
Complexity

Part IB, II(G) & Diploma

A C Norman, Easter Term 1999

1 Introduction

This course is about the complexity of computation. This relates to the way in
which computing times grow as you solve larger and larger examples of problems.
Part of the course will be illustrating how complicated things get if one tries to
seek the very fastest (in terms of this ultimate growth rate)way of solving even
simple problems. A middle section looks hard at an area generally accepted to
be the boundary between problems that it is feasible to solveand ones that are
too hard, while at the end of the course I will sketch a demonstration of how a
simple looking problem may have associated costs that are beyond most people’s
nightmares.

This course build on material from several previous earliersets of lectures:

Early courses: Big-O notation for describing rates of growth;

Regular Expressions: Recall that these provide a neat way of writing patterns.
I will quote the results about these that I need, and will not need you to
remember the associated proofs!

Turing Machines: It is important for this course that you are happy about the
structure of a Turing Machine and the fact that it is a generalmodel of
computation. What may amaze you is that it is agoodmodel of practical
computation quite often;

Complex numbers: These get mentioned at one stage;

Modular arithmetic: This is just performing ordinary integer arithmetic but only
keeping the remainder when the natural result is divided by some modulus
M. It certainly arose in the Part IA Discrete Maths course when RSA en-
cryption was introduced;

General skills in algorithms: Both design and analysis skills are involved. Var-
ious of the parts of my course amount to presentations of techniques that
could almost equally have gone into an Algorithms lecture course.

The presentation here is based on four books, three of which are easy to obtain
and indeed that you may own already. The last book is older andmay be less
readily available, so I have included the important material as part of these notes.

Because these books (and in fact many others) cover this material well you
have the advantage that you can look in them and find quite large numbers of ex-
ample questions some of which will be less substantial than past Tripos questions
(of which there are plenty, available via the computer laboratory web pages in the
usual way). When I point out that a certain part of my presentation is keyed to

1

one of the books you should automatically assume that this means I am drawing
your attention to the examples in the book at the end of the relevant section and
suggestion that you try some of them. The books are:

Knuth[3]: The Art of Computer Programming is a classic set of volumes. I will
take just snippets from volume 2, but I continue to believe that well-rounded
computer scientists browse all the rest of that and the othervolumes to en-
sure they have an overview of what is described;

Sudkamp[4]: Languages and Machines will provide a useful refresher for those
who want to brush up on their regular expressions as well as being close to
the presentation I will give of some hard problems;

Cormen at al[2]: If you have not already bought your copy of this thick book
now is another excuse. I will only be using the last two chapters from it
here;

Aho, Hopcroft and Ullman[1]: This was an important book in its area and cov-
ers the very hard problem I will discuss at the end of the course. I suggest
you consult it after you have read all of the previous three suggestions!

Because these books are so good I will not include all the fine details of the
material in these notes. Many of you will find that your supervisors will under-
stand this material quite well and that between that and the lectures you will be
happy, but in terms of precise explanation of technicality it would be very hard for
me to match the clarity of exposition in any of the recommended texts.

There are parts of this course that are technically delicate. Many of the terms
I introduce seem to lend themselves to informal abuse or mis-application, or at
least application where the precise result that they imply has not been proved. My
presentation will still try to concentrate on explaining the structure of the results
and on skipping detail where I feel I reasonably can. The intent is that once you
have grasped the overview you will be in a position to work through everything
again adding back full formality and precision of notation.Current research areas
in the area of complexity rely firmly on extreme precision of reasoning and so
may re-cast some of the ideas I show you here in concise, precise mathematical
formulations that could initially look a bit daunting: I hope my more informal
presentation will help lead some of you into the area and thatyou will then enjoy
it.

2 Easy

I a course on data structures and algorithms the tasks lookedat are generally of
around the size and messiness as “sorting”. In this part of the complexity course I

2

will show that there is quite a lot to be studied in tasks that you probably previously
took for granted! In particular the issue to be investigatedwill be implementing
integer arithmetic. It seems pretty clear to me that until weknow just how fast this
can be done it will hardly be possible to analyse any other algorithm at all.

A complexity-theory approach twists our intuition by asking only about growth-
rates of costs. This is a sensible approach in that it allows us to ignore the constant-
factor scalings associated with fast or slow computers. IN the case of integer
arithmetic it will be natural to measure the size of inputs asthe number of bits in
a binary representation of the numbers. The challenge is then to find the sharpest
possible big-O bound on the costs of basic arithmetic operations. There are three
oddities:

1. The insistence on looking for the best big-O growth rate asthe way of as-
sessing algorithms sometimes causes us to look at methods where the con-
stant (hidden in the big-O notation) is rather large even though the growth-
rate is slow. Such methods may only pay off on ridiculously large inputs,
and so practicality is not guaranteed;

2. The best intellectual result will often be a proof that some task will have
costs that grow at least as rapidly as some function, regardless of the algo-
rithm used to solve it. Eg we have seen elsewhere that “sorting using com-
parisons most cost on average at leastlog n! whatever method is used”. Such
proofs do not necessarily show us how to achieve the bound: for sorting we
were lucky that merge-sort (for instance) did achieve the lower bound, but
for other tasks we can end up with a mathematical bound and no clue as to
how to meet it;

3. For many tasks the exact model of computer permitted when considering
algorithms is somewhat problematic. Big-O notation talks about ultimate
limits, while real computers have limited address ranges and limited pre-
cision arithmetic for calculating addresses. If you had to imagine sorting
(say)266 numbers then think about the index arithmetic needed to address
them, and note that if the numbers are only 32 or 64-bit valuesyou are
bound to have lots of repetitions. We need to abstract away from these
frivolities without letting anything horrid creep in. I suppose I should give
an example of something that would count as “horrid” here. Suppose we
extended our idea of a computer to make it roughly like all current ones,
but accepted it could have arbitrarily large memory, that all memory could
be accessed in unit time and that the index arithmetic neededto calculate
memory addresses had constant cost. Then it might turn out that various
problems could be solved unexpectedly rapidly by packing lots of 32-bit
integers into a single address register and using devious address arithmetic

3

and huge tables to do in effect parallel processing on all theintegers. I will
cheat a little in the first section of this course and use as my machine model
a programming language like ML or Java and I will count each basic oper-
ation as taking unit time. I will avoid thinking too hard about the problems
of addressing truly huge amounts of data. Later in the courseand for other
problem areas I will be able to avoid this fudge.

Because I want to look at asymptotic complexity I will tend to think of arith-
metic onbig integers. For a small range of numbers your computer may do the
arithmetic in unit time already, or you could pre-compute a table of all possible
calculations and instead of arithmetic you just have a look-up operation to per-
form.

For arithmetic I will suppose that numbers are to be represented in binary.
On occasions it will be useful to clump the bits together in groups of three (for
octal), four (for hexadecimal) or more (eg in practical cases thirty-two to fit with
real machines) but I will suppose that my computer or programming language has
some fixed width arithmetic that it can perform as an elementary operation and
that anything on numbers bigger than that has to be worked outusing carries etc.

