Foundations of Functional
Programming

A C Norman, Easter Term 2006

Part B

1 Introduction

This course is organised into several sections. It is irgdrid act as a bridge
between the Paril Foundations of Computer Science course (which covers the
language ML and its use) and more advanced coverage in thi Pgves course.
In some ways it takes a view related either parts of Computsigbeor to Com-
putation Theory: in both of those courses it is shown how darafed program-
ming tasks can be achieved by building layer upon layeristaftom some very
primitive-seeming model (be it the machine code of a realmater or a Turing
machine). Other parts of this course lie within the theorgasn of the Computer
Science Tripos and are concerned with careful use of notgtiomal derivations
and some theory which is in fact amazingly delicate (amathharder to get right
than one would possibly have imagined).

(Pure) Functional Programming is a style that treats a ratiehematical
view of a function as the essential building block for a peogming language.
Perhaps the most important characteristic of a functiohiggense is that it has
no memory and invoking it does not cause any side-effects.dffunction if the
only thing you can get out of it is a result when you provide it withaagument,
and if you give the same argument on different occasions y@guwaranteed to get
the same result. This is a purist view of functions. You migbtie that when ML
introduces the keywordef and all that goes with it it is going beyond this pure
interpretation of functional programming. Some people Maonsider the ML
exception-handling facilities as going beyond “functitirvéhile others would be
happy to accept it. This course starts from the more fundéatisinposition!

(Extended) functional programming has been a seriousdiwéhin our field
for a long time. Perhaps Lisp, created by John McCarthy indtee1950s is the
first big landmark. Lisp provided a collection of imperatire non-functional)
facilities, but some of its users found that it was not jusigole but convenient
and helpful to de-emphasise their use. It is possible to adayts common-or-
garden programming languages (such as C and C++, Java an@exeRython
and all the rest, as well as the older fashioned or not-tahgreg Fortran, PL/I,
Ada, Visual Basic etc) can be used in more-or-less functiomgis, but to date |
see functional programming in the pure sense as having lmeeetking that has
influenced language facilities and programmer style buttvhias not fully taken
over the main-stream. There are a variety of languages whefenctional ideals
have been central to the language design. These languagbs ead have been
used for the construction of serious applications. | widitjimention Haskell and
Miranda here alongside the core parts of ML. “Functionaljeserally seen as an
alternative to “imperative” and the type systems that gdwiare from a different
family from those associated with object oriented langsage

Study of what could be done with functions started beforematers existed.

1

If asked to think of a function it is possible that the sort sample that might
spring to mind would be along the lines of writing (in ML syrja

fun f x = x + 1;

and then saying thdt was a function. The purist view dislikes this for two rea-
sons:

1. The example given involves things like™and “verb.1.” as well as the
function we were trying to concentrate on. If you agelly intent on con-
centrating on functions perhaps you should not allow ydfitséalk about
anything else at all! This line of thought leads to an ingetion of whether
things we normally find built into programming languages(sas humbers
and arithmetic) are really needed or whether functionsemilrest possible
sense can fill in for them somehow;

2. The special ML syntax using the wofdin seems close to a chéafTwo
complaints arise. One is that making the function definiticat way sug-
gests you are going to use it later. The process of making aitiefi and
later retrieving it is being relied upon somehow. This gagisiole the world
of pure functions and so is to be avoided if possible! The séagssue is
that the function defined above has been given a namand that can both
be seen as inelegant and as an extra complication if you waagk when
two functions are the same. For instance after the following

fun gy =1+y;

are the functiong andg the same in any useful sense? And if so what
proof rules or techniques cane be used to show it?

To some extent both of these points are taken care of by ctatieg on the
notation for anonymous functions, as in:

fn x => x;

but while in most ML programs such notation is an occasioaaiure, pure func-
tional programming views these lambda-expressions asatemtaving deemed
them central it is perhaps then permissible to introduceasyic sugar that lets
programmers go back to writing something much closer to et used to be
used to!

The theory behind functional programming has several brasiclt is obvi-
ously necessary to defined the precise meaning of all natatised, giving rules

IMaybe theorists do not like fun? Maybe they like to make toein!

2

for just what transformations and proofs are valid. In tlasectwo central issues
involve the circumstances in which a computation is deerodthte completed
and in deciding just when the results of two different comapions should be
counted as equal, and indeed when one might be able to predidivance that
they must end up equal.

The computational power of pure functions turns out to beeguigh. This
course discusses several ways of organising functionsaim@del of computa-
tion that is also practical and convenient, and explains features you are used
to having built into ordinary programming languages fit indar not. A slight
concern for practicalities will intrude at this stage!

Those concerned with modelling computation through fumdifairly rapidly
discovered that un-constrained use of functions as bgjlbiacks gave them too
much expressive power. From the perspective of writing @famm to perform
a task excess power may not be too bad, but if you also wantalyssmwhat is
going on and prove properties it is a menace. Type schemeshweught in as
the answer: an ideal type scheme would satisfy four objestiv

1. All programs that you legitimately want to write should bepressible
within the constraints of the type-checking;

2. All programs that are wild or that cheat or are too compdiddor their own
good should be rejected as violating type constraints;

3. The process of type-checking should be reasonably easypiain and
should appear to users to be consistent. Type-violatioosldhbe reported
to the user in a clear and obvious way;

4. It should be possible to type-check any program (corredtuolty) in a
reasonable amount of time.

The type-checker in ML gives a pretty good illusion of megtinese ideals. How-
ever the seemingly effortless way in which it works concéladsfact that the ML
scheme represents an amazingly delicate balance betweabildg and feasibil-
ity. This course will explain the ML type-checking algomthand thus provide
some motivation for next year’s coverage of some of the radtitre schemes that
have been investigated.

So overall the aims of this course are:

e To show how lambda-calculus and related theories can peavfdundation
for a large part of practical programming.

e To present students with one particular type analysis #hgos so that they
will be better able to appreciate the Part Il Types course.

3

e To provide a bridge between the PaxtFoundations of Computer Science
course and the theory options in Part II.

Its official syllabus, which gives a model for the order in antopic will be
covered, shows it split into three parts. The first two of éhedll use around 5
lectures each while the final part is around two lectures:

Part A. The theory

A.1l Introduction. Combinators. Constants and Free Variali®esluction.
Equality. the Church-Rosser theorem. Normal forms.

A.2 The Lambda calculus. Lambda-terms, alpha and beta csiovs.
Free and bound variables. Abbreviations in the notationre Rund
applied lambda calculi. Relationship between combinatiarspda
calculus and typical programming languages.

A.3 Encoding of data: booleans, tuples, lists and treesjxeusn The treat-
ment of recursion: the Y combinator and its use.

A.4 Modelling imperative programming styles: handlingistaformation
and the continuation-passing style.

A.5 Relationship between this and Turing computability, hlaéiing prob-
lem, recursive functions etc.

Part B. Implementation techniques

B.1 Combinator reduction as tree-rewrites.

B.2 Conversion from lambda-calculus to combinators.

B.3 The treatment of lambda-bindings in an interpreter: therenment.
B.4 Closures. ML implementation of lambda-calculus. SECD rireh
B.5 Brief survey of performance issues.

Part C. Type Reconstruction

C.1 Let-polymorphism reviewed following the Paat toverage of ML.
C.2 Unification. A type-reconstruction algorithm.
C.3 Decidability and potential costs.

and finally the objectivéésat the end of the course students should

2These items are all listed here in this tedious and pedarstimer because current guidelines
seem to insist on being almost unbearably explicit about \wghgoing on, possibly to the extent
that it conflicts with actually getting down to the teaching!

