Complexity

Part B, I1(G) & Diploma

A C Norman, Easter Term 1999



1 Introduction

This course is about the complexity of computation. Thistes to the way Iin
which computing times grow as you solve larger and largemgias of problems.
Part of the course will be illustrating how complicated tigrget if one tries to
seek the very fastest (in terms of this ultimate growth rat&y of solving even

simple problems. A middle section looks hard at an area gdlgeaccepted to

be the boundary between problems that it is feasible to samitekones that are
too hard, while at the end of the course | will sketch a denratish of how a

simple looking problem may have associated costs that i@nldeamnost people’s
nightmares.

This course build on material from several previous easg@s of lectures:

Early courses: Big-O notation for describing rates of growth;

Regular Expressions: Recall that these provide a neat way of writing patterns.
I will quote the results about these that | need, and will ne¢dhyou to
remember the associated proofs!

Turing Machines: It is important for this course that you are happy about the
structure of a Turing Machine and the fact that it is a generatel of
computation. What may amaze you is that it ig@dmodel of practical
computation quite often;

Complex numbers: These get mentioned at one stage;

Modular arithmetic: This is just performing ordinary integer arithmetic butynl
keeping the remainder when the natural result is divideddnyesmodulus
M. It certainly arose in the ParlDiscrete Maths course when RSA en-
cryption was introduced,;

General skills in algorithms: Both design and analysis skills are involved. Var-
ious of the parts of my course amount to presentations ohiqaks that
could almost equally have gone into an Algorithms lectunarse.

The presentation here is based on four books, three of whechasy to obtain
and indeed that you may own already. The last book is oldermaau be less
readily available, so | have included the important matesagpart of these notes.

Because these books (and in fact many others) cover this ialatesil you
have the advantage that you can look in them and find quite laugnbers of ex-
ample questions some of which will be less substantial tlzesh pripos questions
(of which there are plenty, available via the computer labmy web pages in the
usual way). When | point out that a certain part of my presentas keyed to



one of the books you should automatically assume that thesseam drawing
your attention to the examples in the book at the end of thevaalt section and
suggestion that you try some of them. The books are:

Knuth[3]: The Art of Computer Programming is a classic set of volumeslll w
take just snippets from volume 2, but | continue to beliew well-rounded
computer scientists browse all the rest of that and the athlemes to en-
sure they have an overview of what is described;

Sudkamp[4]: Languages and Machines will provide a useful refresherifosée
who want to brush up on their regular expressions as well i lodose to
the presentation | will give of some hard problems;

Cormen at al[2]: If you have not already bought your copy of this thick book
now is another excuse. | will only be using the last two chepfeom it
here;

Aho, Hopcroft and Ullman[1]: This was an important book in its area and cov-
ers the very hard problem | will discuss at the end of the @ursuggest
you consult it after you have read all of the previous threggestions!

Because these books are so good | will not include all the fiteldef the
material in these notes. Many of you will find that your supeovs will under-
stand this material quite well and that between that andebtites you will be
happy, but in terms of precise explanation of technicalityduld be very hard for
me to match the clarity of exposition in any of the recommehigats.

There are parts of this course that are technically deliddsny of the terms
| introduce seem to lend themselves to informal abuse orapgdication, or at
least application where the precise result that they implyriot been proved. My
presentation will still try to concentrate on explaining tstructure of the results
and on skipping detail where | feel | reasonably can. Thenintethat once you
have grasped the overview you will be in a position to worlotlyh everything
again adding back full formality and precision of notati@urrent research areas
in the area of complexity rely firmly on extreme precision eésoning and so
may re-cast some of the ideas | show you here in concise,seretathematical
formulations that could initially look a bit daunting: | hepmy more informal
presentation will help lead some of you into the area andytbatwill then enjoy
it.

2 Easy

| a course on data structures and algorithms the tasks loakack generally of
around the size and messiness as “sorting”. In this partotdmplexity course |

2



will show that there is quite a lot to be studied in tasks tlwat grobably previously
took for granted! In particular the issue to be investigatdtibe implementing
integer arithmetic. It seems pretty clear to me that untikwew just how fast this
can be done it will hardly be possible to analyse any othesrélgn at all.