First observe that addition, subtraction and comparison ofn-bit numbers can
be performed in timeO(n) using obvious algorithms. Furthermore these algo-
rithms can not possibly be completed without being preparedto access all the bits
of the inputs, and there aren of those. Thus it is not possible for there to be an
algorithm with time faster thanO(n).

Knuth discusses some details. In particular for a theoretical standpoint one
might like to represent huge numbers as linked lists (last significant part first)
because then the average cost of increment and decrement operations are constant
(despite the potentially long chain of carries: on average the carry does not go
very far) and the cost of adding two numbers of different length is determined
by the length of the shorter. Here I will imagine that whenever numbers are to
be combined they are both the same length, and I will think of them as stored
in an array. Doing this will not have an effect on my discussion of the costs of
multiplication and division, which are the next matters forconcern.

Consider the problem of multiplying two integers together, and suppose the
numbers are big enough that long multiplication is called for. Primary school long
multiplication forms the product of twon-digit numbers in aroundn2 steps. Theo-
retical computer scientists ask if it is possible to do better. An easy scheme (Karat-
suba) reduces the cost to aroundn1.57 (and I will explain where the strange expo-
nent comes from. The best theoretical limit know so far1 is n log(n)/ log log n
and the fastest algorithm discovered to date has costn log n log log n. The gap

1Well this depends rather critically on the model of computeryou have, and if you read Knuth
hard enough you will find discussion of the possibility of linear-cost multiplication.

4

between these formula represents a gap in our knowledge (it is not of very great
practical concern, but that does not stop it being a worry to those with tidy minds).

Karatuba’s algorithm takes a pair ofn-bit integers and views them as two-digit
values where each new digit hasn/2 bits. I will write this as(a, b) × (c, d). The
normal way to multiply a pair of two-digit numbers would formthe four products
ac, ad, bc andbd. Karatsuba instead forms three products:ac, bd and(a−b)(c−d).
Well in the last of these you could use either either have added or subtracted, and
it is really ann/2 + 1 bit product not ann/2 bit one. By subtracting and then
splitting a − b andc − d into their signs and absolute values you can get back to
usingn/2 bit arithmetic. I leave you to sort out how to reconstruct thefull product
from these parts: look it up in Knuth or attend lectures if youneed help!

If M(n) is now the total cost of multiplying twon-bit numbers then using
Karatsuba we can achieve

M(n) = 3M(n/2) + kn

for some constantk that covers the additions, subtractions and overheads. It is
easy to sketch enough code to see that these costs all grow linearly. The solution
to this recurrence showsM(n) = O(nlog2 3) which explains the funny exponent
mentioned earlier. Practical experience shows that this method becomes useful
for multiplying numbers that need around 10 words (eg say 300to 600 bits) to
represent them. It is thus of practical relevance. It also shows that the simple
O(n2) multiplication was not optimal. It also forms a warm-up to the explanation
of a much more elaborate multiplication algorithm that comes much closer to the
limits.

The starting idea here is to (temporarily) give up on integermultiplication and
look at the multiplication of polynomials. Karatsuba can then be seen as looking
at the identity

(at + b)(ct + d) = act2 + (ac + bd − (a − b)(c − d))t + bd

There will obviously (?) be analogous identities for higherdegree polynomials
that might lead to yet more complicated fast multiplicationalgorithms. However
a slightly different interpretation will turn out to be productive. Considera(t) =
at + b, c(t) = ct + d then the three sub-multiplications we do in Karatsuba can be
viewed as coming from the products ofa(t) andc(t) at t = 0, t = −1 andt = ∞.

This insight leads to the suggestion for multiplying two polynomials (which
I will now generalise to be of such a degree that their productwill be of degree
n − 1): selectn different evaluation pointsz0 to zn−1. Evaluate each polynomial
at eachzj and form the product of the values so found. Interpolate to find the
coefficients of the product polynomial, which is known to be of degreen− 1. Be-
cause we know its value atn (distinct) points the product polynomial is uniquely

5

defined. This scheme with a quadratic product and especiallysimple evaluation
points leads to Karatsuba. The issue now is to see how it generalises!

Here I will refer you to Cormen et al who have a chapter on polynomial
multiplication that my lectures will follow reasonably closely. The presentation
in Knuth is more directly concerned with the application to integer multiplica-
tion. I will not cover the Cormen discussion of efficient FFT implementation
(although it is interesting and useful) but I am confident that nothing I could
write in these notes could match the presentation in these two classic textbooks.
Note in particular that exercise 32.2.6 in Cormen et al gives the clue to what is
needed for the integer multiplication case. You will see in these books that the
apparently painful processes of evaluation and interpolation can be performed in
O(n log n) steps. The multiplication after the polynomials have been evaluated
may itself involve long arithmetic and this leads to a complete method that has
costO(n log n log log n).

Given fast algorithms for integer multiplication what are the consequences for
other operations, such as division and the calculation of high precision square
roots? It turns out that these are all related. In particularif we now just suppose
that there is some functionM(n) that grows at least linearly withn and gives the
cost of multiplication then we can derive time bounds on other operations.

Observe that ify = 1/x then we can definedf(y) = x−1/y, f ′(y) = 1/y2 and
a Newton iteration for solvingf(y) = 0 is yn+1 = yn(2 − xyn). Each step of this
iteration takes two multiplications (plus a subtraction).Because Newton’s method
exhibits second-order convergence it will be possible to obtain y correct ton bits
in aroundlog n iterations. This calculation is of course not one using integers, but
the cost of then-bit precision floating point arithmetic is just about the same as
the cost ofn-bit integer working. Now note that in the early stages of Newton’s
iteration the results are known only to have a small number ofcorrect bits. Using
full n-bit precision is overkill. One can usen-bit arithmetic for the final iteration,
n/2 for the penultimate one,n/4 before that and so on. The amazing end result
is that the total cost of forming a high precision reciprocalis bounded by (fairly
small) constant timeM(n). Now obviously one can computea/b as (1/b)a so
division is at worst a constant factor more expensive that multiplication.

Could division in fact be cheaper? No. Consider1 + 2
1

a−1
−

1

a+1

which involves

addition, subtraction and reciprocal operations. It should simplify to justa2. In
consequence one can square a number in time that is at worst a constant multiple
of that needed to compute a reciprocal. Now((a + b)2 − (a − b)2)/4 = ab and
so if you can compute squares fast (and divide by constants such as four) you can
do general multiplication. So multiplication can be done intime bounded by a
constant compared with the cost of division. The two problems have been shown
to be inextricably linked in computational complexity. This was done by showing

6

how to reduce an instance of one to cases of the other. This technique is generally
very important.