4

e Understand the rules for the construction and processirtgrais in the
lambda calculus and of Combinators;

e Know how to model all major aspects of general-purpose caatiom in
terms of these primitives;

e Be able to derive ML-style type judgements for languagesdagen the
lambda-calculus .

When | took over this course | found it unexpectedly hard tapo® obvious
suggestions for relevant background reading. The two maggestions from
previous years, Hindley and Seldin[1] and Revesz[2] have Inotl gone out of
print. Various much older books I investigated are agaimegiout of print or much
too detailed (to say nothing of expensive!) to be useful f@Rdecture course in
the Easter Term. Thus I find | have to fall back on the above twggestions,
which can at least be found in libraries. It will sometimesoahelp if you look
back at Larry Paulson’s book on ML from last year. If anybodsgritifies a book
or web-resource that is especially useful (and for choieaphl would really like
to know.

2 Combinators

Historically the first carefully developed and worked-thgbwstudy of what could
be done if all you had was functions introduced the ideaadrabinator A com-
binator is really nothing more than one of some agreed sairaftions that one
takes as given. Expressions are built up out of combinawrgyapplication so
if you have any two expressiorts, and £, then (£ Es,) will also be considered
a valid expression, denotingj; applied to an argumerft,. The primitive com-
binators that are used introduce various reduction rules.irfstance it will be
common to declare that there is a combina€athat denotes a function such that
one can perform a reduction

(Kz)y—x

for any expressions andy.

The combinators used here have simple unconditional reewwies of this
style as theironly properties. A pure combinator theory looks as what can be
done using just such combinators and nothing else. An apfiieory also allows
for the introduction ofconstantsn expressions. For instance the numbgrg,

... Mmight be deemed to exist as constants and then combyrimions such as
(K 1) can be written. Some people will then add further constarth as+ with
whole rafts of new valid reductions such as

(+2)3—5

5

A reasonable way of understanding when something is calleah@inator and
when it is called a constant (even if it is something liKeis that combinator
reduction rules are always valid and what happens does pehdeon the identify
and nature of the arguments are all. In the study of functi@@sombinators it
will generally be considered that the theory or proofs atbmwt constants work
is beyond our concern.
An amazing result about combinators (that you may have se¢deast brief

mention of in the PartA course?) is that if you have the combinatoas defined
above together with another oB8esuch that

((Sf)g)x— (fr)(gx)

then all possible computations can be expressed usingssipns built up out of
applications involving juss andK. | will show some details of this later.

In my explanation of combinator | have used some variableg, f andg.
These are purely part of the explanation and my descripttation. Within a
combinator expression you do not have any variables at aliyol will see rather
soon this is a rather good thing since the proper and carefdénstanding of
variables introduces rather a lot of extra complication.

The only thing explained about combinators so far is thahdsasic combi-
nator comes with a reduction rule, notated with™. The challenge is now to
imagine that some (perhaps large) tree of applications &es built (all the leaf
elements will be combinators) and now the question is “whatloe achieved by
performing some of these reductions?”. The notatief’is used to talk about
the effect of making a sequence of the primitive reductisnsye say; = F; if
there is some way of applying the combinator rule&'tadhat eventually converts
itinto £2. For instanceS8 K K S = S since if | subscript the combinatdrso
you can see more readily how they move | can do two primitigeicgions:

SlKlKQSQ — KlsQ(KQSQ) — 82

When you do a series of reductions and find that no more arelj@ssu
have anormal form There are two especially important variations on this idea
The first is to continue reductions for so long as there is aryexpression in
your formula that could be reduced. If, when you keep doirig fou eventually
find that there is nothing more that can be done then you hawgraah form.

An alternative is to agree that you can stop when you can ndonpe a head
reduction: this would be one involving the leftmost comlbaran the expression.
Stopping at this stage gives you a head-normal form. If yme laesub-expression

3And from now on | will be assuming left association of functiapplication, so f a b is to be
interpreted as (f a) b.

X that blows up and reduction on it never terminates tKeX does not have a
full normal form (because you would be keeping on trying uee X), but it is
already in head normal form. This area of just what a norm@ahfis and when
you can obtain one is slightly more delicate than you mighvehaagined so |
will need to say a little more about it later.

Now given two expressions (perhaps both in normal form) iratwwdircum-
stance should one declare that they are equal? Somebodypgdonihis from a
computation theory background might reasonably say thatbamators and ex-
pressions built up using them are all functions, and so twwtions are equal
if they behave the same way whatever arguments they are.gil@a isnot the
traditional view taken by functional programming peopléey take the view that
equality of behaviour is undecidable and that they want tckwath things that
are as definite as possible. Thus the most basic view is tlmaéxpressions are
the same if their printed representations are ideritical

This interpretation of equality means one has to be prettgfabat times. In
particular the fact that you “know” that two expressions mélae same is not
enough to let you declare them equal! The next variation arakdy is to de-
fine two expressions to be equivalent if you can transform tonthe other by
a sequence of reductions and inverse reductions. In tern®anfla Discrete
Mathematics, let two expressioig and N be related if there is a single direct
reductionM — N. Then the transitive closure of this relation shows when an
expression can be reduced to another in perhaps many stapssymmetric &
reflexive closure othisis then the smallest equivalence relation that contains the
reduction step, and is the one we use to stand for equality.

It would be nice to have a set of rules to discover what sequeheductions
to perform and what the intermediate expressions were!

The termextensionakquality is used to describe the case where two expres-
sions become equal if applied to sample arguments. Fomicsia (S K K) and
S K are both in normal form and they are visibly different. | atfat they are
not equal. However if you consider arbitrary values x andgnth

KSKK)zy -SKKy—Ky(Ky)—y

and
SKzy—Ky(zy) —y

and so the expressions are extensionally equal.
There are perhaps three fundamental results about coralsnat

“Note a useful feature of combinators — there are no nameforal parameters to worry
about. In a more messy world one would have to add lots of apé@atment to say that
fun f x = xandfun f y = y were defining the same function because the choice of name
for the formal parameter was not supposed to matter

7

Universality: In the same sense that a Turing Machine or adiagMachine
is universal, reduction of combinator expressions basegusinS and K
represents a universal model of computation. later in thigse | will be
showing how to perform mappings from a convenient and sénsiitation
to achieve this. Part of what is implied by this is that somenkmator
expressions will not have normal forms — any attempt to redhem will
loop or explode;

Normal Order Reduction: Given a big combinator expressiavilitusually be
the case that there are many different reductions that dmxtbne within it.
When trying to reach a normal form you could start with any ohtéhese.

In some cases there will be ways of selecting reductiongukaintroduce
more possible reductions and if you persist in making sutdciens you
may neverreach a normal form. However if you always select the leftmos
outermost of all possible reductions (this strategy is kmasnormal order
reductionthen if there is any way to reach a normal form at all you will
reach it;

Church-Rosser: If a combinator expression can be reduceddon@ahform at
all then any two different ways of achieving this will end ugigg you the
same result. This result (the Church-Rosser property for auatdr forms)
may sound obvious and you might expect its proof to be easyf hurns
out to be slightly slippery!

3 The Lambda calculus

A while after the study of combinators started Alonzo Chursiented the lambda-
calculus. In this a function is written using the notativrr . A wherex is now
used as a name for the argument of the function and its body — an expres-
sion usually involvinge. This is the notation for (anonymous) functions that ML
notates an x => A. A lambda-expression is now a constant (as for the con-
stants used with combinators, and pure lambda terms wilhles that do not use
any of these), a variable name (generally written as a loase tetter), a lambda
expression\ x . £ or an application®; Fs.