A complexity-theory approach twists our intuition by agkonly about growth-
rates of costs. This is a sensible approach in that it all@#e ignore the constant-
factor scalings associated with fast or slow computers. h&l dase of integer
arithmetic it will be natural to measure the size of inputshessnumber of bits in
a binary representation of the numbers. The challenge mstthend the sharpest
possible big-O bound on the costs of basic arithmetic ojperat There are three
oddities:

1. The insistence on looking for the best big-O growth ratéhasway of as-
sessing algorithms sometimes causes us to look at methagte Wwie con-
stant (hidden in the big-O notation) is rather large evemdgiinothe growth-
rate is slow. Such methods may only pay off on ridiculoushgéainputs,
and so practicality is not guaranteed;

2. The best intellectual result will often be a proof that sorask will have
costs that grow at least as rapidly as some function, regssdif the algo-
rithm used to solve it. Eg we have seen elsewhere that “gpusimg com-
parisons most cost on average at léash! whatever method is used”. Such
proofs do not necessarily show us how to achieve the boundofting we
were lucky that merge-sort (for instance) did achieve teetdbound, but
for other tasks we can end up with a mathematical bound andlecas to
how to meet it;

3. For many tasks the exact model of computer permitted whbesidering
algorithms is somewhat problematic. Big-O notation talkewdhultimate
limits, while real computers have limited address rangeklanited pre-
cision arithmetic for calculating addresses. If you hadn@gine sorting
(say)2% numbers then think about the index arithmetic needed toesddr
them, and note that if the numbers are only 32 or 64-bit vajesare
bound to have lots of repetitions. We need to abstract away these
frivolities without letting anything horrid creep in. | sppse | should give
an example of something that would count as “horrid” herepfose we
extended our idea of a computer to make it roughly like alfenir ones,
but accepted it could have arbitrarily large memory, thitre&mory could
be accessed in unit time and that the index arithmetic netxdediculate
memory addresses had constant cost. Then it might turn attvérious
problems could be solved unexpectedly rapidly by packirtg &5 32-bit
integers into a single address register and using deviadressl arithmetic

3



and huge tables to do in effect parallel processing on alirttegers. | will

cheat a little in the first section of this course and use as aghmne model
a programming language like ML or Java and | will count eacsidaper-
ation as taking unit time. | will avoid thinking too hard alidbie problems
of addressing truly huge amounts of data. Later in the coamslfor other
problem areas | will be able to avoid this fudge.

Because | want to look at asymptotic complexity | will tend hank of arith-
metic onbig integers. For a small range of numbers your computer may &o th
arithmetic in unit time already, or you could pre-computelble of all possible
calculations and instead of arithmetic you just have a lopleperation to per-
form.

For arithmetic | will suppose that numbers are to be repitesem binary.
On occasions it will be useful to clump the bits together iaups of three (for
octal), four (for hexadecimal) or more (eg in practical cagerty-two to fit with
real machines) but | will suppose that my computer or prognarg language has
some fixed width arithmetic that it can perform as an elengrageration and
that anything on numbers bigger than that has to be workeds»g carries etc.

First observe that addition, subtraction and comparisam-oit numbers can
be performed in time)(n) using obvious algorithms. Furthermore these algo-
rithms can not possibly be completed without being preptreacess all the bits
of the inputs, and there areof those. Thus it is not possible for there to be an
algorithm with time faster tha®(n).

Knuth discusses some details. In particular for a theakstandpoint one
might like to represent huge numbers as linked lists (lagtiBcant part first)
because then the average cost of increment and decremeatiopg are constant
(despite the potentially long chain of carries: on averdgedarry does not go
very far) and the cost of adding two numbers of different tang determined
by the length of the shorter. Here | will imagine that whenmavembers are to
be combined they are both the same length, and | will thinkhefrt as stored
in an array. Doing this will not have an effect on my discussid the costs of
multiplication and division, which are the next mattersdéoncern.

