
Foundations of Functional
Programming

A C Norman, Easter Term 2006

Part IB

1 Introduction

This course is organised into several sections. It is intended to act as a bridge
between the Part IA Foundations of Computer Science course (which covers the
language ML and its use) and more advanced coverage in the Part II Types course.
In some ways it takes a view related either parts of Computer Design or to Com-
putation Theory: in both of those courses it is shown how complicated program-
ming tasks can be achieved by building layer upon layer starting from some very
primitive-seeming model (be it the machine code of a real computer or a Turing
machine). Other parts of this course lie within the theory stream of the Computer
Science Tripos and are concerned with careful use of notation, formal derivations
and some theory which is in fact amazingly delicate (andmuchharder to get right
than one would possibly have imagined).

(Pure) Functional Programming is a style that treats a rather mathematical
view of a function as the essential building block for a programming language.
Perhaps the most important characteristic of a function in this sense is that it has
no memory and invoking it does not cause any side-effects. Itis a function if the
only thing you can get out of it is a result when you provide it with an argument,
and if you give the same argument on different occasions you are guaranteed to get
the same result. This is a purist view of functions. You mightnote that when ML
introduces the keywordref and all that goes with it it is going beyond this pure
interpretation of functional programming. Some people would consider the ML
exception-handling facilities as going beyond “functional” while others would be
happy to accept it. This course starts from the more fundamentalist position!

(Extended) functional programming has been a serious thread within our field
for a long time. Perhaps Lisp, created by John McCarthy in the late 1950s is the
first big landmark. Lisp provided a collection of imperative(ie non-functional)
facilities, but some of its users found that it was not just possible but convenient
and helpful to de-emphasise their use. It is possible to use today’s common-or-
garden programming languages (such as C and C++, Java and evenPerl, Python
and all the rest, as well as the older fashioned or not-taught-here Fortran, PL/I,
Ada, Visual Basic etc) can be used in more-or-less functionalways, but to date I
see functional programming in the pure sense as having been something that has
influenced language facilities and programmer style but which has not fully taken
over the main-stream. There are a variety of languages wherethe functional ideals
have been central to the language design. These languages can be and have been
used for the construction of serious applications. I will just mention Haskell and
Miranda here alongside the core parts of ML. “Functional” isgenerally seen as an
alternative to “imperative” and the type systems that go with it are from a different
family from those associated with object oriented languages.

Study of what could be done with functions started before computers existed.

1

If asked to think of a function it is possible that the sort of example that might
spring to mind would be along the lines of writing (in ML syntax)

fun f x = x + 1;

and then saying thatf was a function. The purist view dislikes this for two rea-
sons:

1. The example given involves things like “+” and “verb.1.” as well as the
function we were trying to concentrate on. If you arereally intent on con-
centrating on functions perhaps you should not allow yourself to talk about
anything else at all! This line of thought leads to an investigation of whether
things we normally find built into programming languages (such as numbers
and arithmetic) are really needed or whether functions in the purest possible
sense can fill in for them somehow;

2. The special ML syntax using the wordfun seems close to a cheat1. Two
complaints arise. One is that making the function definitionthat way sug-
gests you are going to use it later. The process of making a definition and
later retrieving it is being relied upon somehow. This goes outside the world
of pure functions and so is to be avoided if possible! The second issue is
that the function defined above has been given a name (f) and that can both
be seen as inelegant and as an extra complication if you want to ask when
two functions are the same. For instance after the following:

fun g y = 1 + y;

are the functionsf andg the same in any useful sense? And if so what
proof rules or techniques cane be used to show it?

To some extent both of these points are taken care of by concentrating on the
notation for anonymous functions, as in:

fn x => x;

but while in most ML programs such notation is an occasional feature, pure func-
tional programming views these lambda-expressions as central. Having deemed
them central it is perhaps then permissible to introduce syntactic sugar that lets
programmers go back to writing something much closer to whatthey used to be
used to!

The theory behind functional programming has several branches. It is obvi-
ously necessary to defined the precise meaning of all notations used, giving rules

1Maybe theorists do not like fun? Maybe they like to make theirown!

2

for just what transformations and proofs are valid. In this case two central issues
involve the circumstances in which a computation is deemed to have completed
and in deciding just when the results of two different computations should be
counted as equal, and indeed when one might be able to predictin advance that
they must end up equal.

The computational power of pure functions turns out to be quite high. This
course discusses several ways of organising functions intoa model of computa-
tion that is also practical and convenient, and explains howfeatures you are used
to having built into ordinary programming languages fit in ordo not. A slight
concern for practicalities will intrude at this stage!

Those concerned with modelling computation through functions fairly rapidly
discovered that un-constrained use of functions as building blocks gave them too
much expressive power. From the perspective of writing a program to perform
a task excess power may not be too bad, but if you also want to analyse what is
going on and prove properties it is a menace. Type schemes were brought in as
the answer: an ideal type scheme would satisfy four objectives:

1. All programs that you legitimately want to write should beexpressible
within the constraints of the type-checking;

2. All programs that are wild or that cheat or are too complicated for their own
good should be rejected as violating type constraints;

3. The process of type-checking should be reasonably easy toexplain and
should appear to users to be consistent. Type-violations should be reported
to the user in a clear and obvious way;

4. It should be possible to type-check any program (correct or faulty) in a
reasonable amount of time.

The type-checker in ML gives a pretty good illusion of meeting these ideals. How-
ever the seemingly effortless way in which it works concealsthe fact that the ML
scheme represents an amazingly delicate balance between capability and feasibil-
ity. This course will explain the ML type-checking algorithm and thus provide
some motivation for next year’s coverage of some of the alternative schemes that
have been investigated.

So overall the aims of this course are:

• To show how lambda-calculus and related theories can provide a foundation
for a large part of practical programming.

• To present students with one particular type analysis algorithms so that they
will be better able to appreciate the Part II Types course.

3

• To provide a bridge between the Part IA Foundations of Computer Science
course and the theory options in Part II.

Its official syllabus, which gives a model for the order in which topic will be
covered, shows it split into three parts. The first two of these will use around 5
lectures each while the final part is around two lectures:

Part A. The theory

A.1 Introduction. Combinators. Constants and Free Variables. Reduction.
Equality. the Church-Rosser theorem. Normal forms.

A.2 The Lambda calculus. Lambda-terms, alpha and beta conversions.
Free and bound variables. Abbreviations in the notation. Pure and
applied lambda calculi. Relationship between combinators,lambda
calculus and typical programming languages.

A.3 Encoding of data: booleans, tuples, lists and trees, numbers. The treat-
ment of recursion: the Y combinator and its use.

A.4 Modelling imperative programming styles: handling state information
and the continuation-passing style.

A.5 Relationship between this and Turing computability, thehalting prob-
lem, recursive functions etc.

Part B. Implementation techniques

B.1 Combinator reduction as tree-rewrites.

B.2 Conversion from lambda-calculus to combinators.

B.3 The treatment of lambda-bindings in an interpreter: the environment.

B.4 Closures. ML implementation of lambda-calculus. SECD machine.

B.5 Brief survey of performance issues.

Part C. Type Reconstruction

C.1 Let-polymorphism reviewed following the Part IA coverage of ML.

C.2 Unification. A type-reconstruction algorithm.

C.3 Decidability and potential costs.

and finally the objectives2 at the end of the course students should

2These items are all listed here in this tedious and pedantic manner because current guidelines
seem to insist on being almost unbearably explicit about what is going on, possibly to the extent
that it conflicts with actually getting down to the teaching!