At this stage I include a further example to remind one that the search for the
very best methods of solving problems may be hard. Consider the (pseudo-)code2:

a = 1;
b = 1/sqrt(2);
u= 1/4;
x = 1;
pn = 4;
for (;;)
{ p = pn;

y = a;
a = (a+b)/2;
b = sqrt(y*b);
u = u-x*(a-y)*(a-y);
x = 2*x;
pn = a*a/u;
System.out.println("pn=" + pn);
if (pn >= p) break;

}
System.out.println(p);

When I run this code the results I get are

pn=3.1876726427121086272019299705253692326510535718594
pn=3.1416802932976532939180704245600093827957194388154
pn=3.1415926538954464960029147588180434861088792372613
pn=3.1415926535897932384663606027066313217577024113424
pn=3.1415926535897932384626433832795028841971699491647
pn=3.1415926535897932384626433832795028841971693993751
pn=3.1415926535897932384626433832795028841971693993751
3.1415926535897932384626433832795028841971693993751

The curious iteration in fact makes it possible to computeπ in timeO(log nM(n)).
Its justification requires an understanding of elliptic integrals and extends to pro-
viding similarly fast ways of computing almost all of the elementary functions. It
maybe helps stress the view that just because you have thought hard and can not
find a better way of doing things does not mean there may not be one!

2Those who want to try this as an exercise can investigate the JavaBigDecimal class that
would make it easy to perform all of the long arithmetic.

7

3 Difficult

In this section I will explore the boundary between tasks that are practical and
realistic to solve and those that are not. It turns out that the boundary is remarkably
finely drawn — one can have two closely related problems one ofwhich turns out
to be easy to solve and the other hard. It also turns out that there is a rich and
entertaining structure and theory associated with problems that lie close to the
edge, and some famous unresolved questions.

This section contains material covered by Cormen et al, but mycoverage will
be closer to that given by Sudkamp. Very many other books cover the same ideas,
but I think these two are among the clearer and their value forsupporting other
courses make them good buys.

A vital simplification is needed to make this part of the course work well. Al-
though it may appear unreasonably coarse, it has in fact beenfound to be a useful
predictor of practical reality. The simplification is to suppose that any calculation
whose computing cost can be bounded by some polynomial in theproblem size
is a feasible one. Anything worse (and the easiest and most common growth rates
that are worse than polynomial are the exponential ones suchasn2n andn!) are
considered infeasible. Note that this convention would view 1070n1000 as “fea-
sible”, while declaring that1.00001n/1000000 represented an exponential form of
growth and hence unreasonable costs. One can take some compensation from that
fact that even in the reasonably extreme cases given for sufficiently large values
of n the exponential growth rate will exceed the polynomial one.

The investigation of polynomial vs. worse computing costs is a curious mix-
ture. There are a number of ways in which it is essential to be carefully precise
about what is being discussed. These include the following

Decision Problems: I will generally look at problems that yield just yes/no an-
swers. On consequence of this (which I will not explore much here, but
which is very much part of the language used in the field) is that once can
consider a problem as defining a language. Each instance thatwill lead to a
“yes” represents a sentence in the language. In line with Regular Languages
and Automata theory one replaces the concept “solve a problem or perform
a computation” by one of “accept a language”;

Class of problem: All measurements are in terms of growth rates of cost across
a family of problems. The analysis given here is not at all applicable to
individual instances of problems or to problem sets that arefinite. Where
there is a parametern that characterises the “size” of a problem I have to be
able to think of what happens asn tends to infinity.

Decidable: Of course to be able to consider costs I had better restrict attention to

8

decidable problems! And of course this means that I am only going to like
algorithms that are guaranteed to terminate.

Worst case: Even if most instances of a problem are easy to solve, it will be the
costs of solving the minority of worst-case examples that will be the focus
of my attention. Thus in particular if I show that some problem has a worst
case solution cost that isO(2n) I need to remember that the big-O notation
is just giving an upper bound on costs and not necessarily a good prediction.

Size measurement:I need to formalise what I mean by the “size” (n) of a prob-
lem. Closely related to this is the issue of how particular instances of a
problem will be represented as input to algorithms. In some cases alter-
native encoding of input can have a huge effect on the cost predictions for
algorithms.

What computer: Perhaps some computers are faster than others. To avoid am-
biguity here I will (when put under pressure on this matter) suppose that all
computation is to be performed using a Turing machine, and that the input
date specifying a problem instance is placed on the machine’s tape. The
number of tape cells used to store the input will be the measure n I use.
How much difference does it make that I specify a Turing machine here?
How on earth can I justify use of such a clumsy abstraction when talking
about the need for fast and feasible calculations?

Let me start with the last of the above remarks. I will quote (but not work
through a formal proof) a result that if an “ordinary” computer with directly ad-
dressable memory can run a program in timeN than a Turing machine can simu-
late the behaviour of that ordinary computer performing thecalculation, and com-
plete its work in timeO(N2). This result is enough to show that polynomial time
calculation on ordinary and Turing computers are equivalent. There are some un-
expected delicacies if you try to use more obvious abstractions of ordinary com-
putation. For instance if you allow your computer simple integer arithmetic and
count each arithmetic step as having unit cost then when you seek minimal costs
and best algorithms unwanted tricks that use arithmetic andboolean operations
on very very big integers tend to crop up in unwanted ways. Settling on Turing
machines as the basis for formal discussion keeps everything safe, and the results
that emerge appear to match up well with intuition. If a problem can be solved in
polynomial time using an ordinary TM the problem is said to bein the classP.

The big trick in this section is the construction of a technique that can be
used to prove that a large number of interesting tasks are (probably) hard to solve.
Note that one can show that a task can be solved cheaply by presenting a concrete
algorithm that solves it and that is efficient. It is generally much harder to show

9

that something is expensive. But I will be able to do just that not just for a single
problem but for quite a few. The idea will be to show thatif you could solve
the problem that is under consideration easily (in this context the term “easily”
means “with a computing time bounded by some polynomial”) then you could
solve some reference difficult problem “easily” as well. So we have two main
steps to go through: the selection of a reference problem that we believe is hard,
and the proof of a link between this reference problem and theone we want to
study.

There are many ways in which this scenario has been applied, but the first
and most critical one centres around the idea of non-deterministic Turing ma-
chines! Call these NDTMs. These are to ordinary Turning machines what non-
deterministic acceptors are to regular (deterministic) finite automata. And as is
true in the finite case it is possible to construct a deterministic TM that models
the behaviour of a given non-deterministic one, and hence non-determinism does
not allow us to solve any new problems. But it might give us a speed up. Define
a non-deterministic solution as arising ifsomeway in which the NDTM could
calculate the desired result, and the cost of the calculation is just the number of
steps taken in this successful path. An NDTM is not allowed tohalt unless it can
be certain that the output it has produced is correct (otherwise one could devise
one that just wrote non-deterministic symbols to the outputtape and halted - and
then there would certainly be a possibility that it would produce the correct an-
swer). An informal characterisation of calculations that aNDTM can do are those
where an answer, if given, can be checked for correctness. Things that a NDTM
can do fast are then ones where correct results can be recognised efficiently. An
amazing number of interesting and worthwhile tasks happen to fit this pattern. Let
me just start off by citing the problem of finding a route out ofa maze — at each
junction one can use non-determinism to decide which way to go, but when you
finally escape the fact that you have reached the exit is utterly clear and visible.
Problems that can be solved in polynomial time using a NDTM are known asNP
problems. Remember that I am looking at families of problems so this is asymp-
totic behaviour, and that the polynomial bound on the cost must apply even in the
worst case. The fact that problem isNP means that it is easy to give an algorithm
based on some sort of exhaustive search through the possibilities that will solve
the problem on an ordinary TM, but this algorithm will usually have exponential
costs. Very extensive studies of huge numbers ofNP problems have been made.
Note that to say a problem isNP is in fact a comment on how easy it is. It can be
solved in polynomial time given an NDTM. If in fact the problem can be solved
in polynomial time on an ordinary TM then certainly an NDTM can solve it fast.
The problem that arises is;

Are there any problems inNP that are not inP?