A variable mentioned just after the symbois boundthroughout the body of
the function concerned. Any use of a variable that is not dasrdescribed as
reference to &reevariable. Thus in the expression

Nf. fa

fis a bound variable aneis a free variable.
There are two things one can do with a lambda-expression:

8

« conversion: This just renames a bound variable. If youkad x you could
a convert it intoA y . y;

£ reduction: Given an application where the function partlanabda expression
you can perform & reduction. The expressiof\ = . A) B turns into
whatever you get by replacing everypresent ind by B.

Actually beta-reduction is distinctly more delicate thhattbecause now there
are names for variables there is a nasty possibility of ndashes. So the simple
explanation ofj reduction given above is proper provided there are no ctashe
conflicts. And if necessary conversion can be used to rename variables before
trying the reduction to make sure that this is so. Let me givexample of an
expression where naive substitution could mess up scopgedraindings wrong:

Ar.(Ay.zy))y

here the outside argument(free in this part of the expression) is moved in to
be within the scope of the inner lambda. In such cases it iDitapt to usex
conversion to rename variables to avoid clashes, for instéay adjusting things
to read

Az.(Az.x2))y

where no ambiguity can possibly arise.

A lambda-expression is in normal form if no sub-expressiam loe reduced.
It is in head-normal form if the outermost application can be reduced. This
means that a head-normal lambda expression has the form

Ar129 ... 2.0 B ... E,

wherev is some variable.

Lambda calculus has the Church-Rosser property in that agam different
ways of performing reductions both lead to normal forms tiiertwo results will
differ by at worst alpha-conversion.

The example

shows that performing sequences of beta reductions mayanwage to reduce the
size of an expression: in this case reducing it turns it batkitself. The notation
2 is sometimes used for expressions that do not have a normmal ecause
their reduction never terminates. Lambda calculus seerbg twne of the most
awkward and un-natural notations ever invented! It is therguseful to introduce
various short-hand forms. Itis normaltowrtesbc. AforAa. (Ab. (Ac. A)).
As usual the applicatiori a b means(f a) b. Even with these sorts of short-hand

the ordering of the items you have to write when composingoldarexpressions
often seems awkward and confusing. However one can drawatigddretween
pure lambda calculus and the notation present in quite caaifie programming
languages and base on this have a nicer way of writing things.

Consider the introduction of a local variable in a language &&kML®. One
writes something like

l et v = <sone val ue>
I n <sone expression using v> end

| will interpret this as standing for the lambda expression
(A v . some expression using some value

and looking ats-reduction you can see that the intent in each case is much the
same!

Now consider a simpfefunction definition

let f x = body
in ... f(arg) ... end

which in the same style | can view as just a syntactic sugdadng

(A f.(farg) (Ax.body)

in which on lambda is used to describe the function itselflevthie other captures
the idea that the namgéshould be associated with the function.

The key to functiongbrogrammings contained in these two little translations.
The programming-language-like syntax used is really &tisr close to ML, and
as the PartA Foundations of Computer Science course showed that progides
guite convenient basis for writing real programs. But theatioh is also just a re-
arrangement of lambda calculus, which is spartan and (opeghpsusceptible to
mathematical study and analysis, so looking at programithiisgvay can perhaps
provide a really solid basis for understanding what programan and do.

When using the programming-language-like notation for ldantalculus it is
important to avoid unwittingly including things that lamddalculus does not do
directly. For instance a pure functional programming laggiwould not have
numbers or any other sort of data in it. The only thing it camknwith will be
lambda expressions. Thus the results of evaluating a fragofeprogram will

51 will not use the exact syntax of ML here in part to remind ybattl am really talking about
lambda calculus!

SHere | am not going to permit the definition of recursive fimies, and | insist that the defin-
ition has a limited scope.

10

be a lambda expression (there is nothing else it could beguds of possible
evaluation orders, of normal forms and of the interpretatib“equality” arise in
very much the same way as they do for combinators. Exceptidading with the
fact that the names of bound variables ought to be considerietportant but that
name clashes have the potential to foul things up adds anfeiuat of extra pain.

4 Encoding of data

From the point of view of programming pure lambda calculaststoff looking
very weak and weedy. The purpose of this section is to demaiadhat it is in
fact astonishingly powerful and that pretty well all thenttps you are used to in
ML can be modelled in it rather easily and with only a few liridscode! You
may have seen some of these examples already, but | colluttitgether here
so you see them all at once.

4.1 Boolean values and tests

I will model the valuedrue andfalse by the lambda expressionsa b . a and
Aab.b. Then | can map the programming language construct

If x then y else z

onto justr y z
Supposer is true then this returng, while if x is falseis returnsz. So for
now on think of all programs as being prefixed with the text

let true a b = a
inlet false ab =0>
inlet if xXyz=xyz
in ...

and agree that a proper numbereofd marks will be stuck on the end. Note that
I have (slightly) extended the syntax that | allow in my “pragnming language”
to permit function definitions to have many arguments, bistjtist maps onto the
lambda-calculus shorthand for the same thing and it doesawsit as cheating.

4.2 Tuples

let pair abf =f a b;

inlet left p =p true

inlet right p = p fal se
in ...

11

Now pai r A B will create a lambda expression such that the functlosfst
andr i ght will retrieve AandB from it. You might note that the main trick being
used here is just like the Curried functions you saw in ML.

The data-typdist must give you the possibility to have an empty list or a non-
empty one, and non-empty lists have two components. | carehtbid by using
nested pairs with an explicit boolean value to indicate Wweet have an empty or
non-empty list:

let nil = pair true <anything>

inlet isenpty list = left |ist

inlet cons hd tI = pair false (pair hd tl)
inlet first list =1left (right list)
inlet rest list =right (right list)

in ...

gives you a constamti | to use as an empty list, a tassenpt y to identify it, a
functioncons to build non-empty lists and selectdisad andt ai | to extract
their components. The textanyt hi ng> above can be replaced by an arbitrary
expression (mayber ue) since nobody should ever access it.

Trees and the like can be build in a way similar to that useststuct lists.

At this stage it is perhaps proper to introduce a remark abvaaltiation order.
In the ML course you were introduced to lazy lists as a spgmagramming
technique. In functional programming one can consider thwopophies. One
chooses to evaluate function applications by reducing tiperaent first and then
performing thes reduction that substitutes it into the body of the functibrsi
being passed to. This evaluation order is essentially tealwat ML uses. Another
possibility is to use normal order reduction (leftmost entest reduction first).
This latter policy is perhaps less convenient to implemérdiently, but it causes
programs to run and yield a result if any imaginable evatunatirder will. If you
have a functional programming language that uses normal oediuction (which
I will typically be supposing here) then examples such as

if true 1 <sonething that bl ows up>

will compute to completion in a nice way (and such examplespaetty common
in quite ordinary programs) and all lists will act as if “ldzy the sense of the
Part la course without any need for any special action.