Consider the problem of multiplying two integers together suppose the
numbers are big enough that long multiplication is called Rsimary school long
multiplication forms the product of two-digit numbers in around? steps. Theo-
retical computer scientists ask if it is possible to do be# easy scheme (Karat-
suba) reduces the cost to arourid” (and | will explain where the strange expo-
nent comes from. The best theoretical limit know sd farn log(n)/ log log n
and the fastest algorithm discovered to date hasebstn loglogn. The gap

Lwell this depends rather critically on the model of compytan have, and if you read Knuth
hard enough you will find discussion of the possibility ofdar-cost multiplication.

4



between these formula represents a gap in our knowledgerdtiof very great
practical concern, but that does not stop it being a worrfaosé with tidy minds).

Karatuba’s algorithm takes a pairofbit integers and views them as two-digit
values where each new digit hag2 bits. | will write this as(a,b) x (¢, d). The
normal way to multiply a pair of two-digit numbers would fothre four products
ac, ad, bec andbd. Karatsuba instead forms three produets:bd and(a—b)(c—d).
Well in the last of these you could use either either have @addesubtracted, and
it is really ann/2 + 1 bit product not am/2 bit one. By subtracting and then
splitting a — b andc — d into their signs and absolute values you can get back to
usingn/2 bit arithmetic. | leave you to sort out how to reconstructfiieproduct
from these parts: look it up in Knuth or attend lectures if y@ed help!

If M(n) is now the total cost of multiplying twa-bit numbers then using
Karatsuba we can achieve

M(n) =3M(n/2) + kn

for some constant that covers the additions, subtractions and overheads. It i
easy to sketch enough code to see that these costs all geavl{inThe solution
to this recurrence show®/(n) = O(n'°#23) which explains the funny exponent
mentioned earlier. Practical experience shows that thihodebecomes useful
for multiplying numbers that need around 10 words (eg sayt80&00 bits) to
represent them. It is thus of practical relevance. It alsmashthat the simple
O(n?) multiplication was not optimal. It also forms a warm-up te tsxplanation
of a much more elaborate multiplication algorithm that cemmich closer to the
limits.

The starting idea here is to (temporarily) give up on integattiplication and
look at the multiplication of polynomials. Karatsuba cagritbe seen as looking
at the identity

(at +b)(ct +d) = act® + (ac + bd — (a — b)(c — d))t + bd

There will obviously (?) be analogous identities for higtlegree polynomials
that might lead to yet more complicated fast multiplicatedgorithms. However
a slightly different interpretation will turn out to be proctive. Consider(t) =
at + b, c(t) = ct + d then the three sub-multiplications we do in Karatsuba can be
viewed as coming from the products«f) andc(t) att = 0,t = —1 andt = oc.

This insight leads to the suggestion for multiplying twoywmials (which
I will now generalise to be of such a degree that their prosulitbe of degree
n — 1): selectn different evaluation points, to z,_;. Evaluate each polynomial
at eachz; and form the product of the values so found. Interpolate td fire
coefficients of the product polynomial, which is known to lielegreen — 1. Be-
cause we know its value at(distinct) points the product polynomial is uniquely

5



defined. This scheme with a quadratic product and espeatiple evaluation
points leads to Karatsuba. The issue now is to see how it gkses!

Here | will refer you to Cormen et al who have a chapter on patyiab
multiplication that my lectures will follow reasonably skely. The presentation
in Knuth is more directly concerned with the application mbeger multiplica-
tion. 1 will not cover the Cormen discussion of efficient FFTpilementation
(although it is interesting and useful) but | am confident thathing | could
write in these notes could match the presentation in theseckassic textbooks.
Note in particular that exercise 32.2.6 in Cormen et al ginesdlue to what is
needed for the integer multiplication case. You will seehase books that the
apparently painful processes of evaluation and interriatan be performed in
O(nlogn) steps. The multiplication after the polynomials have beaiuated
may itself involve long arithmetic and this leads to a congplmethod that has
costO(nlognloglogn).