4

• Understand the rules for the construction and processing ofterms in the
lambda calculus and of Combinators;

• Know how to model all major aspects of general-purpose computation in
terms of these primitives;

• Be able to derive ML-style type judgements for languages based upon the
lambda-calculus .

When I took over this course I found it unexpectedly hard to produce obvious
suggestions for relevant background reading. The two main suggestions from
previous years, Hindley and Seldin[1] and Revesz[2] have nowboth gone out of
print. Various much older books I investigated are again either out of print or much
too detailed (to say nothing of expensive!) to be useful for a12 lecture course in
the Easter Term. Thus I find I have to fall back on the above two suggestions,
which can at least be found in libraries. It will sometimes also help if you look
back at Larry Paulson’s book on ML from last year. If anybody identifies a book
or web-resource that is especially useful (and for choice cheap) I would really like
to know.

2 Combinators

Historically the first carefully developed and worked-though study of what could
be done if all you had was functions introduced the idea of acombinator. A com-
binator is really nothing more than one of some agreed set of functions that one
takes as given. Expressions are built up out of combinators usingapplication, so
if you have any two expressionsE1 andE2 then(E1E2) will also be considered
a valid expression, denotingE1 applied to an argumentE2. The primitive com-
binators that are used introduce various reduction rules. For instance it will be
common to declare that there is a combinatorK that denotes a function such that
one can perform a reduction

(K x) y → x

for any expressionsx andy.
The combinators used here have simple unconditional re-write rules of this

style as theironly properties. A pure combinator theory looks as what can be
done using just such combinators and nothing else. An applied theory also allows
for the introduction ofconstantsin expressions. For instance the numbers1, 2,
. . . might be deemed to exist as constants and then combinatory forms such as
(K 1) can be written. Some people will then add further constants such as+ with
whole rafts of new valid reductions such as

(+ 2) 3 → 5

5

A reasonable way of understanding when something is called acombinator and
when it is called a constant (even if it is something like+) is that combinator
reduction rules are always valid and what happens does not depend on the identify
and nature of the arguments are all. In the study of functionsvia combinators it
will generally be considered that the theory or proofs abouthow constants work
is beyond our concern.

An amazing result about combinators (that you may have seem at least brief
mention of in the Part IA course?) is that if you have the combinatorK as defined
above together with another oneSsuch that

((S f) g) x → (fx)(gx)

then all possible computations can be expressed using expressions built up out of
applications involving justS andK . I will show some details of this later.

In my explanation of combinator I have used some variables,x, y, f andg.
These are purely part of the explanation and my descriptive notation. Within a
combinator expression you do not have any variables at all. As you will see rather
soon this is a rather good thing since the proper and careful understanding of
variables introduces rather a lot of extra complication.

The only thing explained about combinators so far is that each basic combi-
nator comes with a reduction rule, notated with “→”. The challenge is now to
imagine that some (perhaps large) tree of applications has been built (all the leaf
elements will be combinators) and now the question is “what can be achieved by
performing some of these reductions?”. The notation “⇒” is used to talk about
the effect of making a sequence of the primitive reductions,so we sayE1 ⇒ E2 if
there is some way of applying the combinator rules toE1 that eventually converts
it into E2. For instanceS K K S ⇒ S since if I subscript the combinators3 so
you can see more readily how they move I can do two primitive reductions:

S1K1K2S2 → K1S2(K2S2) → S2

When you do a series of reductions and find that no more are possible you
have anormal form. There are two especially important variations on this idea.
The first is to continue reductions for so long as there is any sub-expression in
your formula that could be reduced. If, when you keep doing this, you eventually
find that there is nothing more that can be done then you have a normal form.
An alternative is to agree that you can stop when you can not perform a head
reduction: this would be one involving the leftmost combinator in the expression.
Stopping at this stage gives you a head-normal form. If you have a sub-expression

3And from now on I will be assuming left association of function application, so f a b is to be
interpreted as (f a) b.

6

X that blows up and reduction on it never terminates thenK X does not have a
full normal form (because you would be keeping on trying to reduceX), but it is
already in head normal form. This area of just what a normal form is and when
you can obtain one is slightly more delicate than you might have imagined so I
will need to say a little more about it later.

Now given two expressions (perhaps both in normal form) in what circum-
stance should one declare that they are equal? Somebody coming to this from a
computation theory background might reasonably say that combinators and ex-
pressions built up using them are all functions, and so two functions are equal
if they behave the same way whatever arguments they are given. This isnot the
traditional view taken by functional programming people. They take the view that
equality of behaviour is undecidable and that they want to work with things that
are as definite as possible. Thus the most basic view is that two expressions are
the same if their printed representations are identical4.

This interpretation of equality means one has to be pretty careful at times. In
particular the fact that you “know” that two expressions mean the same is not
enough to let you declare them equal! The next variation on equality is to de-
fine two expressions to be equivalent if you can transform oneto the other by
a sequence of reductions and inverse reductions. In terms ofPart IA Discrete
Mathematics, let two expressionsM andN be related if there is a single direct
reductionM → N . Then the transitive closure of this relation shows when an
expression can be reduced to another in perhaps many steps. The symmetric &
reflexive closure ofthis is then the smallest equivalence relation that contains the
reduction step, and is the one we use to stand for equality.

It would be nice to have a set of rules to discover what sequence of reductions
to perform and what the intermediate expressions were!

The termextensionalequality is used to describe the case where two expres-
sions become equal if applied to sample arguments. For instanceK (S K K) and
S K are both in normal form and they are visibly different. I assert that they are
not equal. However if you consider arbitrary values x and y then

K (S K K) x y → S K K y → K y (K y) → y

and
S K x y → K y (x y) → y

and so the expressions are extensionally equal.
There are perhaps three fundamental results about combinators:

4Note a useful feature of combinators – there are no names for formal parameters to worry
about. In a more messy world one would have to add lots of special treatment to say that
fun f x = x andfun f y = ywere defining the same function because the choice of name
for the formal parameter was not supposed to matter

7

Universality: In the same sense that a Turing Machine or a Register Machine
is universal, reduction of combinator expressions based onjust S and K
represents a universal model of computation. later in this course I will be
showing how to perform mappings from a convenient and sensible notation
to achieve this. Part of what is implied by this is that some combinator
expressions will not have normal forms – any attempt to reduce them will
loop or explode;

Normal Order Reduction: Given a big combinator expression itwill usually be
the case that there are many different reductions that couldbe done within it.
When trying to reach a normal form you could start with any one of these.
In some cases there will be ways of selecting reductions thatjust introduce
more possible reductions and if you persist in making such selections you
mayneverreach a normal form. However if you always select the leftmost
outermost of all possible reductions (this strategy is known asnormal order
reductionthen if there is any way to reach a normal form at all you will
reach it;

Church-Rosser: If a combinator expression can be reduced to a normal form at
all then any two different ways of achieving this will end up giving you the
same result. This result (the Church-Rosser property for combinator forms)
may sound obvious and you might expect its proof to be easy, but it turns
out to be slightly slippery!

3 The Lambda calculus

A while after the study of combinators started Alonzo Church invented the lambda-
calculus. In this a function is written using the notationλ x . A wherex is now
used as a name for the argument of the function andA is its body – an expres-
sion usually involvingx. This is the notation for (anonymous) functions that ML
notates asfn x => A. A lambda-expression is now a constant (as for the con-
stants used with combinators, and pure lambda terms will be ones that do not use
any of these), a variable name (generally written as a lower case letter), a lambda
expressionλ x . E or an applicationE1E2.