The next thing to consider is the introduction of recursiwedtion definitions.
Simple lambda expressions represent simple functionghbutotation

let f x = ... f X

12

which seems so natural in the programming-language natageds some special
treatment. The key issues is that in the body of the functienfiinction’s name
(f) must be available as a bound variable. Thus the first stagerg writing

ANf o, ... fa ...

to go as the main part of the function. Ther indicates that we have a function
of one argumentx) and the outer lambda make the inrfeinto a bound variable.
Overall this gives us a function that would become just whatwanted em if it
could be provided with what we wanted as its argument! As aicrad, finding

a rabbit in one of my hats, | introduce the fix-point operatowhich | want to
satisfy the identityY f = f (Y f). Suppose for a short while that such a
functionY can exist. Then the transformation to

let f =Y (lanbda f . (lanbda x f X' ...))

turns out to be exactly what is needed to model our recursnetion.
Let me give a more concrete example (a rather traditiona):one

|l et fact =
if n=0then 1 else n * fact(n-1)

>

becomes

Y (lanbda fact . (lanbda n .
O then 1 else n » fact(n-1)))

| et fact
if n

Now imagine expanding out the use 6f The effect is to replace the inner
call tof act with what used to be the whole function definition. After a plau
of expansions one would see

et fact = |l anbda n .
if n=0then 1 else n * (
| anbda n .

if n=0then 1 else n * (
Y (lanbda fact . (lanbda n .
if n=0then 1 else
n + fact(n-1))))(n-1))(n-1)

One reasonable interpretation is that the recursion igbsspied with by simply
copying the function’s own definition to within itself. Thesult is a notionally
infinite function definition in much the same way that lazydisan be notionally

’Or as one who had seen this topic covered under the headingnopi®@r Construction earlier
in the year!

13

infinite. What happens in practise is that theperator unwinds things as much
as is needed for a particular call to the function concerngdhdpefully never has
to go on for an infinite way.

Now the question is calf be expressed in terms of pure lambda calculus.
Consider

let Y f =
let g h=1f (hh)
ing g end

in ...

and first observe that this definitionnstrecursive: it expands into

Y=Af.(Ag.g9)(Ah.f(hh))

quite harmlessly. Butnow f expandstg g, whichinturnbecomes (g g)
which is equal td (Y f). It also expands further, if you like, to an infinitely
nested setof calld: (f (f (f (...)))). Thistricky little lambda expres-
sion is enough to let you define arbitrary recursive funaion

Finally for this section I will show how it is possible to mddkee integers.

Let me first introduce a little extra notation. | will writeo g for the functional
composition off andg. To show that this is not cheating | will write

l et conpose f g x =1 (g X)
in ...

Now | will choose to represent the natural numbers as by langxgpressions
as follows:

et identity x
nlet zero f
nlet one f
nlet tw f
n
n

X,
dentity

let three f
l et four f

|
f
f
f
f

O O O
— —h —h

I
[
[
[
[o f
i of of
[

With this representation of whole numbers addition and ipligation are as-
tonishingly easy, and as a joke exponentiation is alscaltiiNote that ifn is a
number tham f represents the functiofi composed with itself: times. The

proper thing to represent zero is then related to the idefitction.
let add n mf = (nf) o (mf)
inlet multiply mnf = m(n f)
inlet expt mn =n m
in ...

14

The behaviour of the exponentiation function may be unetgaebut there
have been previous Pa® buestions based on the above so | hope you can work
through what is going on and understand it for yourselves.

The next thing needed is a way to test if a number is zero.

let Kx y = x
inlet ifzeronab=n(Kb) a
in ...

where ifn is non-zero the result will be at least one applicatioK @nd the result
will be b, while if n = 0 the result will bea.

At this stage you might like to stand back and observeathazingoower and
expressiveness of lambda calculus and functional progiaginStarting from
almost nothing we have built up models of booleans, tuplets, Iconditionals
and now integers and each new definition has only bee arowsttba) line long.

Subtraction of natural numbers is a curious operation lsmraametimes the
proper result would be negative, and negative numbers draatoral. Thus it
should not be too amazing that the functional code for sabtma is distinctly
curious. The neatest version | have come across is basedinimgea predecessor
function. This is theconcept

let incnf =f o (n f)
in let predecessor n = n inc <m nus-one>
in ...

where the predecessor of a valuas obtained by incrementing “-1” a suitable
number of times. The problem here is that we can not have aeplambda-
representation for -1 that is really consistent with ourenstinding of numbers
as things that compose a function with it8elf

So consider

| et specialinc n =ifzero n (inc n) (inc n)
in let predecessor n =

n specialinc ?
in ..

where | have left ?” where the “-1” will go. What | then want to do is to select
a value to insert in place of the question mark so #ci al i nc ? turns into
zero. Try it!

specialinc ?
-> ifzero ? (inc ?) (inc ?)
->? (K (inc ?)) (inc ?)

8-1 would find the inverse of a function and that is too much tofasin general.

15

andhah Bingo! | can insert\ p . A ¢ . zero in place of the question mark. It just
ignores its two arguments and retuger 0. Thus | end up with just

| et specialinc n = ifzeron (inc n) (inc n)
in let predecessor n =

n specialinc (lanbda p . lanbda q . zero)
in ..

This may be pretty devious but it works! Now given that we hayaredecessor
function and we can also write recursive functions it is ot hard to implement
subtraction, magnitude comparisons, division, remaimaher all the rest. If you
need integers (rather than just natural numbers) you migitletithem as tuples
with a boolean value for the sign and a natural number for tagmtude. If you

want floating point than you just need a tuple to hold an expbaed a mantissa.
Even there the code will not be too lengthy.

A further issue that needs making but which I intend to gla®s somewhat is
the treatment of mutually recursive sets of functions. This be handled by using
thepai r function to make a tuple out of all the functions that are talbéned
together, and then using tiyeoperator to fix this. The details often become rather
grubby but it can be done.

One can worry about the performance expectations of allsihisilation, but
| will return to that topic later on. For now my concern is td geross the point
that lambda calculus is not just a foundation for prograngntint it seems to be a
quite natural and convenient one. Perhaps you can see hamglssaen the way in
which data can be modelled functionally a lot of people gategenchanted with
the idea that all their programming should be in a pure famneti style. And a
different idea also grew: perhaps the best way of buildinggdly solid theoretical
basis for practical programming languages would be toedlair properties to
something as spartan and tractable as lambda calculusgthtbese layers of
modelling and simulation.

Of course

5 Modelling imperative programming

When somebody sets up an agenda saying that they will writeeil code in a
functional style it is natural for others to come up with deages. An important
instance of such a challenge is that of programs where ther @fdevaluation
matters and where this shows up because executing codednagimay have side-
effects. Related to this is to treatment of control strucul@ops, goto statements
and exception handling.

16

Sorting all this out leads to something that is pretty meddyn@es, but in a
course on the foundations of functional programming it seenoper to explain
how it can be done. I think this is not very useful for handtten code but there
are two ways in which it can be of practical relevance. The i&$o transform
imperative code to a pure functional form if that is thoughble to help you
perform formal transformations or verification on it. Théet is as part of a
compiler: very competent compilers have been written usirgfect pure lambda
calculus as the internal representation for programs aing tise translations and
mappings given here to convert arbitrary code into that form

I will first look at code where you want to specify the order adiiation. Well
in fact with pure functional programming it may be impossibb force much in
that respect, but its possible to re-structure code so that an intended order of
evaluation is explicit and visible. The technique used isvkm ascontinuation
passing

One interpretation of this is to look at the way in which fuontcalls are
compiled for a traditional computer. The arguments are gnegband put some-
where (typically in registers or on a stack), a return adsli®sestablished and then
control is transferred to the function. When it has finishedniork it prepares a
return value and jumps back to the location indicated by ¢f@rn address. With
a slightly different viewpoint this can become a lot more syetric. Think of
returning from the function as calling the return addresa asw function, pass-
ing your return value as its argument. And then thing of tharreaddress as a
perfectly ordinary argument to the original function, nstssmething special.