Given fast algorithms for integer multiplication what ane tonsequences for
other operations, such as division and the calculation gh lprecision square
roots? It turns out that these are all related. In particifilae now just suppose
that there is some functiol/ (n) that grows at least linearly with and gives the
cost of multiplication then we can derive time bounds on ptperations.

Observe thatif) = 1/x then we can definefl(y) = z—1/y, f'(y) = 1/y* and
a Newton iteration for solving (y) = 0 iS y,+1 = yn(2 — zy,,). Each step of this
iteration takes two multiplications (plus a subtractiddgcause Newton’s method
exhibits second-order convergence it will be possible t@ioh, correct ton bits
in aroundlog n iterations. This calculation is of course not one usinggats, but
the cost of then-bit precision floating point arithmetic is just about thengaas
the cost ofn-bit integer working. Now note that in the early stages of evis
iteration the results are known only to have a small numbeoaotkect bits. Using
full n-bit precision is overkill. One can usebit arithmetic for the final iteration,
n/2 for the penultimate oney /4 before that and so on. The amazing end result
is that the total cost of forming a high precision reciprasdbounded by (fairly
small) constant timél/(n). Now obviously one can compute’b as(1/b)a so
division is at worst a constant factor more expensive thdtiptigation.

Could division in fact be cheaper? No. Consider ——2—— which involves

a—1  a+1

addition, subtraction and reciprocal operations. It sticiinplify to justa®. In
conseqguence one can square a number in time that is at waysstant multiple
of that needed to compute a reciprocal. Ngw + b)? — (a — b)?)/4 = ab and
so if you can compute squares fast (and divide by constantsasifour) you can
do general multiplication. So multiplication can be dondime bounded by a
constant compared with the cost of division. The two prolsiérave been shown
to be inextricably linked in computational complexity. $hwas done by showing




how to reduce an instance of one to cases of the other. Thisitpee is generally
very important.

At this stage | include a further example to remind one thatsisarch for the
very best methods of solving problems may be hard. Considdpeudo-)code

a = 1;
b = 1/sqrt(2);
u= 1/ 4;
x = 1;
pn = 4;
for (;;)
{ p=pn
y = &
a = (atb)/ 2;
b = sqrt(y*b);
u = u-xx(a-y)*(a-y);
X = 2*X;
pn = a*al u;
Systemout. println("pn=" + pn);
if (pn >= p) break;
}

Systemout. println(p);
When I run this code the results | get are

pn=3. 1876726427121086272019299705253692326510535718594
pn=3. 1416802932976532939180704245600093827957194388154
pn=3. 1415926538954464960029147588180434861088792372613
pn=3. 1415926535897932384663606027066313217577024113424
pn=3. 1415926535897932384626433832795028841971699491647
pn=3. 1415926535897932384626433832795028841971693993751
pn=3. 1415926535897932384626433832795028841971693993751
3.1415926535897932384626433832795028841971693993751

The curious iteration in fact makes it possible to compuitetime O(log nM (n)).
Its justification requires an understanding of ellipticemtals and extends to pro-
viding similarly fast ways of computing almost all of the mlentary functions. It
maybe helps stress the view that just because you have thbaghand can not
find a better way of doing things does not mean there may nohek o

2Those who want to try this as an exercise can investigateaveBl gDeci mal class that
would make it easy to perform all of the long arithmetic.



3 Difficult

In this section | will explore the boundary between taskg #ra practical and
realistic to solve and those that are not. It turns out tr@bthundary is remarkably
finely drawn — one can have two closely related problems onehach turns out
to be easy to solve and the other hard. It also turns out tlea¢ tis a rich and
entertaining structure and theory associated with problémat lie close to the
edge, and some famous unresolved questions.

This section contains material covered by Cormen et al, butongrage will
be closer to that given by Sudkamp. Very many other booksrabeesame ideas,
but | think these two are among the clearer and their valusdpporting other
courses make them good buys.