A variable mentioned just after the symbolλ is boundthroughout the body of
the function concerned. Any use of a variable that is not bound is described as
reference to afreevariable. Thus in the expression

λ f . f x

f is a bound variable andx is a free variable.
There are two things one can do with a lambda-expression:

8

α conversion: This just renames a bound variable. If you hadλ x . x you could
α convert it intoλ y . y;

β reduction: Given an application where the function part is alambda expression
you can perform aβ reduction. The expression(λ x . A) B turns into
whatever you get by replacing everyx present inA by B.

Actually beta-reduction is distinctly more delicate than that because now there
are names for variables there is a nasty possibility of name clashes. So the simple
explanation ofβ reduction given above is proper provided there are no clashes or
conflicts. And if necessaryα conversion can be used to rename variables before
trying the reduction to make sure that this is so. Let me give an example of an
expression where naive substitution could mess up scope andget bindings wrong:

(λ x . (λ y . x y)) y

here the outside argumenty (free in this part of the expression) is moved in to
be within the scope of the inner lambda. In such cases it is important to useα
conversion to rename variables to avoid clashes, for instance by adjusting things
to read

(λ x . (λ z . x z)) y

where no ambiguity can possibly arise.
A lambda-expression is in normal form if no sub-expression can be reduced.

It is in head-normal form if the outermost application can not be reduced. This
means that a head-normal lambda expression has the form

λ x1 x2 . . . xn . v E1 . . . Em

wherev is some variable.
Lambda calculus has the Church-Rosser property in that again if two different

ways of performing reductions both lead to normal forms thenthe two results will
differ by at worst alpha-conversion.

The example
(λ x . (x x)) (λ x . (x x))

shows that performing sequences of beta reductions may not manage to reduce the
size of an expression: in this case reducing it turns it back into itself. The notation
Ω is sometimes used for expressions that do not have a normal form because
their reduction never terminates. Lambda calculus seems tobe one of the most
awkward and un-natural notations ever invented! It is thusveryuseful to introduce
various short-hand forms. It is normal to writeλ a b c . A for λ a . (λ b . (λ c . A)).
As usual the applicationf a b means(f a) b. Even with these sorts of short-hand

9

the ordering of the items you have to write when composing lambda expressions
often seems awkward and confusing. However one can draw a parallel between
pure lambda calculus and the notation present in quite comfortable programming
languages and base on this have a nicer way of writing things.

Consider the introduction of a local variable in a language akin to ML5. One
writes something like

let v = <some value>
in <some expression using v> end

I will interpret this as standing for the lambda expression

(λ v . some expression using v) some value

and looking atβ-reduction you can see that the intent in each case is much the
same!

Now consider a simple6 function definition

let f x = body
in ... f(arg) ... end

which in the same style I can view as just a syntactic sugaringfor

(λ f . (f arg)) (λ x . body)

in which on lambda is used to describe the function itself while the other captures
the idea that the namef should be associated with the function.

The key to functionalprogrammingis contained in these two little translations.
The programming-language-like syntax used is really tolerably close to ML, and
as the Part IA Foundations of Computer Science course showed that providesa
quite convenient basis for writing real programs. But the notation is also just a re-
arrangement of lambda calculus, which is spartan and (one hopes!) susceptible to
mathematical study and analysis, so looking at programmingthis way can perhaps
provide a really solid basis for understanding what programs mean and do.

When using the programming-language-like notation for lambda calculus it is
important to avoid unwittingly including things that lambda calculus does not do
directly. For instance a pure functional programming language would not have
numbers or any other sort of data in it. The only thing it can work with will be
lambda expressions. Thus the results of evaluating a fragment of program will

5I will not use the exact syntax of ML here in part to remind you that I am really talking about
lambda calculus!

6Here I am not going to permit the definition of recursive functions, and I insist that the defin-
ition has a limited scope.

10

be a lambda expression (there is nothing else it could be!). Issues of possible
evaluation orders, of normal forms and of the interpretation of “equality” arise in
very much the same way as they do for combinators. Except thatdealing with the
fact that the names of bound variables ought to be consideredunimportant but that
name clashes have the potential to foul things up adds a fair amount of extra pain.

4 Encoding of data

From the point of view of programming pure lambda calculus starts off looking
very weak and weedy. The purpose of this section is to demonstrate that it is in
fact astonishingly powerful and that pretty well all the things you are used to in
ML can be modelled in it rather easily and with only a few linesof code! You
may have seen some of these examples already, but I collect them together here
so you see them all at once.

4.1 Boolean values and tests

I will model the valuestrue and false by the lambda expressionsλ a b . a and
λ a b . b. Then I can map the programming language construct

if x then y else z

onto justx y z

Supposex is true then this returnsy, while if x is false is returnsz. So for
now on think of all programs as being prefixed with the text

let true a b = a
in let false a b = b
in let if x y z = x y z
in ...

and agree that a proper number ofend marks will be stuck on the end. Note that
I have (slightly) extended the syntax that I allow in my “programming language”
to permit function definitions to have many arguments, but this just maps onto the
lambda-calculus shorthand for the same thing and it does notcount as cheating.

4.2 Tuples

let pair a b f = f a b;
in let left p = p true
in let right p = p false
in ...

11

Now pair A B will create a lambda expression such that the functionsleft
andright will retrieveA andB from it. You might note that the main trick being
used here is just like the Curried functions you saw in ML.

The data-typelist must give you the possibility to have an empty list or a non-
empty one, and non-empty lists have two components. I can model this by using
nested pairs with an explicit boolean value to indicate whether I have an empty or
non-empty list:

let nil = pair true <anything>
in let isempty list = left list
in let cons hd tl = pair false (pair hd tl)
in let first list = left (right list)
in let rest list = right (right list)
in ...

gives you a constantnil to use as an empty list, a testisempty to identify it, a
functioncons to build non-empty lists and selectorshead andtail to extract
their components. The text<anything> above can be replaced by an arbitrary
expression (maybetrue) since nobody should ever access it.

Trees and the like can be build in a way similar to that used to construct lists.
At this stage it is perhaps proper to introduce a remark aboutevaluation order.

In the ML course you were introduced to lazy lists as a specialprogramming
technique. In functional programming one can consider two philosophies. One
chooses to evaluate function applications by reducing the argument first and then
performing theβ reduction that substitutes it into the body of the function it is
being passed to. This evaluation order is essentially the one that ML uses. Another
possibility is to use normal order reduction (leftmost outermost reduction first).
This latter policy is perhaps less convenient to implement efficiently, but it causes
programs to run and yield a result if any imaginable evaluation order will. If you
have a functional programming language that uses normal order reduction (which
I will typically be supposing here) then examples such as

if true 1 <something that blows up>

will compute to completion in a nice way (and such examples are pretty common
in quite ordinary programs) and all lists will act as if “lazy” in the sense of the
Part IA course without any need for any special action.

The next thing to consider is the introduction of recursive function definitions.
Simple lambda expressions represent simple functions, butthe notation

let f x = ... f x’ ...