It now becomes possible to take ordinary function calls admrite them in
a functional language so you can see all this happening. dtie t2nds to look
a bit messy and contorted, but once you get used to it is isawobad and it is
certainly no worse than looking at how one maps high levajlages down onto
machine code. Here is an example, with first the originaligersf a function:

let f a b =g(h a, k b)
in ...

and now a version expanded to use continuation passing:

let f a b cont =
h a (lanbda r1 .
k b (lanmbda r2 .
grlr2cont))
in ...

You may note that each function defined now has an extra figaihaent which
will be its “continuation” (ie what to do with its result), drihe code | have shown

17

visibly starts by callingh to computeh a, which it passes to a continuation that
accepts the result and callsritt. Nextk is called and the result it produces
ends up as 2. Finally g is called, and the result from g is passed to whatever
continuatiorf had been given. Here is the same function translated sd ttedts

k b beforeh a:

let f a b cont =
k b (lanbda r2 .
h a (lanbda r1 .
grlr2cont))
in ...

The continuation passing style makes order of evaluati@htha need for
temporary storage very clearly explicit (which is why it da@ useful within a
compiler). It also makes it easy to talk about recursive éachiive (sometimes
known astail recursivg calls, in that the stack space that is implicit in direct
use of a programming language becomes explicit here eaehainew lambda-
expression has to be set up to be an intermediate continuatio

The real excitement with continuation passing is that youo wedel quite
complicated control structures very readily. A locationymur code that might
ever be reached has to be represented by a function, andig#sat as a contin-
uation allows you to direct control to there. In a few casesit be useful to pass
a function several alternative continuations, for inséanoe to activate in nor-
mal circumstances and another to use as an exception eigtsdlireme makes it
possible to modejot o, t r y andt hr owin terms of the purest lambda-calculus!

Now what about side-effects? Well the view here is that tiieces must be
to change something, so a copy of that something can be paksepas an extra
argument and when it is changed an updated version will bsegaat the next
function call. This is very much what is happening with acaletor arguments
in a typical iterative style of ML programming. When you comdithis with
continuation passing you see that every function ends uptwit extra (implicit?)
arguments: one its continuation and another a data-steuttat represents the
current state of all updateable state that your program neag.nlf this state is
very large and messy this can be painful, but for many progriamill not be.

There have been a number of proposals for modelling inpubatylt (which
tend to count as side-effects) into functional programmimgny of these cheat
somewhat! One view is to say that a functional program canena list of all
characters it will ever ask to read as its argument, and itggierate as its output
a list consisting of printing and other directives. A sumding framework can
then look at the output it produces and cause things to happen

18

6 Computability

Maybe by now it will be 100% obvious that pure functional pra@ming is com-
putationally universal. However just to make things expkonsider a Register
Machine. Suppose it has two registergndb, and its states are labelled 0, 1,
| can produce a lambda-calculus program that models it vasylye If in some
staten the transition is to increment theregister and go to state | will define

a function

let fnab=fm(inc a) b
in ...

while if the node tests, decrements if non-zero and goestor ¢ my definition
will be

let fnab=ifzero a (p ab)
(q (predecessor a) b)
in ...

Obviously similar code applies if it is thieregister that changes. Starting and
stopping the register machine does not introduce anythiorg tnat is at all com-
plicated.

| will later show how anything expressed in lambda-calcwdais be expanded
out in terms of the combinato&andK and that will establish that they are com-
putationally universal too. This of course carries withig result that there is no
computable way of telling if a given lambda expression hasranal form.

One might like to see how to encode lambda expressions oricatolby forms
in such a way that a Turing Machine could reduce them. But fisstduld talk
about implementation techniques for when you have an orglo@mputer to use!

7 Implementing Combinator reduction

The basic combinator re-write rules are just

Kry — =z

Sfgr — fx(gx)

A natural way to represent combinator expressions withimmputer will
be as tre€s and then the re-writes become graph transformations waahbe
shown as follows:

9Actually even if things start off as trees they are liablertd ep with shared sub-structure and
possibly with loops, so really they are directed graphs.

19

_ S _
X
o] f X
f g X

K
= X
y
K’ X

To perform reduction on a graph of combinators one scans dog/teftmost
chain of edges. If it does not end then your reduction doetenatinate! If it does
then what is at its end must be eitf&or K, since no other leaf elements exist! In
each case you check to see if there were enough branchesiatwoneke one of
the above transformations possible, and if so you re-whigditee. Note that fob
this involves allocating a couple of new nodes of store ferrtbw branches. Then
scan again to find the new leftmost combinator. When the heatbimator does
not have enough arguments to reduce the graph has been btodngiad normal
form. Anything done to if beyond this will not alter the leadicombinator. But if
desired the sub-trees can be reduced to get the whole expras® normal (not
just head-normal) form.

It might be noted that locating the head combinator that Isetactivated and
keeping track of the chain of links leading to it perhaps setncall for recursion.
When people write real combinator reducers there is a highgtitity that they
will avoid need for this extra memory by reversing the chdipainters as they
scan down the graph and then putting it back into its origioalfiguration as they
unwind.

Here seems a good place to comment again about evaluatiersadd op-
tions. Applicative order evaluation arranges to reduceraents to all functions
to their normal form before passing them into the body of threcfion. The com-
binator reduction code given above does not do that naguiait simple direct
lambda-calculus reducers can find this the easiest scheimpkement. Normal
order reduction is when at each stage the leftmost outernedsiction is per-
formed. Even if it is harder to implement it has the benefit thguarantees
that a program will not loop if there iany evaluation order that avoids getting

20

stuck. However here is an example of normal order evaludt@ng obviously
inefficient:

(A x . + x x) Messy expression> + messy expression messy expression

and now the messy expression will be evaluated twice. Apjie order would
(of course) have evaluated it just once before substitutsgesult into the func-
tion body.

A third scheme (which has a more pragmatic flavouldzy evaluatiorwhich
is just like normal order evaluation except that it keepskraf where arguments
get substituted into a body. Then if such an expression ikiated once (for
any reason) it is arranged that all the other referencese@xpression end up
pointing to the resulting value. The effect is that an argutsiés never evaluated
more than once. In terms of the graph re-write for a redudtiggered byS as
shown above it is very easy to arrange this! All you do is to entlide re-written
graph over-write the top node in the original one. Thus isssvparts of the
entire program share references to the sub-expressionthéth reduction in it
the first one to call for it to be reduced gets that job done drali@f all the rest.
One should note that over-writing the input graph here sderbs an important
side-effect and suggests that the combinator reducer wdelvant to be written
in an imperative language not a (pure) functional one.

When using graph-rewrites and combinators some cases caalievith es-
pecially neatly. Notably th& operator can be built in as a primitive combinator
using the re-write

which creates a looped-up structure but feels a very simpégation to have to
perform to implement something that at first appeared to theranessy and hard
to understand. This combinator implementation suggesiscgn think ofY as
the basic operator for creating loops in graphs!

8 Conversion from lambda-calculus

Basic conversion from lambda-expressions to combinatomsriseasy, but when
done in the simplest possible way the result is a very segapsansion in bulk.
It is still useful to explain the basic method. First and asaiter of convenience
introduce a third combinatdrwith re-write rule

21

lz — =

and note that§ K K) could have been used in placel of one were feeling really
bonded to the full primitive experience. Now take any lambke#pression (and
suppose that all the variable in it are bound). Use the toamsdtions

Ax.x — |
Aex.y — Ky
Ax.(fg) — SAz.f(Az.g)

where the first rule that applies in any case is the one thathe tused. The final
rule reduces the number of applications forming the bodyngflambda expres-
sion, and must eventually reduce things until all that i$ iefa simple variable
as the body. Then one of the first two rules will kick in and tambda disap-
pears. These rules should be applied first to the innermodida expressions
present in the input (and will then remove this lambda in tevaf a big mess of
combinators).