A vital simplification is needed to make this part of the ceunsork well. Al-
though it may appear unreasonably coarse, it has in factfoeed to be a useful
predictor of practical reality. The simplification is to fagse that any calculation
whose computing cost can be bounded by some polynomial iprifidem size
is a feasible one. Anything worse (and the easiest and moshom growth rates
that are worse than polynomial are the exponential ones asiel” andn!) are
considered infeasible. Note that this convention wouldwi®™n!’? as “fea-
sible”, while declaring that.00001"/1%°%0% represented an exponential form of
growth and hence unreasonable costs. One can take somerwatipe from that
fact that even in the reasonably extreme cases given fociguffly large values
of n the exponential growth rate will exceed the polynomial one.

The investigation of polynomial vs. worse computing costa curious mix-
ture. There are a number of ways in which it is essential toavefally precise
about what is being discussed. These include the following

Decision Problems: | will generally look at problems that yield just yes/no an-
swers. On consequence of this (which | will not explore muehehbut
which is very much part of the language used in the field) is dingae can
consider a problem as defining a language. Each instanceithiad to a
“yes” represents a sentence in the language. In line with Reganguages
and Automata theory one replaces the concept “solve a probitgerform
a computation” by one of “accept a language”;

Class of problem: All measurements are in terms of growth rates of cost across
a family of problems. The analysis given here is not at allliapple to
individual instances of problems or to problem sets thaffiaree. Where
there is a parameterthat characterises the “size” of a problem | have to be
able to think of what happens agends to infinity.

Decidable: Of course to be able to consider costs | had better resttarttadn to



decidable problems! And of course this means that | am onilyggio like
algorithms that are guaranteed to terminate.

Worst case: Even if mostinstances of a problem are easy to solve, it will be the
costs of solving the minority of worst-case examples thétlve the focus
of my attention. Thus in particular if | show that some praobleas a worst
case solution cost that (3(2") | need to remember that the big-O notation
is just giving an upper bound on costs and not necessarilpd geediction.

Size measurement:l need to formalise what | mean by the “sizei)(of a prob-
lem. Closely related to this is the issue of how particulatanses of a
problem will be represented as input to algorithms. In soeses alter-
native encoding of input can have a huge effect on the cosligirens for
algorithms.

What computer: Perhaps some computers are faster than others. To avoid am-
biguity here I will (when put under pressure on this mattepmose that all
computation is to be performed using a Turing machine, aattte input
date specifying a problem instance is placed on the machtape. The
number of tape cells used to store the input will be the measuruse.

How much difference does it make that | specify a Turing maetiere?
How on earth can | justify use of such a clumsy abstractionnataging
about the need for fast and feasible calculations?

Let me start with the last of the above remarks. | will quotet (ot work
through a formal proof) a result that if an “ordinary” comeutvith directly ad-
dressable memory can run a program in timéhan a Turing machine can simu-
late the behaviour of that ordinary computer performingdileulation, and com-
plete its work in timeO(N?). This result is enough to show that polynomial time
calculation on ordinary and Turing computers are equialEénere are some un-
expected delicacies if you try to use more obvious abstmastof ordinary com-
putation. For instance if you allow your computer simpleeger arithmetic and
count each arithmetic step as having unit cost then when gek sinimal costs
and best algorithms unwanted tricks that use arithmetickaradean operations
on very very big integers tend to crop up in unwanted waystliSgton Turing
machines as the basis for formal discussion keeps evegytiaife, and the results
that emerge appear to match up well with intuition. If a peoblcan be solved in
polynomial time using an ordinary TM the problem is said tarbthe classP.

The big trick in this section is the construction of a teclmgighat can be
used to prove that a large number of interesting tasks aob#pty) hard to solve.
Note that one can show that a task can be solved cheaply bgrpireg a concrete
algorithm that solves it and that is efficient. It is gensgrafluch harder to show



that something is expensive. But | will be able to do just thatjast for a single
problem but for quite a few. The idea will be to show tlifayou could solve
the problem that is under consideration easily (in this exinthe term “easily”
means “with a computing time bounded by some polynomial&ntlyou could
solve some reference difficult problem “easily” as well. Se have two main
steps to go through: the selection of a reference problettbdelieve is hard,
and the proof of a link between this reference problem andtieewe want to
study.