12

which seems so natural in the programming-language notation needs some special
treatment. The key issues is that in the body of the function the function’s name
(f) must be available as a bound variable. Thus the first stage isto try writing

λ f . λ x f x′ . . .

to go as the main part of the function. Theλ x indicates that we have a function
of one argument (x) and the outer lambda make the innerf into a bound variable.
Overall this gives us a function that would become just what we wanted em if it
could be provided with what we wanted as its argument! As a magician7, finding
a rabbit in one of my hats, I introduce the fix-point operatorY which I want to
satisfy the identityY f = f (Y f). Suppose for a short while that such a
functionY can exist. Then the transformation to

let f = Y (lambda f . (lambda x f x’ ...))

turns out to be exactly what is needed to model our recursive function.
Let me give a more concrete example (a rather traditional one):

let fact n =
if n = 0 then 1 else n * fact(n-1)

becomes

let fact = Y (lambda fact . (lambda n .
if n = 0 then 1 else n * fact(n-1)))

Now imagine expanding out the use ofY. The effect is to replace the inner
call to fact with what used to be the whole function definition. After a couple
of expansions one would see

let fact = lambda n .
if n = 0 then 1 else n * (

lambda n .
if n = 0 then 1 else n * (

Y (lambda fact . (lambda n .
if n = 0 then 1 else
n * fact(n-1))))(n-1))(n-1)

One reasonable interpretation is that the recursion is being copied with by simply
copying the function’s own definition to within itself. The result is a notionally
infinite function definition in much the same way that lazy lists can be notionally

7Or as one who had seen this topic covered under the heading of Compiler Construction earlier
in the year!

13

infinite. What happens in practise is that theY operator unwinds things as much
as is needed for a particular call to the function concerned but hopefully never has
to go on for an infinite way.

Now the question is canY be expressed in terms of pure lambda calculus.
Consider

let Y f =
let g h = f (h h)
in g g end

in ...

and first observe that this definition isnot recursive: it expands into

Y = λ f . (λ g . g g) (λ h . f (h h))

quite harmlessly. But nowY f expands tog g, which in turn becomesf (g g)
which is equal tof (Y f). It also expands further, if you like, to an infinitely
nested set of calls:f (f (f (f (...)))). This tricky little lambda expres-
sion is enough to let you define arbitrary recursive functions!

Finally for this section I will show how it is possible to model the integers.
Let me first introduce a little extra notation. I will writef ◦ g for the functional

composition off andg. To show that this is not cheating I will write

let compose f g x = f (g x)
in ...

Now I will choose to represent the natural numbers as by lambda expressions
as follows:

let identity x = x;
in let zero f = identity
in let one f = f
in let two f = f o f
in let three f = f o f o f
in let four f = f o f o f o f
in ...

With this representation of whole numbers addition and multiplication are as-
tonishingly easy, and as a joke exponentiation is also trivial! Note that ifn is a
number thann f represents the functionf composed with itselfn times. The
proper thing to represent zero is then related to the identity function.

let add n m f = (n f) o (m f)
in let multiply m n f = m (n f)
in let expt m n = n m
in ...

14

The behaviour of the exponentiation function may be unexpected but there
have been previous Part IA questions based on the above so I hope you can work
through what is going on and understand it for yourselves.

The next thing needed is a way to test if a number is zero.

let K x y = x
in let ifzero n a b = n (K b) a
in ...

where ifn is non-zero the result will be at least one application ofK and the result
will be b, while if n = 0 the result will bea.

At this stage you might like to stand back and observe theamazingpower and
expressiveness of lambda calculus and functional programming. Starting from
almost nothing we have built up models of booleans, tuples, lists, conditionals
and now integers and each new definition has only bee around a (short) line long.

Subtraction of natural numbers is a curious operation because sometimes the
proper result would be negative, and negative numbers are not natural. Thus it
should not be too amazing that the functional code for subtraction is distinctly
curious. The neatest version I have come across is based on defining a predecessor
function. This is theconcept:

let inc n f = f o (n f)
in let predecessor n = n inc <minus-one>
in ...

where the predecessor of a valuen is obtained by incrementing “-1” a suitable
number of times. The problem here is that we can not have a proper lambda-
representation for -1 that is really consistent with our understanding of numbers
as things that compose a function with itself8.

So consider

let specialinc n = ifzero n (inc n) (inc n)
in let predecessor n =

n specialinc ?
in ...

where I have left “?” where the “-1” will go. What I then want to do is to select
a value to insert in place of the question mark so thatspecialinc ? turns into
zero. Try it!

specialinc ?
-> ifzero ? (inc ?) (inc ?)
-> ? (K (inc ?)) (inc ?)

8-1 would find the inverse of a function and that is too much to ask for in general.

15

andhah Bingo! I can insertλ p . λ q . zero in place of the question mark. It just
ignores its two arguments and returnszero. Thus I end up with just

let specialinc n = ifzero n (inc n) (inc n)
in let predecessor n =

n specialinc (lambda p . lambda q . zero)
in ...

This may be pretty devious but it works! Now given that we havea predecessor
function and we can also write recursive functions it is not too hard to implement
subtraction, magnitude comparisons, division, remainderand all the rest. If you
need integers (rather than just natural numbers) you might model them as tuples
with a boolean value for the sign and a natural number for the magnitude. If you
want floating point than you just need a tuple to hold an exponent and a mantissa.
Even there the code will not be too lengthy.

A further issue that needs making but which I intend to gloss over somewhat is
the treatment of mutually recursive sets of functions. Thiscan be handled by using
thepair function to make a tuple out of all the functions that are to bedefined
together, and then using theY operator to fix this. The details often become rather
grubby but it can be done.

One can worry about the performance expectations of all thissimulation, but
I will return to that topic later on. For now my concern is to get across the point
that lambda calculus is not just a foundation for programming but it seems to be a
quite natural and convenient one. Perhaps you can see how having seen the way in
which data can be modelled functionally a lot of people got quite enchanted with
the idea that all their programming should be in a pure functional style. And a
different idea also grew: perhaps the best way of building a really solid theoretical
basis for practical programming languages would be to relate their properties to
something as spartan and tractable as lambda calculus through these layers of
modelling and simulation.

Of course

5 Modelling imperative programming

When somebody sets up an agenda saying that they will write alltheir code in a
functional style it is natural for others to come up with challenges. An important
instance of such a challenge is that of programs where the order of evaluation
matters and where this shows up because executing code fragments may have side-
effects. Related to this is to treatment of control structures: loops, goto statements
and exception handling.

16

Sorting all this out leads to something that is pretty messy at times, but in a
course on the foundations of functional programming it seems proper to explain
how it can be done. I think this is not very useful for hand-written code but there
are two ways in which it can be of practical relevance. The first is to transform
imperative code to a pure functional form if that is thought liable to help you
perform formal transformations or verification on it. The other is as part of a
compiler: very competent compilers have been written usingin effect pure lambda
calculus as the internal representation for programs and using the translations and
mappings given here to convert arbitrary code into that form.

I will first look at code where you want to specify the order of evaluation. Well
in fact with pure functional programming it may be impossible to force much in
that respect, but itis possible to re-structure code so that an intended order of
evaluation is explicit and visible. The technique used is known ascontinuation
passing.

One interpretation of this is to look at the way in which function calls are
compiled for a traditional computer. The arguments are prepared and put some-
where (typically in registers or on a stack), a return address is established and then
control is transferred to the function. When it has finished its work it prepares a
return value and jumps back to the location indicated by the return address. With
a slightly different viewpoint this can become a lot more symmetric. Think of
returning from the function as calling the return address asa new function, pass-
ing your return value as its argument. And then thing of the return address as a
perfectly ordinary argument to the original function, not as something special.