Itis jolly easy to write a program to apply the above threesubnd when you
have you can try it out. What you will find is that even quite sHagments of
lambda-calculus expand into horrible large strings of cimators. But this prob-
lem is not an essential part of the process. But adding just aiere combinators
and a few simple optimisation rules to the translation itdsgble to reach a stage
where the bulk of combinators generated is directly prapoaf® to the size of
the lambda expression you started with.

The translation between lambda-calculus and combinaarstiwithout some
worry. In general the translation process will preserveesional equality but it
will not guarantee to preserve the sort of equality that ldaabalculus experts are
most keen on. Furthermore small variations and optimisatjand optimisation is
very much needed to make this conversion useful!) all affest In general if you
take a lambda expressidi and anotheV such that\/ — N and converiV/ into
a combinator form\/’ and N into N’ you can not be quite certain that’ = N’
in the combinator world (until you allow for extensional edjty). Hmmmm.

There are a whole raft of slightly different combinator cersion procedures,
and the issue oéxactlyhow the combinator reductions you end up with relate to
what happened in pure lambda calculus is again one of thegsedghat is more
delicate than you would like it to be. However here is a sdtlikhaves reasonably
well!

1°There are some delicacies here! Sufficiently messy lambgeessions will have to use a
large number of distinct names for the variables that theypdéluce, and proper measurement of
their “bulk” must account for this. For instance if there areariables then you neddg,(n) bits
to specify which you are referring to. To achieve linear gndatve combinator translation process
also has to take special action on some ill-balanced inpats] am not describing the details here.

22

Kry — =z
Sfgrx — fax(gx)
lz — =«
Bfgr — f(g7)
Cfzy — fyz
Szfgrx — z(fx)(gx)
B zfgrx — zf(g97)
Czfzy — z2(fy)x

And then the compilation rules get elaborated with
SKz2)(Ky) — K(zy)

SKz)y — Buzy
SKz)lI — =z
Sz(Ky) — Cuzxy
SBry)z — Buzyz
YKz) — =z
lz — =«
Bl — =
Bzl — =«
BBzxy)z — Buxyz
CBzy)z — Cuayz
C+ — +(etc)
Arx.x — |
Ax.y — Ky
Ax.(fg) — SQAz.f)(Az.g)

Here the idea is that the last few rules are exactly as bebutethe various
earlier ones are used as simple rewrites (performed as ébeofrcombinators
is built up) that spot special cases of the use of the morergenembinators
and convert them into uses of more specialised ones. If thisg are used the
factorial function gets converted as follows:

fun fact n =if n=1then 1 else n » fact(n-1);
=Y (B(S(C if (=1) 1)) (B(S=*) (CB(C- 1))))

where this is using an applied combinator system with bailtumbers, “if” test
and arithmetic.

9 Lambda-bindings in an interpreter

The delight about using combinators is that the implemertatoes not have to
worry about the names of variables. However one should atsenstand how

23

to evaluate lambda-expressions directly. The most obvappsoach would be to
implement code that performed beta-reductions directlgulastitution process.
The big pain with this is avoiding trouble with unwanted nacagture due to
clashes in the names of bound variables. The normal way dhtofrouble is to
keep arenvironmenthat records the values associated with all currently-doun
variables. The details of how this can be implemented caoied in notes from
the Compiler Construction course, and so will not be repeateel. h

10 Closures

When you pass a complete lambda-expression around thereatiag any special
problems. However within a lambda-reducer you will be wogkwith fragments

of lambda expression and very many of those will have fregales. These
will of course normally be variables that are bound by somdosing construct.
When such a sub-expression is passed around it is importrebttia information

be included with it to carry this context information. Sucttra information is
generally called thenvironmentand the combination of an expression and its
associated environment iscibsure A particular case where closures are needed
is when functions are returned as results, for instance giML code

fun f x =
fny =>x +vy;

where the lambda expressibn y => x + y must be returned together with
an environment that shows the value %othat it is supposed to be using.

An ML implementation of lambda-calculus was shown to youieam the
year. The ML implementation tends to be a recursive functi®ometimes it is
useful to have an explanation of how to reduce lambda expresshat shows
all memory use quite explicitly. One such scheme is to uset\ghknown as
an SECD machine. SECD stands for State, Environment, ContdoDamp. It
represents a style of abstract machine with those four caemis. The state is
an expression that is in the process of being reduced. Theanwent is a list of
pairs: the first component of each pair is the name of a variabtl the second
component is a value that the variable has. The environmseaalivays searched
in such a way that the topmost binding of a variable is the eteved. Control
and Dump are used as stacks to track the context in which ae®sipn is being
evaluated: popping items off these stacks reveals infoomatbout what is to be
done with the result of evaluating a sub-expression.

All actions taken by an SECD machine are triggered by recognibe sym-
bol or simple pattern in the State and Control, and each std@sna simple
change moving information between the parts of the machihgou are ever

24

going to implement an interpreter for some sort of (mostly)dtional language,
and especially if your implementation will need to suppaitttecursion, closures
and the like it is probable that you should think in SECD teriipsua what you
will be doing.

11 Performance

If you have a programming language that looks somewhat liketin mostof
the code that people write will not be very tricky, and eveautgh it may be
expressed in different ways much of it will be asking for jtis¢ same sorts of
computation that an equivalent program in C, C++ or Java woale: h Specifi-
cally (iterative) ML code to compute factorials and the aetdy ML code to build
and use binary trees and lists is really not very differenirfithe corresponding
code in any other language. The same will be true for othestiomal languages,
and in consequencesalfficiently clever compilét can generate excellent code
for them. If the functional language is, by its specificatilazy then this too need
not hurt too badly, since there are techniques (discuss#teiRart Il course on
optimising compilers) that can spot the large number ofggaghere the adminis-
trative overhead of supporting laziness is not needed. &padlty line is that even
the purest functional language could deliver realistidgrenance. In fact users
of such languages are often much more concerned with coegstind elegance
than they are with absolute speed, but the literature amsitareasonable trail or
work where people have striven to extract the largest giaimks from functional
code that they can such that the chunks can be subjectedhe &tlols of modern
compiler optimisation.

12 Let-polymorphism

One thing we have seen is that pure lambda-calculus (or ¢catiys) can be used
to model almost anything else in programming that we mighitia use. Once
(for instance) we have shown that numbers and arithmetidoeagsimulated this
way it seems fair to put them into our programming system asifive opera-
tions, to avoid the cost an inconvenience of having to runstheulation. After
all we have proved that including them does not make the progring model
any more complicated to analyse, since all the complicatias already available
via the simulation! But when we do that it seenery desirable to encapsulate
the native implementation of the data-type. When everythiag being modelled

1IA mythical entity, often invoked by those who are champigrianguages that in reality seem
to go a hit slowly!

25

as a function you could try applying any object to any othex and you would
get some sort of defined effect. If you make numbers primitens you would

really like to insist that attempts to use numbers as funstior to apply “+” to

non-numbers should not be permitted. The fact that pure dardalculus also
allows you to synthesise your own pretty wild control stues (specifically the
Y operator and its friends) renders it too powerful. Perhagswould like a more
restricted system where the user is explicitly permitteshéde recursive function
definitions but defining private variants &his prohibited.