10

Intuition, reasonableness and experience gives a clear impression that non-
determinism in the sense discussed here does give very real extra power, and of
course there must be problems inNP but notP. But so far nobody has been able
to prove this! Equally nobody has disproved it, and all the experts in the field
believe it. Even with this problem left as open it is possibleto direct attention to
some of the hardest problems inNP, ones that seem to make essential use of the
non-determinism. These are the ones that will fail to be inP if anyNP problems
are. They are known asNP complete. A problem isNP complete if showing that
that problem was inP would be enough to prove thatP = NP. There is a more
concrete was of expressing this definition. Suppose you havea problem Q that is
NP complete, and you have another problem R that isNP (R can be anyNP
problem, not just limited to theNP ones). Then the availability of a deterministic
polynomial time algorithm to solve Q would allow you to construct one for R.
And that will be true forany R you care to select. This seems a convincing way
of expressing the idea that Q was as hard as anNP problem can get. At first it
seems improbable that there could be anyNP complete problems!

I will sketch a direct proof that a problem called the “BooleanSatisfiability
Problem 3-SAT” isNP complete. The problem 3-SAT is a somewhat abstract-
looking one, but still has potential applications in hardware design and verifica-
tion. An instance of it is a boolean formula in conjunctive normal form. This will
be made out of a number of terms allanded together. Each term will be made
out just three items linked byor operators, and the items are either variables or
negations of variables. A solution to a 3-SAT problem is a wayof setting values
for all the variables so that the entire expression evaluates to true. An NDTM
can non-deterministically set values to all variables and then (easily) verify that
the formula evaluates properly. A deterministic machine can obviously solve the
problem by trying all combinations of values of the variables, but that may have
exponential cost. Allowing more complicated forms of boolean formula could
only make the problem harder, so the limit of CNF and three items per term are
acceptable. I assert Cook’s Theorem, that 3-SAT isNP complete.

To do this, consider an arbitraryNP problem of sizen from class R. Because
it is NP it can be solved on an NDTM in timep(n) where the functionp is
bounded by some polynomial. If a Turning machine only runs for k steps it can
only possibly move its head overk tape cells, so as well as only needing timep(n)
the solution of the problem only needsp(n) cells of Turing Tape. In the lectures
I will show how this makes it possible to construct a ridiculous large boolean
formula that characterises the behaviour of the NDTM while solving the problem.
I will also show that the size of this formula is bounded by a polynomial function
of n. Now suppose that we could solve every instance of 3-SAT in polynomial
time on a deterministic machine. This would now allow us to solve the instance of
3-SAT corresponding to the calculation involving R. With remarkably little effort

11

we could then read of the solution to our original arbitrary problem. The effect
overall would have been that theP solution to 3-SAT had allowed me to solve the
arbitraryNP problem R in polynomial time. That would amount to showing that
R was inP and so all ofNP was inP.

I will restate a few definitions:

NDTM: A Turing Machine which instead of having a transition function has a
transition relation, ie given a symbol and a state it may progress into one of
several different successor states;

A problem (instance) of sizen: Given an understanding of what problem class
and which NDTM is to solve it, the particular problem instance can be char-
acterised byn symbols of initial data on the TM’s tape;

Solving a problem in time t: An NDTM solves a problem in timet if (supposing
the answer to this instance of the problem is “yes”) there is at least one way
in which the TM can behave where it stops after no more thant steps. If the
answer to the problem is “no” then no possible computation bythe Turing
machine may stop, and certainly none may stop withint steps. Note that if
the TM used happened to be deterministic we could run it fort steps and
then give a definite answer yes or no. If non-deterministic wecould run all
possible ways it might compute fort steps and if one of these terminated
report yes, and if none did report no — but this could be exponentially
expensive;

Equivalent: Models of computation and problem encoding schemes are consid-
ered equivalent if each can simulate or be converted to the other and the
overhead or cost of doing so is bounded by some polynomial in the size of
the problem being solved;

Feasible: Solving a problem is considered feasible if there is a polynomial func-
tion p(n) such that any instance of the problem of sizen can be solved in
timep(n);

P: The set of all problems that can be solved in polynomial time using a deter-
ministic computer;

NP: The set of all problems that can be solved in polynomial time if a non-
deterministic computer is used. Very obviouslyP ⊆ NP, and it seems
very plausible indeed that this is a strict inclusion, but nobody has proved
that;

NP-complete: A problemX isNP-complete ifX ∈ P would implyP = NP.
The lectures spelt this concise explanation out in more wordy ways.

12

To prove thatn-SAT is NP-complete I first have to show that it isNP and
then that it is complete. The first of these is just a demonstration that I can design
an NDTM that will solven-SAT sufficiently efficiently. Basically the NDTM
will use its non-determinism to “choose” values to give to all the variables in
the instance ofn-SAT and then just check that the resulting formula evaluates to
“true”. Writing a program to do this for a Turing Machine wouldbe messy but it is
“obvious” that it could be done and that the program would runin a time bounded
by a low degree polynomial (probably quadratic) in the length of the input. Most
people would not view it is important to be any more formal than this since this is
really pretty clear cut, but anybody who did could just design and code the details
of the TM and then analyse its costs.

The interesting part is the bit about “complete”. This will prove that ifn-
SAT is in P then all other problems inNP are too. Take an arbitrary class of
problem fromNP, and select from it an example instance of sizen. Because
the problem is inNP we can produce an NDTM (say withm states) that will
solve the problem within some definite polynomial time boundT = p(n). We
will consider the sequence of steps that correspond to the successful computation
made by this NDTM. Since it only takesT steps it can only possibly inspect that
much of the tape.

The entire behaviour of any successful TM calculation can now be described
by showing what the TM’s state is at each time step between 0 and p(n), where
its read-write head is on the tape and what symbol is present in each tape cell. To
encode this as a boolean formula I introduce a collection of boolean variables:

qk,t: Here I introducemT variables. Remember that the TM hadm possible states
and it was running forT time steps. For any given value oft I will want just
one of these variables to by true, and that will tell me what state the TM is
in at that time;

hi,t: The variablehi,t will be true if the TM’s head is at positioni at time t.
Because both the length of the tape and the total time-steps taken are justT
I haveT 2 variables here;

si,t,x: If the TM’s alphabet isΣ then I haveΣT 2 variables here, where if one of
them is true it indicates that tape positioni holds symbolx at timet.

A proper assignment of truth-values to these boolean variables would show
me exactly how the TM behaved, and as the size of the problem the TM is solving
grows the number of variables that have to be used grows proportional toT 2, is
p(n)2, still a polynomial in terms of the problem size. Next I need to write out a
boolean formula in terms of these variables. Since I will want to construct one if
the formn-SAT its top level will be a lot of terms, all of which get andedtogether.