It now becomes possible to take ordinary function calls and re-write them in
a functional language so you can see all this happening. The code tends to look
a bit messy and contorted, but once you get used to it is is not too bad and it is
certainly no worse than looking at how one maps high level languages down onto
machine code. Here is an example, with first the original version of a function:

let f a b = g(h a, k b)
in ...

and now a version expanded to use continuation passing:

let f a b cont =
h a (lambda r1 .

k b (lambda r2 .
g r1 r2 cont))

in ...

You may note that each function defined now has an extra final argument which
will be its “continuation” (ie what to do with its result), and the code I have shown

17

visibly starts by callingh to computeh a, which it passes to a continuation that
accepts the result and calls itr1. Next k is called and the result it produces
ends up asr2. Finally g is called, and the result from g is passed to whatever
continuationf had been given. Here is the same function translated so that it calls
k b beforeh a:

let f a b cont =
k b (lambda r2 .

h a (lambda r1 .
g r1 r2 cont))

in ...

The continuation passing style makes order of evaluation and the need for
temporary storage very clearly explicit (which is why it canbe useful within a
compiler). It also makes it easy to talk about recursive and iterative (sometimes
known astail recursive) calls, in that the stack space that is implicit in direct
use of a programming language becomes explicit here each time a new lambda-
expression has to be set up to be an intermediate continuation.

The real excitement with continuation passing is that you can model quite
complicated control structures very readily. A location inyour code that might
ever be reached has to be represented by a function, and passing that as a contin-
uation allows you to direct control to there. In a few cases itcan be useful to pass
a function several alternative continuations, for instance one to activate in nor-
mal circumstances and another to use as an exception exit. This scheme makes it
possible to modelgoto, try andthrow in terms of the purest lambda-calculus!

Now what about side-effects? Well the view here is that the effects must be
to change something, so a copy of that something can be passedalong as an extra
argument and when it is changed an updated version will be passed at the next
function call. This is very much what is happening with accumulator arguments
in a typical iterative style of ML programming. When you combine this with
continuation passing you see that every function ends up with two extra (implicit?)
arguments: one its continuation and another a data-structure that represents the
current state of all updateable state that your program may need. If this state is
very large and messy this can be painful, but for many programs it will not be.

There have been a number of proposals for modelling input andoutput (which
tend to count as side-effects) into functional programming. many of these cheat
somewhat! One view is to say that a functional program can be given a list of all
characters it will ever ask to read as its argument, and it will generate as its output
a list consisting of printing and other directives. A surrounding framework can
then look at the output it produces and cause things to happen.

18

6 Computability

Maybe by now it will be 100% obvious that pure functional programming is com-
putationally universal. However just to make things explicit consider a Register
Machine. Suppose it has two registers,a andb, and its states are labelled 0, 1,
I can produce a lambda-calculus program that models it very easily. If in some
staten the transition is to increment thea register and go to statem I will define
a function

let fn a b = fm (inc a) b
in ...

while if the node testsa, decrements if non-zero and goes top or q my definition
will be

let fn a b = ifzero a (p a b)
(q (predecessor a) b)

in ...

Obviously similar code applies if it is theb register that changes. Starting and
stopping the register machine does not introduce anything more that is at all com-
plicated.

I will later show how anything expressed in lambda-calculuscan be expanded
out in terms of the combinatorsSandK and that will establish that they are com-
putationally universal too. This of course carries with it the result that there is no
computable way of telling if a given lambda expression has a normal form.

One might like to see how to encode lambda expressions or combinatory forms
in such a way that a Turing Machine could reduce them. But first Ishould talk
about implementation techniques for when you have an ordinary computer to use!

7 Implementing Combinator reduction

The basic combinator re-write rules are just

K x y → x

Sf g x → f x (g x)

A natural way to represent combinator expressions within a computer will
be as trees9, and then the re-writes become graph transformations whichcan be
shown as follows:

9Actually even if things start off as trees they are liable to end up with shared sub-structure and
possibly with loops, so really they are directed graphs.

19

K

K

S

S f

g

x

f x

g x

x
y

x

To perform reduction on a graph of combinators one scans downthe leftmost
chain of edges. If it does not end then your reduction does notterminate! If it does
then what is at its end must be eitherSor K , since no other leaf elements exist! In
each case you check to see if there were enough branches aboveit to make one of
the above transformations possible, and if so you re-write the tree. Note that forS
this involves allocating a couple of new nodes of store for the new branches. Then
scan again to find the new leftmost combinator. When the head combinator does
not have enough arguments to reduce the graph has been brought to head normal
form. Anything done to if beyond this will not alter the leading combinator. But if
desired the sub-trees can be reduced to get the whole expression into normal (not
just head-normal) form.

It might be noted that locating the head combinator that is tobe activated and
keeping track of the chain of links leading to it perhaps seems to call for recursion.
When people write real combinator reducers there is a high probability that they
will avoid need for this extra memory by reversing the chain of pointers as they
scan down the graph and then putting it back into its originalconfiguration as they
unwind.

Here seems a good place to comment again about evaluation orders and op-
tions. Applicative order evaluation arranges to reduce arguments to all functions
to their normal form before passing them into the body of the function. The com-
binator reduction code given above does not do that naturally, but simple direct
lambda-calculus reducers can find this the easiest scheme toimplement. Normal
order reduction is when at each stage the leftmost outermostreduction is per-
formed. Even if it is harder to implement it has the benefit that it guarantees
that a program will not loop if there isany evaluation order that avoids getting

20

stuck. However here is an example of normal order evaluationbeing obviously
inefficient:

(λ x . + x x) messy expression→ + messy expression messy expression

and now the messy expression will be evaluated twice. Applicative order would
(of course) have evaluated it just once before substitutingits result into the func-
tion body.

A third scheme (which has a more pragmatic flavour) islazy evaluationwhich
is just like normal order evaluation except that it keeps track of where arguments
get substituted into a body. Then if such an expression is evaluated once (for
any reason) it is arranged that all the other references to the expression end up
pointing to the resulting value. The effect is that an arguments is never evaluated
more than once. In terms of the graph re-write for a reductiontriggered byS as
shown above it is very easy to arrange this! All you do is to make the re-written
graph over-write the top node in the original one. Thus is several parts of the
entire program share references to the sub-expression withthe S reduction in it
the first one to call for it to be reduced gets that job done on behalf of all the rest.
One should note that over-writing the input graph here seemsto be an important
side-effect and suggests that the combinator reducer itself will want to be written
in an imperative language not a (pure) functional one.

When using graph-rewrites and combinators some cases can be dealt with es-
pecially neatly. Notably theY operator can be built in as a primitive combinator
using the re-write

Y f f

Y

which creates a looped-up structure but feels a very simple operation to have to
perform to implement something that at first appeared to be rather messy and hard
to understand. This combinator implementation suggests you can think ofY as
the basic operator for creating loops in graphs!

8 Conversion from lambda-calculus

Basic conversion from lambda-expressions to combinators isvery easy, but when
done in the simplest possible way the result is a very seriousexpansion in bulk.
It is still useful to explain the basic method. First and as a matter of convenience
introduce a third combinatorI with re-write rule

21

I x → x

and note that (S K K) could have been used in place ofI if one were feeling really
bonded to the full primitive experience. Now take any lambdaexpression (and
suppose that all the variable in it are bound). Use the transformations

λ x . x → I
λ x . y → K y

λ x . (f g) → S (λ x . f) (λ x . g)

where the first rule that applies in any case is the one that is to be used. The final
rule reduces the number of applications forming the body of any lambda expres-
sion, and must eventually reduce things until all that is left is a simple variable
as the body. Then one of the first two rules will kick in and the lambda disap-
pears. These rules should be applied first to the innermost lambda expressions
present in the input (and will then remove this lambda in favour of a big mess of
combinators).