The mechanism that has been developed to impose this sorsadplthe is
type-checking. In some sense it tends to be a purely delsewadd-on. The user
writes a functional program, and passes it through a tygeiar. Sometimes the
type-checker moans and rejects the code as “invalid”. Ifype-checker does not
moan you just execute the program be doing ordinary lambdaetion. So type-
checking just flags some programs (that you could have tregdre) as dodgy.
A good type system will object to programs that in your hedttearts you can
agree are really a bit dodgy, and it will always endorse righec¢ode.

The simplest forms of type system assign a fixed, definite tggEach value
that you work with. Thus each variable or sub-expressiorour yprogram will be
marked as being an integer, or a function from integers te iswhatever. Such
schemes are not too hard to set up but tend to feel excessagthctive in use.

The style of type-checking most commonly used with funaidanguages is
polymorphic This means that the type ascribed to a function or expressa
involve type variables The key problem in polymorphic type checking is that of
working out when to introduce these variables. There arbdrigrder styles of
type-checker where the type-variables can themselvesristramed or typed. |
will not consider such cases here!

The type-judgement scheme provided in ML mostly seemstédis and nat-
ural when you first use it. Treated informally it is usuallyspible to work out
what type a function should be given, and the procedure yewils be a close
relative of the algorithm that ML in fact uses. However thare some fine points
that generally do not show up when you are just a user of thee¢yecker.

For this course | will note that ML gives special treatmenatithmetic and its
type analysis does some distinctly funny things with integend real numbers.
An effect of its curiosity is that code such as

fun double x = x + 1;

needs extra annotation to help resolve whether the adastmirintegers or reals. |
will ignore this problem here by thinking in terms of prograwmhere all numbers
are integers. The ad-hoc polymorphism that deals with ragtit is really not

especially interesting!

26

What is interesting is the way of generating the types thatasortype vari-
ables. For instance after making the ML definition

fun St gx =1 x (g x);
you will be told thatS has the type

(@—=(B—=7) = (a—=pB) = (a—1))

This type-expression is a general one: any of the type Masah it can be
replaces by any more restrictive type to get something mamerete, and in gen-
eral whenS is used it will act as in one of the more concrete ways. A prigper
of ML type-checking is that every expression that has a typdla@an be given
an unique most-general type, and all other types it can ev@idwed as having
can be obtained by substituting for type-variables in theegal version. This ap-
parently obvious property may not be present in all possige reconstruction
schemes!

One curiosity about ML-style type reconstruction is th#hét transformations
on expressions that ought not to change their value at althange their type-
checking status. For instance start with the lambda exjoreéisere written in ML
syntax)

(fni = (i 3, i "s")) (fn x => x);
and perform a-reduction on it to obtain
((fn x =>x) 3, (fn x => x) "s");

In ML the first of these will refuse to type-check while the ged will be entirely
happy! Perhaps this fact will make it clear why people arergdgted in looking at
alternative type schemes but you should be aware thatrgjrikbalance between
type reconstruction power and the difficulty of finding typeastonishingly hard.
The ML scheme seems to be a clear cut examples of a “Which” typst‘buy”.

13 Unification and type reconstruction

The ML type-reconstruction method is explained here withrencare than its
coverage in the Partalcourse, but still somewhat informally. What is perhaps
more critical is that here | will show what has to be done (veelbugh that you
could possibly implement it) but | will not even start to pide a proof that the
algorithm that | describe extracts exactly the type expoassthat are wanted. In
general type reconstruction is a delicate enough processithil somebody has
defined the algorithm as a carefully and formally specifigdtriles and worked

27

through proper proofs of its properties one ought to be vagpgious. What |
hope is that an sketch of the method here will make its moreggeoverage next
year easier to approach.

Type reconstruction uses one significant sub-algorithrfication. You should
already be familiar with this from its use in Prolog. In these we want a vari-
ant on unification that takes two trees, each of which isistatb represent a
type. Within these trees the nodes will denote construaiech as “” that indi-
cates that the type is the type of a function and some of tiveseaill be definite
fixed types such asnt andstri ng. Other leaves (in each tree) may be log-
ical variables. Unification attempts to match the two tregairest one another,
instantiating logical variables where necessary in thegss. When a variable is
instantiated the value it is given must not refer back tdfits the context of
Prolog you may have heard this called thexurs checland ignored it. In type-
checking you want to make sure this condition is checked\iéien unification
succeeds it will often have had a side-effect of instamigageveral more logical
variables. If any of the unifications attempted during typeonstruction fail (ei-
ther because of a gross miss-match or because of occurk-rbable) then you
declare that the expression does not have a valid type.

If you are not especially worried about efficiency it is rgadjuite easy to
implement unification. With quite large amounts of care gatfion can be per-
formed in an amount of time linear in the bulk of the two inpi¢hen | come to
talk about the cost of ML-style type reconstruction | willpgose that you have
gone to the (significant) trouble of implementing lineastcanification: if you
want to code something to try | suggest you just write the @bsicode — it will
run quite fast enough!

The eventual object of type reconstruction is to ascribepa tp acomplete
functional program. But the strategy used is to work from tb&dm up giving
types to various little fragments of code first. These typédkoften need to be
refined later on when the context in which the fragment exssesxamined. The
scheme that supports this is the use of logical variabledetSoe first indicate
the (initial) type judgement you make for leaf elements ireapression.

If the leaf is a constant then the nature of the constant defisetype in-
stantly. Thugtrue has typebool ean, 17 has typei nt eger and+ has? type
int->int->int.

When a variable is seen it is associated with a type expre#isains a hew
uninstantiated logical variable. The issue of treating bieling of variables
will be discussed later under “lambda” and “let”. Specifigahe behaviour
when there are several references to the same name withiscope depends
on whether the variable concerned was bound usiagbda or | et . Getting a

?Remember that | am ignoring the issuei it vs.r eal arithmetic

28

precise explanation of just how to avoid mix-ups with nanresscopes in lambda
calculus is (as usual) a much more messy business than itvdede be. Since
this is a Partg course not a Part 1l one | will not write out formal rules forvho
to do it and I will not show exactly where you need to perforamesning substi-
tutions to untangle things. | count these as “mere” techities, even though in
an implementation it is important to get them all right!

There re are four remaining basic constructions that caaapp a parse tree:

if: When an expressionf bt hen E; el se E; you form the type expressions
for each of the sub-trees. You unify the typebafith bool ean and unify
the types of; and E;, with each other. The result of this last unification is
then the type of the whole expression;

application: If the application igt B and treatingA and B as separate values
leads to type-expressiong andrp then create two new logical variablgs
andq. Unify 74 with p — ¢. Unify 75 with p. Returng as the constructed
type for the application;

lambda: If you havé n v => FE then you ensure that the logical variable for the
type of v is the same as all the ones usedddhroughoutZ. This can be
done by unifying all these! Suppose itisand also suppose that the type
you construct forE is 7. Then the type for the lambda expression is just
T, — Tg. Actually a natural way to implement scope rules will be tddu
up a map of bound variables and their associated type (Idgi@aables as
you recurse down into an expression, and then to do the uminsathat
| am describing as you return from analysing each sub-egmes That
way as you start to analyse a sub-expression you will haviéealato you
information about all bound variables;

let: The rule forl et v = F; i n E, is the key one in ML type reconstruction.
Note that top-level variable and function definitions aesated as if they
are introduced with et clauses. You reconstruct a type fB5. Now if
there are any uninstantiated logical variables in this typeleave them as
type-variables and obtain a polymorphic type #or-,. Now at each place
in E5 where there is reference toyou make its type into a copy of but
with a fresh set of logical variables in each place thatcurs.