13

I will describe these terms in groups before I look what happens when I combine
them all. Before doing so I will observe that I can make life easier for myself by
writing terms in the form

p&q&r ⇒ (x|y|z)

since the implication can be re-written later as the more basic form

¬p|¬q|¬r|x|y|z)

So here are the terms I will put into the final instance ofn-SAT:

Start in state 0: (q0,0);

End in the halting state (stateh, say): (qh,T);

At each time I am only in one state: (qk,t ⇒ ¬qk′,t). I have to list this for all
pairs of (distinct) statek andk′ and all timest, so there arem2T terms of
this form to list (andand together);

Head position unambiguous: (hi,t ⇒ ¬hi′,t). This representsT 2 terms in the
same sort of way;

Only one symbol at each tape position: (si,t,x ⇒ ¬si,t,x′). I have|Σ|T 2 terms
here, and again justand them all together;

At time=0 the tape contains[a, b, c, d . . .]: s0,0,a&s1,0,b&s2,0,c&s3,0,d . . . is a col-
lection of terms to put into my eventual formula that enforcethe correct
initial tape contents, and which only add a very modest bulk;

Symbols do not change away from the head: si,t,x&¬hi,t ⇒ si,t+1,x;

The TM state transitions are correct: qk,t&hi,t&si,t,x ⇒ (qk′,t+1|qk′′,t+1). This
is the clever rule. The statesk′ andk′′ represent two possible successor
states, and this makes the TM I am describing a non-deterministic one. It is
necessary to listm|Σ|T 2 implications of this form to cover all the possibil-
ities;

the TM writes proper symbols back to the tape: qk,t&hi,t&si,t,x ⇒ si,t+1,x′ .
This is very similar to the previous rule except that withoutloss of generality
I can make the non-determinism show up only in state transitions not in the
symbols used. once again the number of terms that have to be generated is
proportional toT 2;

The TM moves left and right as it should: qk,t&hi,t&si,t,x ⇒ hi±1,t+1. Obvi-
ously the+ or− case will be used depending on whether the TM moves its
head left or right in the given circumstances.

14

If all the above are combined together withand operators the result is a for-
mula in the format thatn-SAT expects such that the formula can (obviously) only
be satisfied if and only if the TM has a terminating computation. As the length of
the TM calculation,T , grows the length of this formula grows to have a number of
symbols in it that is proportional toT 2. Pedants will explain that we needlog(T 2)
times that many characters if the variables are to be namedv0000, v0001, v0002
and things like that so that a fixed alphabet is used, but this is a pretty trivial ex-
pansion. It is furthermore important to know that the instance ofn-SAT could be
constructed in polynomial time from a description of the TM.The simplicity of
the rules I used to generate it make me feel that I can say that that is pretty obvious
too.

Using all that has gone before I can now assert thatn-SAT isNP complete.
Suppose I have an arbitraryNP problem and thatn-SAT is in P. Design an
NDTM to solve the arbitrary problem. Use the rules given above to construct an
instance ofn-SAT that describes how the NDTM runs. Because I have suppose
n-SAT is in P I can now solve this in polynomial time — a polynomial in the
size of the boolean formula. But this is still a polynomial function of the size of
the original arbitrary problem, and from the solution ton-SAT I can read off a
solution to the original task. Thus I have just solved the arbitraryNP problem in
polynomial time on a deterministic computer, and hence ifn-SAT ∈ P I would
have shown thatP = NP.

This was historically the first problem proved to beNP complete, and still
about the easiest one to deal with directly.

I next go on to discuss some of the many other problems that have been proved
to beNP complete, and in particular show how to reduce the Hamiltonian Circuit
(which I will define) problem to 3-SAT and hence prove itNP complete. I also
cover the Travelling Salesman Problem (TSP), searching fork-cliques in graphs,
the integer knapsack problem and others. You can see eg Cormenat al for the
Clique problem and Sudkamp for the Hamiltonian circuit. You should note that
for all the results proved there will be multiple (and equally valid) proof strategies,
and so the selection of particular ones is based on a judgement about which seem
easiest to follow.

Once a problem has been provedNP complete it is tempting to give up on it.
But there are more things to do. Firstly, restricted forms of someNP complete
problems are inP. Secondly manyNP problems relate to forms of optimisation
where a search for a “best” solution is called for. Sometimes(but not always)
slackening off the constraint and seeking a “reasonable” rather than optimal solu-
tion can lead to solutions inP. Finally the analysis here is in terms of worst case
costs, and amazingly often forNP complete problems there can be algorithms
that are usually (in a rather informal sense!) efficient or which usually get the
correct answer. I will survey these ways of facing up to the practical problem that

15

NP completeness represents.

4 A non-elementary problem

The final section of this course covers a problem that is decidable, and indeed most
of you could write a program that would solve it. However it has the property that
even the best possible program (presumably using techniques much more devious
than any you would code up) will have a worst case running timethat is worse than
2n, worse than22n

, and indeed worse thananysuch formula with any fixed number
of levels of exponentiation. The problem uses “Extended Regular Expressions”
and given one of these asks if the language that it defines has empty complement.
This is a short title for the problem but it calls for a little more explanation. I
should note that the main place I know where this result is documented clearly is
Aho Hopcroft and Ullman’s book on the Design and Analysis of Algorithms, but
that I hope that the notes I include here (together with the lectures) are enough to
support the level of understanding I expect from you here.

4.1 What is an extended RE?

Ordinary Regular Expressions are built up starting from somebase cases that in-
clude a denotation for the empty language, for the language that consists only
of the empty string, and from symbols that stand for each letter of the alphabet.
Whenever a regular expression is written there ought to be at least an implicit un-
derstanding of what the alphabetΣ is within which we are working. The three
combining rules for REs are

Concatenation: if A andB are regular expressions thenAB stands for one that
matches anA followed by aB;

Alternation: A|B matches anything that matches eitherA or B;

Arbitrary repetition: A∗ is much the same asε|A|AA|AAA|. . . , ie it matches
strings that can (somehow) be decomposed into zero or more segments each
of which matchesA.

It is well known that a Regular Expression defines a Regular Language, and
that Regular Languages form a class closed under intersection and complement.
Thus if one were to extent the definition of regular expressions to permit

Intersection: if A andB are regular expressions thenA&B stands for one that
matches anA and also matchesB;

16

Negation: ¬A matches and string over the alphabetΣ thatA does not.

then this does not alter the class of languages that can be described. The most
it can do is to give up neater and easier ways of describing some of these. For
instance over the alphabet that includes all letters froma toe the extended regular
expression¬a represents all stringsexceptfor the one that is made up of the single
lettera. To write this without a negation mark is possible, but actually quite messy.
About the best I can do easily represents it as two alternatives, the first is all strings
that do not containa at all, and the other is the all strings of length at least 2.

(b|c|d|e)* | (a|b|c|d|e)(a|b|c|d|e)(a|b|c|d|e)*

Perhaps you can find something shorter, but I hope I have made the point that the
notation¬a may be convenient.

Another well known result about regular expression is that given any regular
expression (and this will include extended ones) there is a systematic way of con-
structing a deterministic finite automaton that will acceptthe associates language.
This result is part of Kleene’s theorem.