It is jolly easy to write a program to apply the above three rules, and when you
have you can try it out. What you will find is that even quite short fragments of
lambda-calculus expand into horrible large strings of combinators. But this prob-
lem is not an essential part of the process. But adding just a few more combinators
and a few simple optimisation rules to the translation it is possible to reach a stage
where the bulk of combinators generated is directly proportional10 to the size of
the lambda expression you started with.

The translation between lambda-calculus and combinators is not without some
worry. In general the translation process will preserve extensional equality but it
will not guarantee to preserve the sort of equality that lambda-calculus experts are
most keen on. Furthermore small variations and optimisations (and optimisation is
very much needed to make this conversion useful!) all affectthis. In general if you
take a lambda expressionM and anotherN such thatM → N and convertM into
a combinator formM ′ andN into N ′ you can not be quite certain thatM ′ = N ′

in the combinator world (until you allow for extensional equality). Hmmmm.
There are a whole raft of slightly different combinator conversion procedures,

and the issue ofexactlyhow the combinator reductions you end up with relate to
what happened in pure lambda calculus is again one of those issues that is more
delicate than you would like it to be. However here is a set that behaves reasonably
well!

10There are some delicacies here! Sufficiently messy lambda expressions will have to use a
large number of distinct names for the variables that they introduce, and proper measurement of
their “bulk” must account for this. For instance if there aren variables then you needlog

2
(n) bits

to specify which you are referring to. To achieve linear grown the combinator translation process
also has to take special action on some ill-balanced inputs,and I am not describing the details here.

22

K x y → x

Sf g x → f x (g x)
I x → x

B f g x → f (g x)
C f x y → f y x

S’ z f g x → z (f x) (g x)
B’ z f g x → z f (g x)
C’ z f x y → z (f y) x

And then the compilation rules get elaborated with

S (K x) (K y) → K (x y)
S (K x) y → B x y

S (K x) I → x

Sx (K y) → C x y

S (B x y) z → B’ x y z

Y (K x) → x

I x → x

B I x → x

B x I → x

B (B x y) z → B’ x y z

C (B x y) z → C’ x y z

C + → + (etc)
λ x . x → I
λ x . y → K y

λ x . (f g) → S (λ x . f) (λ x . g)

Here the idea is that the last few rules are exactly as before,but the various
earlier ones are used as simple rewrites (performed as the tree of combinators
is built up) that spot special cases of the use of the more general combinators
and convert them into uses of more specialised ones. If theserules are used the
factorial function gets converted as follows:

fun fact n = if n = 1 then 1 else n * fact(n-1);
=> Y (B (S (C’ if (= 1) 1)) (B (S *) (C B (C - 1))))

where this is using an applied combinator system with built-in numbers, “if” test
and arithmetic.

9 Lambda-bindings in an interpreter

The delight about using combinators is that the implementation does not have to
worry about the names of variables. However one should also understand how

23

to evaluate lambda-expressions directly. The most obviousapproach would be to
implement code that performed beta-reductions directly: asubstitution process.
The big pain with this is avoiding trouble with unwanted name-capture due to
clashes in the names of bound variables. The normal way out ofthis trouble is to
keep anenvironmentthat records the values associated with all currently-bound
variables. The details of how this can be implemented can be found in notes from
the Compiler Construction course, and so will not be repeated here.

10 Closures

When you pass a complete lambda-expression around there may not be any special
problems. However within a lambda-reducer you will be working with fragments
of lambda expression and very many of those will have free variables. These
will of course normally be variables that are bound by some enclosing construct.
When such a sub-expression is passed around it is important that extra information
be included with it to carry this context information. Such extra information is
generally called theenvironmentand the combination of an expression and its
associated environment is aclosure. A particular case where closures are needed
is when functions are returned as results, for instance as inthe ML code

fun f x =
fn y => x + y;

where the lambda expressionfn y => x + y must be returned together with
an environment that shows the value forx that it is supposed to be using.

An ML implementation of lambda-calculus was shown to you earlier in the
year. The ML implementation tends to be a recursive function. Sometimes it is
useful to have an explanation of how to reduce lambda expressions that shows
all memory use quite explicitly. One such scheme is to use what is known as
an SECD machine. SECD stands for State, Environment, Control and Dump. It
represents a style of abstract machine with those four components. The state is
an expression that is in the process of being reduced. The environment is a list of
pairs: the first component of each pair is the name of a variable and the second
component is a value that the variable has. The environment is always searched
in such a way that the topmost binding of a variable is the one retrieved. Control
and Dump are used as stacks to track the context in which an expression is being
evaluated: popping items off these stacks reveals information about what is to be
done with the result of evaluating a sub-expression.

All actions taken by an SECD machine are triggered by recognising the sym-
bol or simple pattern in the State and Control, and each step makes a simple
change moving information between the parts of the machine.If you are ever

24

going to implement an interpreter for some sort of (mostly) functional language,
and especially if your implementation will need to support tail-recursion, closures
and the like it is probable that you should think in SECD terms about what you
will be doing.

11 Performance

If you have a programming language that looks somewhat like ML thenmostof
the code that people write will not be very tricky, and even though it may be
expressed in different ways much of it will be asking for justthe same sorts of
computation that an equivalent program in C, C++ or Java would have. Specifi-
cally (iterative) ML code to compute factorials and the ordinary ML code to build
and use binary trees and lists is really not very different from the corresponding
code in any other language. The same will be true for other functional languages,
and in consequence asufficiently clever compiler11 can generate excellent code
for them. If the functional language is, by its specification, lazy then this too need
not hurt too badly, since there are techniques (discussed inthe Part II course on
optimising compilers) that can spot the large number of places where the adminis-
trative overhead of supporting laziness is not needed. So the party line is that even
the purest functional language could deliver realistic performance. In fact users
of such languages are often much more concerned with correctness and elegance
than they are with absolute speed, but the literature contains a reasonable trail or
work where people have striven to extract the largest grain chunks from functional
code that they can such that the chunks can be subjected to allthe tools of modern
compiler optimisation.

12 Let-polymorphism

One thing we have seen is that pure lambda-calculus (or combinators) can be used
to model almost anything else in programming that we might want to use. Once
(for instance) we have shown that numbers and arithmetic canbe simulated this
way it seems fair to put them into our programming system as primitive opera-
tions, to avoid the cost an inconvenience of having to run thesimulation. After
all we have proved that including them does not make the programming model
any more complicated to analyse, since all the complicationwas already available
via the simulation! But when we do that it seemsvery desirable to encapsulate
the native implementation of the data-type. When everythingwas being modelled

11A mythical entity, often invoked by those who are championing languages that in reality seem
to go a bit slowly!

25

as a function you could try applying any object to any other one and you would
get some sort of defined effect. If you make numbers primitiveitems you would
really like to insist that attempts to use numbers as functions or to apply “+” to
non-numbers should not be permitted. The fact that pure lambda-calculus also
allows you to synthesise your own pretty wild control structures (specifically the
Y operator and its friends) renders it too powerful. Perhaps we would like a more
restricted system where the user is explicitly permitted tomake recursive function
definitions but defining private variants onY is prohibited.

