that an implementation of the task askedabout here would
be quite a lot of work and I do not want to provide any encouragement to you to
attempt all that!

In the Michaelmas Term you were introduced to the language ML, and invited
to prepare and test various pieces of test code using a version running under Mi-
crosoft Windows. You probably used the regular Windows “notepad” as a little
editor so you could change your code and then paste back corrected versions of
it into the ML window. Recall that once you have defined a function or value in
ML that definition remains fixed for ever, and so if it is incorrect you probably
need to re-type not only it but everything you entered after it. All in all the ML
environment you used was pretty crude (although I am proud ofthe greek letters
in the output it generates), and it would become intolerablefor use in medium or
large-scale projects. Design a better environment, and append to your descrip-
tion of it a commentary about which aspects of it represent just a generically nice
programmer’s work-bench and which are motivated by the special properties of
ML.

39

19 An example from the literature

The following specification is given as a paragraph of reasonably readable English
text, and there is then an associated program written in the language C. The fact
that the code is in C rather than any other language may slow your understanding
of it down somewhat, but decoding programs written in slightly unfamiliar lan-
guages is a valuable skill to gain! This quite small chunk of code can give you
experience of bug-hunting: please do not look up the original article in CACM
until you have spent some while working through the code checking how it works
and finding some of the mistakes. In previous years when I havepresented this
material to our students they did almost as well as the professional programmers
used in the original IBM study, but they still found only a pathetically small pro-
portion of the total number of known bugs!

40

/*
* Formatting program for text input. Converted from PL/I to C by

* A. C. Norman, January 1989, for use in practical classes.

* Original PL/I version from a paper by Glen Myers, CACM vol 21

* no 9, 1978

*
* (a) This program compiles correctly: it is believed not to

* contain either syntax errors or abuses of the C library.

* (b) A specification is given below. You are to imagine that the

* code appended was produced by somebody who had been provided

* with the specification and asked to produce an

* implementation of the utility as described.

* (c) Your task is one of quality control - it is to check that

* the code as given is in agreement with the specification.

* If any bugs or mis-features are discovered they should be

* documented but it will be up to the original programmer to

* correct them.

* If there are bugs it is desirable that they all be found.

* (d) For the purposes of this study, a bug or a mis-feature is

* some bad aspect of the code that could be visible to users

* of the binary version of the code. Ugly or inefficient code

* is deemed not to matter, but even small deviations from the

* letter of the specification and the things sensibly implicit

* in it do need detecting.

* (e) Let me repeat point (a) again just to stress it - the code

* here has had its syntax carefully checked and uses the C

* language and library in a legal straightforward way, so

* searching for bugs by checking fine details of the C

* language specification is not expected to be productive.

* I have put in comments to gloss use of C library functions

* as an aid to those who know the syntax of C but not the

* names/specification of all things in said library. I have

* tried to keep layout of the code neat and consistent.

* There are few comments "because the original programmer who

* wrote the code delivered it in that state".

*/

41

/**
* Specification *
* ============= *
* *
* Given an input text consisting of words separated by blanks or *
* new-line characters, the program formats it into a line-by-line*
* form such that (1) each output line has a maximum of 30 *
* characters, (2) a word in the input text is placed on a single *
* output line, and (3) each output line is filled with as many *
* words as possible. *
* *
* The input text is a stream of characters, where the characters *
* are categorized as break or nonbreak characters. A break *
* character is a blank, a new-line character (&), or an end of *
* text character (/). New-line characters have no special *
* significance; they ar treated as blanks by the program. & and *
* / should not appear in the output. *
* *
* A word is defined as a nonempty sequence of non-break *
* characters. A break is a sequence of one or more break *
* characters. A break in the input is reduced to a single blank *
* or start of new line in the output. *
* *
* The input text is a single line entered from a terminal similar*
* to a BBC micro with an 80 character screen mode. When the *
* program is invoked it waits for the program to provide input. *
* The user types the input line, followed by a / (end of text) *
* and a carriage return. The program then formats the text and *
* types it on the terminal. *
* *
* If the input text contains a word that is too long to fit on a *
* single output line, an error message is typed and the program *
* terminates. If the end-of-text character is missing, an error *
* message is issued and the user is given a chance to type in a *
* corrected version of the input line. *
* *
* (end of specification) *
**/

42

#include <stdio.h>
#include <string.h>

static int gchar(void); /* forward reference to gchar() */
static void pchar(int);

int main()
{
#define LINESIZE 31

int k,
bufpos,
fill,
maxpos = LINESIZE,
cw,
blank = ’ ’,
linefeed = ’$’,
eotext = ’/’,
moreinput = 1;

char buffer[LINESIZE];
bufpos = 0;
fill = 0;
while (moreinput)
{

cw = gchar();
if (cw == blank || cw == linefeed || cw == eotext)
{

if (cw == eotext) moreinput = 0;
if ((fill + 1 + bufpos) <= maxpos)
{

pchar(blank);
fill = fill + 1;