4.2 Emptiness of complement

Now I introduce theemptiness of complement problem. For a regular expression
R this asks if the language defined by¬R is empty. Empty languages may seem a
silly thing to consider, and looking for an empty complementrather than an empty
language may also appear artificial. Let me at least respond to the first. IfA andB
arebig regular expressions we might be interested in trying to decide if they are
equivalent in the sense that they define the same language. Isit possible to do this?
Well considerA&B | ¬A&¬B: if the two expressions denote the same language
to start with this is an extended regular expression with an empty complement. So
apart from theoretical interest this problem, if solved, might help us check REs
for equality.

The emptiness of complement problem is decidable. Take the target RE and
construct from it a finite automatonM. This process is described in the proof of
Kleene’s theorem and is mechanical — it does not give us any undecidability wor-
ries. If you attended and understood either a Part IA Regular Languages course
or a Diploma course on Mathematics for Computation Theory youwill have seen
this and could possibly see that you could write a program to perform the conver-
sion. Otherwise earlier chapters of Sudkamp’s book may helpyou. Here I just
need to quote the result not re-prove it. Suppose thatM hasn states, then ifM
accepts a language with empty complement there must be some string of length
at mostn that it rejects. This result is based on the usual analysis ofthe fact that
in any computation that accepts (or rejects) a string of length greater thann the

17

machine must have repeated a state. Thus an utterly crude wayto check things
is to generate all the strings up up ton symbols over our alphabet and check
whetherM accepts them all. This is intolerably tedious if we are practical peo-
ple, but enough to establish that there is a systematic and algorithmic method of
resolving our problem, ie it is decidable.

4.3 Introduction to proof of hardness

I will now sketch a demonstration that the emptiness of complement problem
for extended regular expressions is astonishingly expensive to solve. A proper
presentation can be found in Aho Hopcroft and Ullman’s book,so my attempt
here will be to get across key ideas. What I give here will not bea complete proof,
and every so often I will rely on plausible (and true) sub-results.

The idea behind this is going to be based on calculations performed by Turning
Machines when they have a limited length of tape to work with.Note that this
bears a distinct resemblance to the starting point we had forNP-completeness
analysis via 2-SAT. The insight needed to start us off is thatif we can describe the
behaviour of Turing machines that are restricted to using upto k symbols on their
tape then telling if those machines are every liable to terminate will necessarily
take an amount of time that grows ask does. I guess I need to say that the halting
problem for unbounded Turing Machines is undecidable, but if you have a TM
which hasN internal states, uses an alphabet of sizem and limits its tape to length
k then there are onlyNsk configurations it can possibly be in and analysing its
potential behaviours just amounts to looking at a finite automaton of that (large)
size. Note that I am not proving that the analysis of tape-bounded TMs is difficult
here, I am supposing that somebody else has done that for me, and anyway I do
not expect you to find it an astonishing result. I am also not too worried about
exactlyhow difficult it is: all I need is that if you give a TM a longer tape then it
gets harder to analyse its potential behaviours.

Now a TM with tape limited to lengthk is really a finite automaton, so Kleene’s
theorem tells us that its behaviour can be described using regular expressions.
What is (I hope) astonishing is that I will be able to show that this horrible-
sounding conversion is in fact quite easy to do, and does not involve all the general
mechanism you saw in the full proof of Kleene’s theorem. Furthermore it I use
extended regular expressions the extended-RE I get will be quite compact. This
way of starting from a TM and ending with an extended RE is the key step. In
style it is just like the reductions done when proving results aboutNP problems
but here it will provide a proof (by reduction) that the emptiness of complement
problem is as hard as deciding the termination properties ofa tM with avery long
tape.

OK, so my TM hasN states and an alphabet of sizem. Its tape isk long.

18

For my RE I will want a new alphabet that consists ofN symbols that stand for
TM states (I will write these asQi), together withm symbols that are just from
the TMs alphabet (I will useai as such a symbol) and a new symbol$ that I will
use as a delimiter. I will call the size of this enlarged alphabetM . The TM will
have a transition function that shows what it has to do for allthe Nm possible
combinations of state and symbol.

Now I will define atraceof the behaviour of the TM. It is a string with $-signs
everyk characters, and the text between each pair of stars writes out the state of
the TM tape at one time step. The position of the read-write head is indicated by
putting aQi just to the left of the symbol about to be read. Successive blocks of
the trace represent the state of the TM at consecutive time points. The first block
of trace is its initial state, and in the final block the stateQ is a halting one.

It is probably neatest to display traces on several lines, with a line- break
inserted before each $. Then corresponding positions on thetape of the TM will
align vertically. The following trace is for a silly TM that stars with a tape full
of b symbols and scans rightwards turning them all intoa. When it detects the
end of its tape the read-write head moves one space left and the machine enters its
halting state, which I have written asH.

$Qbbbbb
$aQbbbb
$aaQbbb
$aaaQbb
$aaaaQb
$aaaaaQ
$aaaaHa
$

If you are upset about the idea of “detecting the end of its tape” do not be. You can
think of the $ as a special symbol pre-written where the tape is supposed to end. If
you want to work out an example for yourselves I would suggestthat you design
a TM that works on an alphabet that is0, verb.1. and a few control symbols, and
that counts in binary through all thek-bit numbers before it stops. Doing so will
count as revision for the Computation Theory course more thanwork on this one.

I intend to show how to create an extended RE that will match only those
strings that are proper traces for some given TM.

For the bulk of this explanation I am going to dodge one critical issue, which
is that of ensuring that items in a string are spaced a fixed (and typically large)
distance apart. My temporary fudge will be to use a notationxk to stand fork
copies of the symbolx. I will also use a wild-card “?” that is really an abbreviation
for (a|b| . . .) alternating over all my alphabet. There is a risk that these short-hands
will let me write things down unduly compactly, so I will needto show (later on)

19

that once I have a regular expression using them I can expand it out to fit in with
just the rules of extended regular expressions without undue expansion.

4.4 Constructing an extended RE for a trace

Because I am working with extended regular expressions I can either try to build
up a single expression that will match all valid traces, or I can build up one that
will detect all invalid traces (and if necessary take a complement at the end to
get the one I actually need). The two ways of working are pretty well equivalent:
in one the little fragments that I generate will need to be linked together with
andoperations and in the other I will need a lot ofor symbols. In the lectures I
will probably present the construction as of an extended RE that would match all
valid traces. This choice might be justifiable because it involves making a positive
statement about a trace, and that is perhaps easier to understand than a negative
one. Here I will write things out as descriptions of the ways in which a trace can
fail to be valid. The advantage of this is that it is perhaps easier to verify that
all possible failure modes have been described than it is to ensure that the RE
components fully enforce proper behaviour. But I stress thatthe two presentations
differ only by the insertion of a few “¬” signs and maybe use of DeMorgan’s
rule. For Extended Regular Expressions the extra “¬” operators are not an issue.
Looking at semi-extended regular expressions (where you permit andbut notnot)
would mean you had to be a bit more careful, and Aho Hopcroft and Ullman do
that.