The mechanism that has been developed to impose this sort of discipline is
type-checking. In some sense it tends to be a purely destructive add-on. The user
writes a functional program, and passes it through a type-checker. Sometimes the
type-checker moans and rejects the code as “invalid”. If thetype-checker does not
moan you just execute the program be doing ordinary lambda-reduction. So type-
checking just flags some programs (that you could have tried before) as dodgy.
A good type system will object to programs that in your heart of hearts you can
agree are really a bit dodgy, and it will always endorse nice tidy code.

The simplest forms of type system assign a fixed, definite typeto each value
that you work with. Thus each variable or sub-expression in your program will be
marked as being an integer, or a function from integers to lists or whatever. Such
schemes are not too hard to set up but tend to feel excessivelyrestrictive in use.

The style of type-checking most commonly used with functional languages is
polymorphic. This means that the type ascribed to a function or expression can
involve type variables. The key problem in polymorphic type checking is that of
working out when to introduce these variables. There are higher order styles of
type-checker where the type-variables can themselves be constrained or typed. I
will not consider such cases here!

The type-judgement scheme provided in ML mostly seems effortless and nat-
ural when you first use it. Treated informally it is usually possible to work out
what type a function should be given, and the procedure you use will be a close
relative of the algorithm that ML in fact uses. However thereare some fine points
that generally do not show up when you are just a user of the type-checker.

For this course I will note that ML gives special treatment toarithmetic and its
type analysis does some distinctly funny things with integers and real numbers.
An effect of its curiosity is that code such as

fun double x = x + 1;

needs extra annotation to help resolve whether the additionis of integers or reals. I
will ignore this problem here by thinking in terms of programs where all numbers
are integers. The ad-hoc polymorphism that deals with arithmetic is really not
especially interesting!

26

What is interesting is the way of generating the types that contain type vari-
ables. For instance after making the ML definition

fun S f g x = f x (g x);

you will be told thatShas the type

(α → (β → γ)) → ((α → β) → (α → γ))

This type-expression is a general one: any of the type variables in it can be
replaces by any more restrictive type to get something more concrete, and in gen-
eral whenS is used it will act as in one of the more concrete ways. A property
of ML type-checking is that every expression that has a type at all can be given
an unique most-general type, and all other types it can ever be viewed as having
can be obtained by substituting for type-variables in the general version. This ap-
parently obvious property may not be present in all possibletype reconstruction
schemes!

One curiosity about ML-style type reconstruction is that itthat transformations
on expressions that ought not to change their value at all canchange their type-
checking status. For instance start with the lambda expression (here written in ML
syntax)

(fn i => (i 3, i "s")) (fn x => x);

and perform aβ-reduction on it to obtain

((fn x => x) 3, (fn x => x) "s");

In ML the first of these will refuse to type-check while the second will be entirely
happy! Perhaps this fact will make it clear why people are interested in looking at
alternative type schemes but you should be aware that striking a balance between
type reconstruction power and the difficulty of finding typesis astonishingly hard.
The ML scheme seems to be a clear cut examples of a “Which” type “best buy”.

13 Unification and type reconstruction

The ML type-reconstruction method is explained here with more care than its
coverage in the Part IA course, but still somewhat informally. What is perhaps
more critical is that here I will show what has to be done (wellenough that you
could possibly implement it) but I will not even start to provide a proof that the
algorithm that I describe extracts exactly the type expressions that are wanted. In
general type reconstruction is a delicate enough process that until somebody has
defined the algorithm as a carefully and formally specified set of rules and worked

27

through proper proofs of its properties one ought to be very suspicious. What I
hope is that an sketch of the method here will make its more precise coverage next
year easier to approach.

Type reconstruction uses one significant sub-algorithm: unification. You should
already be familiar with this from its use in Prolog. In this case we want a vari-
ant on unification that takes two trees, each of which is starting to represent a
type. Within these trees the nodes will denote constructorssuch as “→” that indi-
cates that the type is the type of a function and some of the leaves will be definite
fixed types such asint andstring. Other leaves (in each tree) may be log-
ical variables. Unification attempts to match the two trees against one another,
instantiating logical variables where necessary in the process. When a variable is
instantiated the value it is given must not refer back to itself. In the context of
Prolog you may have heard this called theoccurs checkand ignored it. In type-
checking you want to make sure this condition is checked for.When unification
succeeds it will often have had a side-effect of instantiating several more logical
variables. If any of the unifications attempted during type reconstruction fail (ei-
ther because of a gross miss-match or because of occurs-check trouble) then you
declare that the expression does not have a valid type.

If you are not especially worried about efficiency it is really quite easy to
implement unification. With quite large amounts of care unification can be per-
formed in an amount of time linear in the bulk of the two inputs. When I come to
talk about the cost of ML-style type reconstruction I will suppose that you have
gone to the (significant) trouble of implementing linear-cost unification: if you
want to code something to try I suggest you just write the obvious code – it will
run quite fast enough!

The eventual object of type reconstruction is to ascribe a type to acomplete
functional program. But the strategy used is to work from the bottom up giving
types to various little fragments of code first. These types will often need to be
refined later on when the context in which the fragment existsis examined. The
scheme that supports this is the use of logical variables. Solet me first indicate
the (initial) type judgement you make for leaf elements in anexpression.

If the leaf is a constant then the nature of the constant defines its type in-
stantly. Thustrue has typeboolean, 17 has typeinteger and+ has12 type
int->int->int.

When a variable is seen it is associated with a type expressionthat is a new
uninstantiated logical variable. The issue of treating thebinding of variables
will be discussed later under “lambda” and “let”. Specifically the behaviour
when there are several references to the same name within onescope depends
on whether the variable concerned was bound usinglambda or let. Getting a

12Remember that I am ignoring the issue ofint vs.real arithmetic

28

precise explanation of just how to avoid mix-ups with names and scopes in lambda
calculus is (as usual) a much more messy business than it deserves to be. Since
this is a Part IB course not a Part II one I will not write out formal rules for how
to do it and I will not show exactly where you need to perform re-naming substi-
tutions to untangle things. I count these as “mere” technicalities, even though in
an implementation it is important to get them all right!

There re are four remaining basic constructions that can appear in a parse tree:

if: When an expressionif b then E1 else E2 you form the type expressions
for each of the sub-trees. You unify the type ofb with boolean and unify
the types ofE1 andE2 with each other. The result of this last unification is
then the type of the whole expression;

application: If the application isA B and treatingA andB as separate values
leads to type-expressionsτA andτB then create two new logical variablesp

andq. Unify τA with p → q. Unify τB with p. Returnq as the constructed
type for the application;

lambda: If you havefn v => E then you ensure that the logical variable for the
type ofv is the same as all the ones used forv throughoutE. This can be
done by unifying all these! Suppose it isτv and also suppose that the type
you construct forE is τE. Then the type for the lambda expression is just
τv → τE. Actually a natural way to implement scope rules will be to build
up a map of bound variables and their associated type (logical) variables as
you recurse down into an expression, and then to do the unifications that
I am describing as you return from analysing each sub-expression. That
way as you start to analyse a sub-expression you will have available to you
information about all bound variables;

let: The rule forlet v = E1 in E2 is the key one in ML type reconstruction.
Note that top-level variable and function definitions are treated as if they
are introduced withlet clauses. You reconstruct a type forE1. Now if
there are any uninstantiated logical variables in this typeyou leave them as
type-variables and obtain a polymorphic type forv, τv. Now at each place
in E2 where there is reference tov you make its type into a copy ofτv but
with a fresh set of logical variables in each place thatv occurs.