There are many ways in which this scenario has been appliedhbé first
and most critical one centres around the idea of non-detéstic Turing ma-
chines! Call these NDTMs. These are to ordinary Turning nrahiwvhat non-
deterministic acceptors are to regular (deterministidjfiautomata. And as is
true in the finite case it is possible to construct a detestimiTM that models
the behaviour of a given non-deterministic one, and hencedaberminism does
not allow us to solve any new problems. But it might give us sedpgp. Define
a non-deterministic solution as arisingsémeway in which the NDTM could
calculate the desired result, and the cost of the calculasigust the number of
steps taken in this successful path. An NDTM is not alloweletb unless it can
be certain that the output it has produced is correct (otiserane could devise
one that just wrote non-deterministic symbols to the outppé and halted - and
then there would certainly be a possibility that it would gwoe the correct an-
swer). An informal characterisation of calculations th&l2aTM can do are those
where an answer, if given, can be checked for correctnesag3tthat a NDTM
can do fast are then ones where correct results can be reedgsfficiently. An
amazing number of interesting and worthwhile tasks happénthis pattern. Let
me just start off by citing the problem of finding a route outaahaze — at each
junction one can use non-determinism to decide which waytdgt when you
finally escape the fact that you have reached the exit islyttégar and visible.
Problems that can be solved in polynomial time using a NDT&/kaown as\ P
problems. Remember that | am looking at families of problemths is asymp-
totic behaviour, and that the polynomial bound on the costtrapply even in the
worst case. The fact that problemNSP means that it is easy to give an algorithm
based on some sort of exhaustive search through the pdagesitihat will solve
the problem on an ordinary TM, but this algorithm will usyatlave exponential
costs. Very extensive studies of huge numberd/@f problems have been made.
Note that to say a problem j§P is in fact a comment on how easy itis. It can be
solved in polynomial time given an NDTM. If in fact the probiecan be solved
in polynomial time on an ordinary TM then certainly an NDThcsolve it fast.
The problem that arises is;

Are there any problems VP that are not ifP?

10



Intuition, reasonableness and experience gives a cleaesgsipn that non-
determinism in the sense discussed here does give veryxtealpower, and of
course there must be problemsAff® but notP. But so far nobody has been able
to prove this! Equally nobody has disproved it, and all thpegis in the field
believe it. Even with this problem left as open it is possiol@lirect attention to
some of the hardest problemsAfiP, ones that seem to make essential use of the
non-determinism. These are the ones that will fail to b ihany NP problems
are. They are known agP complete. A problem i8/P complete if showing that
that problem was if® would be enough to prove th& = AN'P. There is a more
concrete was of expressing this definition. Suppose you &greblem Q that is
NP complete, and you have another problem R that/i8 (R can be anyWP
problem, not just limited to th&/? ones). Then the availability of a deterministic
polynomial time algorithm to solve Q would allow you to canstt one for R.
And that will be true forany R you care to select. This seems a convincing way
of expressing the idea that Q was as hard ad/@h problem can get. At first it
seems improbable that there could be AAp complete problems!

I will sketch a direct proof that a problem called the “Booleaatisfiability
Problem 3-SAT” isNP complete. The problem 3-SAT is a somewhat abstract-
looking one, but still has potential applications in hardsvdesign and verifica-
tion. An instance of it is a boolean formula in conjunctivemal form. This will
be made out of a number of terms alided together. Each term will be made
out just three items linked bgr operators, and the items are either variables or
negations of variables. A solution to a 3-SAT problem is a whgetting values
for all the variables so that the entire expression evatueit¢rue. An NDTM
can non-deterministically set values to all variables draht(easily) verify that
the formula evaluates properly. A deterministic machine @bviously solve the
problem by trying all combinations of values of the variahlbut that may have
exponential cost. Allowing more complicated forms of b@sidormula could
only make the problem harder, so the limit of CNF and three stper term are
acceptable. | assert Cook’s Theorem, that 3-SAVB complete.