To build up my whole extended RE I will set up a sequence of separate sub-
expressions each of which detectssomeway in which a trace could not match
the Turing machine’s behaviour, and then I will just combineall these with “—”
operators to make a bigger RE that can detect all possible discrepancies. The
complement of the language defined by this big extended RE willclearly consist
just of traces of proper terminating computations that the TM can perform. Thus
the complement will be non-empty only if the Turing machine has a terminating
computation. Please remember that this isnot the same as the Halting Problem
because here I am limiting the TMs to use only a tape of lengthk.

I will start off with the easy ones:

Must have dollars after every k characters I give here a rather simple RE that
describes valid configurations on the tape. Take its complement to get all
the invalid ones:

$((¬$)k$)∗

A dollar sign then blocks each of which is a chunk ofk symbols that are not
dollars and then another dollar.

20

StateQ0 at start of tape to begin Again I will describe things in a positive way
here and take the complement of this before combining with top-level “—”
operators

$Q0?
∗

Initial symbols on TM tape In the trace it is important that there be only a sin-
gle symbol from the setQ in each display of the TMs state. For all except the
first block this will be enforced by the rules for the TM transition, but some-
thing is needed to indicate that to start with the tape contains only symbols
from the TM alphabet. I will allow my RE to describe all possible TM cal-
culations for this machine, and hence will permit the machineto start with
arbitrary tape contents. In fact this rule is just an extension of the previous
one:

$Q0(a0|a1 . . .)∗$?∗

The only things I allow after the two initial symbols$ and Q0 are things
from the TM’s alphabet, all the way until I find the next$.

Symbols on the tape do not change arbitrarily

?∗(¬(Q0|Q1 . . .))a?k¬a?∗

This is my first case where it has been nicest to describe what must not
happen rather than what must. The?∗ at the start and end then just permit
recognition of the bad thing anywhere within the whole trace. Nowthe idea
is that this one sub-expression I have written should be thought of as written
out lots of times, one for each possible Turing Machine symbol a. It then
says (actually rather directly) that if you see a symbola in the tape and it
is not preceded by a state (ie if the Turing machine head is notreading it
at the moment) and if the symbol that arises justk symbols later (ie at the
corresponding position in the trace for the next time step) differs then we do
not have a good trace. That feels like a mouth-full, and it does mean that
I have just listedm3 chunks of regular expression. Butm is a constant so
that does not worry me.

The TM’s transition rule applies The transition rule will show have explana-
tions of what to do for any combination of Turing Machine symbol and
state. It documents what symbol is written back to the tape, whether the
read-write head moves left or right and what the new TM state should be.
Again it turns out to be best to make a list of all ways that this could be

3Rememberm was the size of my alphabet, and so is fixed.

21

violated. The expected pattern when the TM moves left will looksomething
like

aQb . . . Q′ab′

where the dots must represent exactlyk − 1 symbols. The idea is that the
TM is in stateQ and is reading symbolb. To its left is a symbola. In the
next block of the tape the TM head has moved left so it will next reada, and
it has changed theb into b′ and set its new state asQ′. To write out all ways
in which this might be violated involves listing expressionsfor all possible
values ofa, b andQ, but that still is onlym2N cases.

?∗aQb?k−1((¬Q′)|(Q¬a)|(Qa¬b′))?∗

Must have halting stateQh in last block

?∗Qh(¬(Q0|Q1| . . .)
∗$

This says that aQh is present, and that what follows it is a string made up of
anything except other statesQi and then the end of the trace. Again negate
it to get an RE to describe violations.

I think that the above document all the properties needed to describe a proper
Turing Machine trace. One thing to note is that the REs will permit the TMs tape
to start off in utterly any state, so so solving the emptinessof complement problem
for it amounts to deciding if there isanyinitial data that could be presented to this
particular TM that would cause it to halt. In the above presentation I have still
fudged the issue of symbols being separated by a distancek, and I have also used
a collection of other short-hand notations. In a few places Ihave used “. . . ” and
I need to count how much text that really expand to, and in places I have written
down one bit of RE but then indicated that it should be replicated lots of times. I
have also used a question mark to stand for an arbitrary symbol.

Let me deal with the last of these first. The RE I have written as?∗ can be
expanded in one of two ways:

¬φ

or
($|Q0|Q1| . . . |a0|a1| . . .)

∗

The advantage of the first is that it is very compact, and for RE experts who
are happy with the empty languageφ it seems good. The second presentation just
lists all symbols in the RE’s alphabet explicitly: it is perhaps easier to understand
(if more bulky). For this course I do not mind which you use. Aho Hopcroft and
Ullman considersemi-extendedREs as well as extended ones. These just add an

22

and operation, not anot one, and and so they would probably prefer the second
version.

Now how bulky is the extended RE I have got by combining all the compo-
nents listed above? For a TM withN states using an alphabet of sizem the whole
extended RE will consist of aroundm2N components (mostly from the parts that
ensure that the TM transitions are correctly followed). Even if I do not allow use
of a¬ operator within my sub-expressions and so have to use the lengthy replace-
ment for¬φ (and similarly for¬a, ¬b′ etc) each of these components is only of
length some small constant time (m+N). Thus apart from the remaining oddity
about strings of lengthk I can have an extended RE of size that depends only on
the size of a description of the TM, not on the length of the computation it will
perform.

4.5 Rulers

The remaining challenge is to take an RE that has been written using the informal
extra notation?k in it to specify that some symbols are separated by a distancek,
and show how I can expand things to get a simpler (but somewhatlarger) RE that
describes the same language.

I will do this first using a mechanism that works well for smallvalues ofk,
and will then show how to extend it. Suppose for instance we wanted to do this
for k = 6. I first write down the obvious and easy RE

•∗♠ • • • •♠•∗

[Note that I have used a pair of slightly odd symbols here to stress that I want
something that will not clash with the symbols in my originalRE]. This clearly
describes any string that has two♠ symbols marking the two ends of a sub-string
of length 6. I will refer to such an RE as aruler, in this case of length 6.

Now take my original RE, which works over some alphabetΣ and has some-
where in it the short-hand?k. I will construct a new RE that works over a bigger
alphabet, specificallyΣ×{•♠}, ie ordered pairs from the original alphabet and the
new one. Wherever in my original RE I had a symbola (a ∈ Σ) I will now write
our ([a, •]|[a,♠]). Doing this expand the bulk of the RE by a factor that is around
the size of the marker alphabet{•,♠}, but otherwise leaves the RE describing the
same sets of strings. Similarly I rewrite my ruler replacing• by ([a0, •]|[a1, •], . . .)
and similarly for♠. The symbolsai I am using here are supposed to be just a list
of the symbols in the alphabetΣ. My description of the ruler has expanded by a
factor of about|Σ|.

Now I can replace the previously troublesome segment?k with

[?,♠][?, •]∗[?,♠]

23

which indicates that the first and last characters in the run must be paired with♠
markers. The residual “?” marks can be expanded by just listing all the possible
characters fromΣ that could possibly arise. The effect is that the item?k has been
replaced with something whose bulk is around|Σ|.

Finally I take theandof these two expressions. One preserves the behaviour of
the whole on the first component of the new alphabet, while thesecond enforces
the required separation ofk positions.