The rule for conditionals is pretty dull and obvious. The onefor applications is
the main one that actually does work. But the key thing that makes this particular
type derivation special is the difference it makes between

(fn v => B) A;

and

29

let v = A in B;

In the first case the complete expression is analysed as a whole so all uses of
v must be consistent throughoutB, and the eventual type that gets unified into
existence forv depends on all ofA and on all of the contexts withinB thatv is
used in. In the second case the type given tov dependsonly on the expressionA,
and type variables in this expression are turned into fresh logical variables before
use. Consider once again the example

let fun i x = x
in (i 3 , i "s") end

which I will interpret as meaning (in a cruder syntax)

let i = fn x => x
in (i 3 , i "s")

Here in thelet clausei will get give the typeα → α whereα is a type variable.
After the wordin the variableα will have to be turned into two new logical
variables for the two uses ofi And one of these logical variables will end up
unified toint while the other ends up asstring.

14 Decidability and costs

A good thing about ML type-checking is that it is decidable. As with so many
observations in functional programming this seems a prettysilly thing to say –
you are likely to think thatof courseit is decidable. Well various attempts at just
slightly more general or powerful type-checking schemes lead to type reconstruc-
tion where you can write down a lot of equations to be solved (like the equations
we solved in the last section through the use of unification) but where there can
not be a general algorithm that guarantees to find a solution.

Experience with the ML system also shows that type-checkingof all real pro-
grams is pretty cheap. It therefore came as a slightly nasty surprise that the al-
gorithm (even when very carefully implemented, using data structures that share
as much as possible) has exponential worst case. As a result there are quite short
ML programs that would type-check if you had unlimited resources but where the
type reconstruction will not complete on any real machine. The bad constructions
are relatives of the following:

let f1 y = (y,y)
in let f2 y = f1 (f1 y)
in let f3 y = f2 (f2 y)
in let f4 y = f3 (f3 y)
...x

30

where you should note thatf1 makes a tree with two leaves, and each subsequent
line squares the number of leaf nodes present. This leads to types which if written
out linearly would, at thenth line have around22

n

symbols! Because the types
concerned have a rather regular shape it is possible to represent them in a way that
shares a huge number of sub-trees, but things can be set up so that one can show
that even with maximal structure sharing the type you end up with is of size2n.
If the type is that large then any algorithm that produces it must take exponential
time.

If you do not like my use of tuples as in(y,y) above or would rather restrict
yourself to lambda expressions not visible function definitions then it is easy to
expand out the above example in terms of the more pure styles of functional pro-
gramming and the same bad results apply. Indeed there is muchto be said in this
example for making the tuple using

let pair x y z = z x y

since that leads to the ML types of the functionsf1 etc involving ridiculously
increasing numbers of distinct type variables!

15 Practical back-up for this course

The section of the lab’s teaching web pages that relate to this course contains a
file parser.jar that I have prepared. It is not a fully stable and fully debugged
program (apologies) but may be fun or useful. The source thatI used to build it is
also present on the web page as a.zip archive. I built and have tested it using
JDK 1.2.2 on Windows NT. If any of you take a copy and make any interesting
improvements it would be nice if you passed thgem back to me giving me full
permission to do whatever I like with your corrections and enhancements. The
code is available for any use you may need to make of it in association with the
Computer Science courses here, but I am retaining copyright and anybody who
sees a way to use it commercially is invited to talk to me before going too far.

To use it gojava -jar parser.jar and then type in input to its prompt.
The syntax that you use is similar to that of ML but the language uses lazy evalu-
ation and it does not impose any type-checking.

The code may well have bugs. No: itwill have bugs! Any piece of program
that large is bounnd to have some. The syntax that it accepts is only documented
in the filesmall.cup, but it is much like ML. The code works by converting
things to combinators and then doing graph reduction on whatresults. It gives lazy
evaluation. At the time of writing these notes it does not do any type-checking at
all, but I intend to add ML-type polymorphic checking, but then if an expression
fails to type-check I will still allow you to evaluate it! I hope it is interesting and

31

useful! Reading the Java code may show you something about practical aspects
of (one way of) implementing functional languages, while just trying it out lets
you see the sample code that models numbers etc working.

The following output has been edited in a few places to help things fit on lines
of the page.

% java -jar parser.jar

2 + 3;
Input expression + 2 3
=> 5

y f;
Input expression y f
=> f (f (f (f (f (f (f (f (f (f (f (f
(f (f (f (f (f (f (f (f (f (f (f ...

fun double x = x + x;
Statement FUN double x = + x x
Combinator form: S + I

double 7;
Input expression double 7
=> 14

fun fact n = if n = 1 then 1 else n * fact(n-1);
Statement FUN fact n =

IF (= n 1) 1 (* n (fact (- n 1)))
Combinator form: Y (B (S (C’ IF (= 1) 1))

(B (S *) (C B (C - 1))))

fact 7;
Input expression fact 7
=> 5040

32

fun compose f g x = f (g x);
Statement FUN compose f g x = f (g x)
Combinator form: B

fun zero f x = x;
Statement FUN zero f x = x
Combinator form: K I

fun one f = f;
Statement FUN one f = f
Combinator form: I

fun add n m f = compose (n f) (m f);
Statement FUN add n m f = compose (n f) (m f)
Combinator form: S’ B

fun multiply m n f = m (n f);
Statement FUN multiply m n f = m (n f)
Combinator form: B

fun expt m n = n m;
Statement FUN expt m n = n m
Combinator form: C I

val two = add one one;
Combinator form: S’ B I I

val four = multiply two two;
Combinator form: B (S’ B I I) (S’ B I I)

fun display n = n (fn x => x + 1) 0;
Statement FUN display n = n (+ 1) 0
Combinator form: C (C I (+ 1)) 0

33

display one;
Input expression display one
=> 1

display two;
Input expression display two
=> 2

display four;
Input expression display four
=> 4

display (expt four two);
Input expression display
=> 16

fun ifzero n f g = n (k g) f;
Statement FUN ifzero n f g = n (kk g) f
Combinator form: C C’ K

fun inc n f = compose f (n f);
Statement FUN inc n f = compose f (n f)
Combinator form: S B

fun specialinc n = ifzero n (inc n) (inc n);
Statement FUN specialinc n =

ifzero n (inc n) (inc n)
Combinator form: S (S (C C’ K) (S B)) (S B)

fun pred n = n specialinc (fn f => fn g => zero);
Statement FUN pred n = n specialinc (K (K zero))
Combinator form: C (C I (S (S (C C’ K) (S B))

(S B))) (K (K (K I)))

34

display (pred four);
Input expression display (pred four)
=> 3

fun ff n = ifzero n one (multiply n (ff (pred n)));
Statement FUN ff n =

ifzero n one (multiply n (ff (pred n)))
Combinator form: Y (B (S (C (C C’ K) I)) (B (S B)

(C B (C (C I (S (S (C C’ K)
(S B)) (S B))) (K (K (K I)))))))

display (ff four);
Input expression display (ff four)
=> 24

You might like to observe how the combinator forms for some things are ex-
ceptionlly compact: multiplication is justB while increment is justS B for the
Church numerals. The final example computes factorials in terms of pure func-
tions.

References

[1] J R Hindley and J P Seldin.Introduction to Combinators and Lambda-
Calculus. Cambridge University Press, 1986.

[2] G E Revesz.Lambda Calculus, Combinators and functional programming.
Cambridge University Press, 1988.

35