To do this, consider an arbitrayyP problem of size: from class R. Because
it is NP it can be solved on an NDTM in timg(n) where the functiorp is
bounded by some polynomial. If a Turning machine only runskfgteps it can
only possibly move its head ovértape cells, so as well as only needing tipie)
the solution of the problem only neegén) cells of Turing Tape. In the lectures
I will show how this makes it possible to construct a ridiatddarge boolean
formula that characterises the behaviour of the NDTM wioleiag the problem.

I will also show that the size of this formula is bounded by &/pomial function
of n. Now suppose that we could solve every instance of 3-SAT Ignoonial
time on a deterministic machine. This would now allow us tleathe instance of
3-SAT corresponding to the calculation involving R. With @kably little effort

11



we could then read of the solution to our original arbitrarglpgem. The effect
overall would have been that tliesolution to 3-SAT had allowed me to solve the
arbitrary NP problem R in polynomial time. That would amount to showinatth
R was in? and so all of\"P was inP.

| will restate a few definitions:

NDTM: A Turing Machine which instead of having a transition fuoatihas a
transition relation, ie given a symbol and a state it may @sginto one of
several different successor states;

A problem (instance) of sizen: Given an understanding of what problem class
and which NDTM is to solve it, the particular problem instaman be char-
acterised by: symbols of initial data on the TM’s tape;

Solving a problem in time¢: An NDTM solves a problem in timeif (supposing
the answer to this instance of the problem is “yes”) theré isast one way
in which the TM can behave where it stops after no more trsdaps. If the
answer to the problem is “no” then no possible computatiothieyTuring
machine may stop, and certainly none may stop witrsteps. Note that if
the TM used happened to be deterministic we could run it feteps and
then give a definite answer yes or no. If non-deterministicadd run all
possible ways it might compute forsteps and if one of these terminated
report yes, and if none did report no — but this could be exptialy
expensive;

Equivalent: Models of computation and problem encoding schemes arad:zons
ered equivalent if each can simulate or be converted to ther @nd the
overhead or cost of doing so is bounded by some polynomi&ldrsize of
the problem being solved;

Feasible: Solving a problem is considered feasible if there is a patyiabfunc-
tion p(n) such that any instance of the problem of sizean be solved in
time p(n);

P: The set of all problems that can be solved in polynomial tirsiagia deter-
ministic computer;

NP: The set of all problems that can be solved in polynomial tifna non-
deterministic computer is used. Very obviougly C NP, and it seems
very plausible indeed that this is a strict inclusion, bubody has proved
that;

NP-complete: A problemX is A'P-complete ifX € P would imply P = N'P.
The lectures spelt this concise explanation out in more wasalys.

12



To prove thatn-SAT is N'P-complete | first have to show that it i§P and
then that it is complete. The first of these is just a demotistrahat | can design
an NDTM that will solven-SAT sufficiently efficiently. Basically the NDTM
will use its non-determinism to “choose” values to give tbthe variables in
the instance ofi-SAT and then just check that the resulting formula evakitde
“true”. Writing a program to do this for a Turing Machine woudd messy but it is
“obvious” that it could be done and that the program wouldirua time bounded
by a low degree polynomial (probably quadratic) in the langftthe input. Most
people would not view it is important to be any more formahtiias since this is
really pretty clear cut, but anybody who did could just dasagd code the details
of the TM and then analyse its costs.

The interesting part is the bit about “complete”. This witbpe that if n-
SAT is in P then all other problems iWP are too. Take an arbitrary class of
problem fromA/P, and select from it an example instance of sizeBecause
the problem is in\'P we can produce an NDTM (say with states) that will
solve the problem within some definite polynomial time bodnd= p(n). We
will consider the sequence of steps that correspond to tteesaful computation
made by this NDTM. Since it only takés steps it can only possibly inspect that
much of the tape.