}
else
{

pchar(linefeed);
fill = 0;

}
for (k = 0; k < bufpos; k++) pchar(buffer[k]);
fill = fill + bufpos;
bufpos = 0;

}
else if (bufpos == maxpos)
{

43

moreinput = 0;
printf("Word to long\n");

}
else
{

bufpos = bufpos + 1;
buffer[bufpos-1] = cw;

}
}
pchar(linefeed);
return 0;

}

static void getrecord(char *);

static int gchar()
{
#define ILENGTH 80

static char buffer[ILENGTH] = {’Z’};
/* Static array with first */
/* element starting off as ’Z’ */
char inbuf[ILENGTH];
static int bcount = 1;
/* static so persists between calls */
int eotext = ’/’;
int c;

if (buffer[0] == ’Z’)
{

getrecord(inbuf);
/*
* memchr scans the memory at inbuf to see if the byte (eotext

* here) is present within the first ILENGTH bytes. If not it

* will return NULL, if it is present it returns a pointer to it.

*/
if (memchr(inbuf, eotext, ILENGTH) == 0)
{

printf("No end of text mark\n");
buffer[1] = eotext;

}

44

/*
* memcpy is used here to copy ILENGTH bytes from inbuf to buffer.

*/
else memcpy(buffer, inbuf, ILENGTH);

}
c = buffer[bcount-1];
bcount = bcount + 1;
return c;

}

static void pchar(int c)
{
/*
* The static array outline is filled with blanks to start with.

* The number of blanks in the string given is exactly LINESIZE

* so that the array is neatly filled up. No need to count the

* characters, there is no cheating going on here!

*/
static char outline[LINESIZE] =

" ";
static int i = 1;
int linefeed = ’$’;
if (c == linefeed)
{

/*
* The format %.*s displays a row of characters where the number of

* characters is given by a parameter (LINESIZE in this case).

*/
printf("%.*s\n", LINESIZE, outline);

/*
* memset is a good way of setting all the elements of an array to

* the same value, here blank.

*/
memset(outline, ’ ’, LINESIZE);
i = 1;

}
else
{

outline[i-1] = c;
i = i + 1;

}
}

45

static void getrecord(char b[ILENGTH])
{

int i, ch = getchar(); /* getchar() reads from the keyboard */
for (i = 0; i < ILENGTH; i++)
{

if (ch == ’\n’) b[i] = ’ ’;
else
{ b[i] = ch;

ch = getchar();
}

}
}

/* End of file */

20 Final Words

Do I follow my own advice? Hmmm I might have known you would askthat!
Well most of what I have written about here is what I try to do, but I am not
especially formal about any of it. I only really go overboardabout design and
making documentation precede implementation when starting some code that I
expect to give me special difficulty. I have never got into theswing of literate
programming, and suspect that I like the idea more than the reality. And I some-
times spend many more hours on a stretch at a keyboard than I maybe ought to. If
this course and these notes help you think about the process of programming and
allow you to make more conscious decisions about the style you will adopt then
I guess I should be content. And if there is one very short way Iwould like to
encapsulate the entire course, it would be the recommendation that you make all
the decisions and thoughts you have about programming as open and explicit as
possible.
Good luck!

References

[1] Colin Bentley. Introducing SSADM 4+. NCC Blackwell, and also see
http://www.blackwellpublishers.co.uk/ssadmfil.htm, 1996.

[2] Jon Bentley.Programming Pearls. Addison-Wesley, 1986.

[3] Jon Bentley.MoreProgramming Pearls. Addison-Wesley, 1988.

46

[4] Fred Brookes.The Mythical Man Month. Addison Wesley, 2 edition, 1996.

[5] J. Cameron.JSP and JSD: The Jackson Approach to Software Development.
IEEE Computer Society Press, 1989.

[6] Leiserson Cormen and Rivest.An Introduction to Algorithms. MIT and
McGraw-Hill, 1990.

[7] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[8] M. H. Halstead. Elements of Software Science. Elsevier North Holland,
1977.

[9] Brian W. Kernighan and Dennis M. Richie.The C programming language.
Prentice-Hall, 1978.

[10] Donald E. Knuth. Literate Programming. CSLI Lecture Notes and CUP,
1992.

[11] C.A.R. Hoare O.-J. Dahl, E.W. Dijkstra.Structured Programming. Acad-
emic Press, 1972.

[12] X3J11. ANSI X3.159, ISO/IEC 9899:1990. American National Standards
Institute, International Standards Organisation, 1990.

47