The rule for conditionals is pretty dull and obvious. The @reapplications is
the main one that actually does work. But the key thing thatesdkis particular
type derivation special is the difference it makes between

(fnv == B A

and

29

let v = Ain B

In the first case the complete expression is analysed as awglohll uses of

v must be consistent throughoBt and the eventual type that gets unified into
existence for depends on all oA and on all of the contexts withi® thatv is
used in. In the second case the type given tlepend®nly on the expressiod,
and type variables in this expression are turned into fregitél variables before
use. Consider once again the example

let fun i x = x
in (i 3, 1 "s") end

which | will interpret as meaning (in a cruder syntax)

let i =fn x => X

in (i 3, 1 "s")
Here in thed et clausea will get give the typen — o wherea is a type variable.
After the wordi n the variablea will have to be turned into two new logical

variables for the two uses @f And one of these logical variables will end up
unified toi nt while the other ends up & r i ng.

14 Decidability and costs

A good thing about ML type-checking is that it is decidables with so many
observations in functional programming this seems a pislity thing to say —
you are likely to think thaof courseit is decidable. Well various attempts at just
slightly more general or powerful type-checking schemad e type reconstruc-
tion where you can write down a lot of equations to be solvika the equations
we solved in the last section through the use of unificatian)where there can
not be a general algorithm that guarantees to find a solution.

Experience with the ML system also shows that type-chectifradl real pro-
grams is pretty cheap. It therefore came as a slightly nasfyrise that the al-
gorithm (even when very carefully implemented, using détactures that share
as much as possible) has exponential worst case. As a riestdtdre quite short
ML programs that would type-check if you had unlimited res@s but where the
type reconstruction will not complete on any real machinge Bad constructions
are relatives of the following:

let f1y = (y,y)

inlet f2y =f1 (fly)

inlet f3y =12 (f2vy)

inlet f4y =13 (f3y)
. X

30

where you should note thafl makes a tree with two leaves, and each subsequent
line squares the number of leaf nodes present. This leagpés tvhich if written

out linearly would, at thexth line have aroun@?" symbols! Because the types
concerned have a rather regular shape it is possible tosepurthem in a way that
shares a huge number of sub-trees, but things can be set batsme can show
that even with maximal structure sharing the type you end itip i& of size2".

If the type is that large then any algorithm that producesusntake exponential
time.

If you do not like my use of tuples as {ry, y) above or would rather restrict
yourself to lambda expressions not visible function debng then it is easy to
expand out the above example in terms of the more pure stifesctional pro-
gramming and the same bad results apply. Indeed there is toulehsaid in this
example for making the tuple using

let pair xy z =2z xy

since that leads to the ML types of the functidnk etc involving ridiculously
increasing numbers of distinct type variables!

15 Practical back-up for this course

The section of the lab’s teaching web pages that relate socthirse contains a
file par ser . j ar thatl have prepared. Itis not a fully stable and fully delked)g
program (apologies) but may be fun or useful. The sourcd trsetd to build it is
also present on the web page asza p archive. | built and have tested it using
JDK 1.2.2 on Windows NT. If any of you take a copy and make angresting
improvements it would be nice if you passed thgem back to miegime full
permission to do whatever | like with your corrections anttaarcements. The
code is available for any use you may need to make of it in @s$oie with the
Computer Science courses here, but | am retaining copyrightaaybody who
sees a way to use it commercially is invited to talk to me kefying too far.

Touseitgg ava -j ar parser.jar andthentype ininputto its prompt.
The syntax that you use is similar to that of ML but the languages lazy evalu-
ation and it does not impose any type-checking.

The code may well have bugs. No:will have bugs! Any piece of program
that large is bounnd to have some. The syntax that it acceptsly documented
in the filesmal | . cup, but it is much like ML. The code works by converting
things to combinators and then doing graph reduction on vesaits. It gives lazy
evaluation. At the time of writing these notes it does not dg ype-checking at
all, but I intend to add ML-type polymorphic checking, buéthif an expression
fails to type-check I will still allow you to evaluate it! | lpe it is interesting and

31

useful! Reading the Java code may show you something aboctiqadeaspects
of (one way of) implementing functional languages, whilstjtrying it out lets
you see the sample code that models numbers etc working.

The following output has been edited in a few places to hetgthfit on lines
of the page.

% java -jar parser.jar

2 + 3
| nput expression + 2 3
=> 5

y f;

I nput expression y f

= f (f (f (f (f (f (f (f (f (f (f (f
(f (f (f (f (f (f (f (f (f (f (f

fun double x = x + x;
St atenent FUN double x = + x X
Conbi nator form S + |

doubl e 7;

| nput expression double 7

=> 14

fun fact n =if n=1then 1 else n » fact(n-1);

Statenment FUN fact n =
IF(=n1l1l 1 (x n (fact (- n 1)))
Combi nator form Y (B (S (C IF (=1) 1))
(B(S*) (CB(C- 1))))

fact 7;
| nput expression fact 7
=> 5040

32

fun conpose f g x = f (g Xx);
Statenment FUN conpose f g x =f (g Xx)
Conmbi nator form B

fun zero f x = x;
Statement FUN zero f x = x
Conbi nator form K |

fun one f = f;
Statenent FUN one f = f
Conbi nator form |

fun add n mf = conpose (n f) (mf);
Statenent FUN add n mf = conpose (n f) (mf)
Combi nator form S B

fun multiply mnf = m(n f);
Statement FUN multiply mn f = m(n f)
Conbi nator form B

fun expt mn =nm
Statenent FUN expt mn = n m
Combi nator form C |

val two = add one one;
Conbi nator form S B | |

val four = multiply two two;
Combi nator form B (S B1 1) (S Bl 1)

fun display n = n (fn x => x + 1) 0;
Statenment FUN display n = n (+ 1) O
Conmbi nator form C (C1 (+ 1)) O

33

di spl ay one;
| nput expression display one

== 1

di spl ay two;

| nput expression display two
= 2

di spl ay four;

I nput expression display four
= 4

di spl ay (expt four two);
| nput expression display
=> 16

fun ifzeronf g =n (k g) f;
Statenent FUN ifzeron f g =n (kk g) f
Conmbi nator form CC K

fun inc n f = conpose f (n f);
Statement FUN inc n f = conpose f (n f)
Conbi nator form S B

fun specialinc n =ifzeron (inc n) (inc n);
St atenent FUN specialinc n =

ifzero n (inc n) (inc n)
Combi nator form S (S (CC K) (S B)) (S B)

fun pred n = n specialinc (fn f =>1fn g => zero);
Statenent FUN pred n = n specialinc (K (K zero))
Conbi nator form C(C1 (S (S (CC K) (S B))

(S B))) (K(K(KI)))

34

di splay (pred four);
| nput expression display (pred four)
=> 3

fun ff n =ifzero n one (multiply n (ff (pred n)));
Statement FUN ff n =
ifzero n one (multiply n (ff (pred n)))
Conbi nator form Y (B (S (C(CC K) 1)) (B (S B)
(CB(C(CIl (S(S(cc K
(SB)) (SB))) (K(K(K1)))))))

di splay (ff four);
| nput expression display (ff four)
=> 24

You might like to observe how the combinator forms for soniagh are ex-
ceptionlly compact: multiplication is ju®® while increment is jusS B for the
Church numerals. The final example computes factorials mgesf pure func-
tions.

References

[1] J R Hindley and J P Seldin.Introduction to Combinators and Lambda-
Calculus Cambridge University Press, 1986.

[2] G E Revesz.Lambda Calculus, Combinators and functional programming
Cambridge University Press, 1988.

35