If the original RE had an alphabetΣ and was of lengthl, while the ruler used
an alphabetΣ′ and had lengthl′ then the new RE that I construct will have length
aroundl|Σ′| + l′|Σ|.

I should add a technical note here: the above expansion removes a single
instance of the idiom?k from an RE. One might fear that it was necessary to do
that expansion all over again for each instance of the sub-text “?k”. At least in the
application I have here this is not so and a single ruler can beused to enforce all
of the measurement properties I need.

The key to making my overall results about simulating TMs interesting will
be the construction of concise representations of very longrulers.

4.6 Long rulers

Suppose I have a ruler of lengthk. The first part of this section shows that I
can use it to help me describe the behaviour of any Turing Machine that I like
provided that that machine only ever looks atk cells on its tape. Now I know that
in the first section I just described how to model Turing Machines with unspecified
initial tape contents, but it is trivial to put in a bit of extra RE to force the TM to
start with a blank tape. A trace of its behaviour then has length that is the length
of the tape (iek) times the number of steps the TM takes before it halts.

It is easy to produce a TM that uses an alphabet that consists of just “0”, “1”
and the end-of-tape marker $m which if started on a tape of lengthk that is initially
filled with zeros counts up in binary until the tape eventually contains just ones,
and then terminates. Indeed it is so easy that I will documentit here! The machine
I will describe has 3 states, and I will call thenA, B andH. The behaviour and
description of these states is as follows:

A: I will call this state “carry 1”, and it is also the starting state of the machine.
If it finds a symbol 0 it turns it into a 1, enters stateB and moves left. If it
finds a 1 it turns it into a 0, stays in stateA and then moves right. If it reads
a $ it switches to stateH (and it does not matter very much which way it
moves or what it does to the $;

B: This state may be interpreted as “scan back to the start of thenumber” and is
entered whenever stateA has finished incrementing the tape contents by 1.

24

Until it finds a $ it just moves left, leaving the tape unchanged. On reading
a $ it moves right and enters stateA;

H: This is the halting state.

This machine has three states and uses an alphabet of size 3 (including the $
which I use to delimit the usable region of the tape). And given a tape of length
k it clearly goes through2k occasions where the read-write head is at the start of
the tape and it is about the increment the number. Well I suppose if one is being
really pedantically careful here it may be necessary to wonder in detail whether
the length of my ruler describes the length of the tape or the length of the tape
plus or minus 1, and whether the length of the tape has to countthe cell on which
the $ symbols are written. But such fine details only introducea (small) constant
factor possible difference and really do not matter, so I will continue to write just
2k here. Now a trace of the behaviour of this machine (in the sense that I used the
work trace) before) is distinctly longer thank2k. All I will need to use here is that
it is longer than2k so I do not even need to agonise about just how many steps it
takes for the TM to perform each increment operation and thenreturn to the start
of the tape.

Using the construction given earlier I indicated that an extended RE could be
produced for an N-state TM over an alphabet of sizen that was aroundKm2N(m+
N) (for some small constantK) symbols provided that at that stage I still permit-
ted use of the informal notation “?k”. In this caseN = 3andm = 3 so that is
just 486K (regardless, at this stage, of the value ofk). This RE will have as its
alphabet one of size 6, ie{0,1,$,A,B,H}.

Suppose my ruler of lengthk was itself an RE of lengthp and it used an
alphabet of sizeq then I can put the ruler and my TM simulation together to get
a single RE of size around6p + 486Kq. This bigger messier RE now uses an
alphabet of size6q (the product of the sizes of the two previous alphabets) but
manages to describe strings that have a symbolH in them only after (rather more
than)2k symbols.

Why have I done all of this? Well the new RE can now be adapted4 to be a
ruler whose length exceeds2k but its size is only a constant factor bigger than
the size of the ruler we were using that was of lengthk. So now I can repeat the
construction using this ruler of length2k to get a trace of length22k

out of an RE
that is again only a constant factor bigger than the one I already had. And I can
keep on doing this over and over again. I can end up with a rulerof length

222
...

k

4If one takes the trace described by such an RE and puts an additionalH on the front then the
two H symbols (there are exactly 2) serve in the way that the♠ ones did before, while all the other
symbols have to be treated as variations on•.

25

with any given heighth of powering and the extended RE that describes it is of
size that grows relatively5 slowly with h.

The length I have for a ruler is at present expressed as a huge tower of expo-
nentiation based on the parameterk that is the length of my initial ruler, while
what I am interested in is expressing the length of my final ruler in terms of the
size of the RE that describes it. I will omit the fine details of mathematical analysis
to show that all is well here and that I can create rules whose length is astonish-
ingly exponential in the size of the RE involved, and content myself with saying
that what I have shown is that

1. I can produce a simple ruler of lengthk using aroundk symbols;

2. making a ruler that is exponentially bigger than an existing one only makes
the RE for the ruler a modest factor bigger (because the alphabet that is to
be used grows in size as well as the number of symbols written in the RE
you may find that the bulk grows quadratically with the numberof layers of
exponentiation desired);

3. The difference in these growth rates means that you can just do the exponen-
tiation step an extra time or so to ensure that the final ruler is huge compared
with the RE that describes it rather than just being huge relative tok.

Mathematical pedants are welcome to follow up on the fine details!

4.7 Using a huge ruler

If I have a huge ruler I can readily describe the behaviour of Turing Machines only
limited to that (huge) tape-length. And by selecting nasty enough such machines
I can make it hard to tell if the TM can ever terminate with the difficulty growing
with the tape length involved. I am not proving this here, just asserting it (again
Aho Hopcroft and Ullman do have a proof, in case you are reallykeen, but to me
it seems a jolly reasonable thing to expect to be true). Solving the emptiness of
complement problem for my extended RE amounts to guaranteeing to be able to
tell whether the TM I have modelled can ever terminate, so this problem is as hard
as the length of the ruler I can describe, and so is at least as hard as something that
is super-exponential with any number of powerings you care to mention. ie it is
non-elementary.

5Almost any growth-rate would be modest relative to this!

26

5 Conclusion

These notes have provide an overview of the material coveredin the course. Some
of the detailed results and all of the exercises have been left to the (excellent)
supporting textbooks. The unifying ideas that I hope come through include:

1. Seeking the very fastest (asymptotic) solution to a problem may lead to
unexpectedly deep and complicated algorithms;

2. Finding lower bounds on the cost of solving problems is important but hard;

3. Relating the cost of pairs of problems is an important and general technique;

4. Computation by Turing machines provides a useful model forpractical (ie
computing-time analysis) as well as purely theoretical (iejust decidability)
purposes;

5. Some tasks are easy, some hard and somealmostimpossible.

References

[1] Aho, Hopcroft, and Ullman.The Design and Analysis of Algorithms. Addison
Wesley, 1976.

[2] Leiserson Cormen and Rivest.An Introduction to Algorithms. MIT and
McGraw-Hill, 1990.

[3] Donald E. Kunth. The Art of Computer Programming, volume II. Addison
Wesley, 3 edition, 1998.

[4] Thomas A Sudkamp.Languages and Machines. Addison Wesley, 1988.

27