The entire behaviour of any successful TM calculation cam be described
by showing what the TM'’s state is at each time step betweerd®@n, where
its read-write head is on the tape and what symbol is presegach tape cell. To
encode this as a boolean formula | introduce a collectioroofdan variables:

qx.- HerelintroducenT variables. Remember that the TM hadbossible states
and it was running fof” time steps. For any given value ofwill want just
one of these variables to by true, and that will tell me whatesthe TM is
in at that time;

hi:: The variableh;, will be true if the TM’s head is at position at time ¢.
Because both the length of the tape and the total time-stkes tae jusi’
| haveT? variables here;

sit.. If the TM’s alphabet is then | haveXT? variables here, where if one of
them is true it indicates that tape positioholds symbol: at timet.

A proper assignment of truth-values to these boolean asabould show
me exactly how the TM behaved, and as the size of the problemlthis solving
grows the number of variables that have to be used grows piopal to7?, is
p(n)?, still a polynomial in terms of the problem size. Next | needitrite out a
boolean formula in terms of these variables. Since | will ttarconstruct one if
the formn-SAT its top level will be a lot of terms, all of which get andedether.

13



| will describe these terms in groups before | look what haygpghen | combine
them all. Before doing so | will observe that | can make lifeiear myself by
writing terms in the form

p&eqder = (zly|z)

since the implication can be re-written later as the moréectiasm
—pl—glrlxlylz)
So here are the terms | will put into the final instance:€3AT:
Start in state 0: (gop);
End in the halting state (stateh, say): (¢n1);

At each time | am only in one state: (gx; = —qw ). | have to list this for all
pairs of (distinct) staté andk’ and all timest, so there aren®T terms of
this form to list (andand together);

Head position unambiguous: (h;; = —h; ;). This represent§™ terms in the
same sort of way;

Only one symbol at each tape position: (s;;, = —s;.). | have|X|T? terms
here, and again jusind them all together;

At time=0 the tape containsja, b,c,d...]: 500.&51,06&520,.&5304 ... iSacol-
lection of terms to put into my eventual formula that enfotice correct
initial tape contents, and which only add a very modest bulk;

Symbols do not change away from the head: s; ; ,&—h;; = 5it41.4;

The TM state transitions are correct: qx :&h; :&sito = (e t41/qr7 1+1). This
is the clever rule. The statds and k" represent two possible successor
states, and this makes the TM | am describing a non-detestitimine. It is
necessary to list:||7? implications of this form to cover all the possibil-
ities;

the TM writes proper symbols back to the tape: ¢ :&h; (&Si10 = Sitt1.07-
This is very similar to the previous rule except that withless of generality
| can make the non-determinism show up only in state tramstnot in the
symbols used. once again the number of terms that have toneeaged is
proportional tal™?;

The TM moves left and right as it should: gy ;&h; +&si ¢ » = hit141. Obvi-
ously the+ or — case will be used depending on whether the TM moves its
head left or right in the given circumstances.

14



If all the above are combined together wahd operators the result is a for-
mula in the format that-SAT expects such that the formula can (obviously) only
be satisfied if and only if the TM has a terminating computatids the length of
the TM calculation]’, grows the length of this formula grows to have a number of
symbols in it that is proportional t6%. Pedants will explain that we neég(7?)
times that many characters if the variables are to be nar@a, 0001, v0002
and things like that so that a fixed alphabet is used, but $haspretty trivial ex-
pansion. It is furthermore important to know that the ins&ofn-SAT could be
constructed in polynomial time from a description of the ThMhe simplicity of
the rules | used to generate it make me feel that | can sayttatistpretty obvious
too.

Using all that has gone before | can now assert th&AT is N'P complete.
Suppose | have an arbitraryP problem and that-SAT is in P. Design an
NDTM to solve the arbitrary problem. Use the rules given abtmvconstruct an
instance of-SAT that describes how the NDTM runs. Because | have suppose
n-SAT is in P | can now solve this in polynomial time — a polynomial in the
size of the boolean formula. But this is still a polynomial étion of the size of
the original arbitrary problem, and from the solutiont€5AT | can read off a
solution to the original task. Thus | have just solved théteaky AP problem in
polynomial time on a deterministic computer, and hence-8AT € P | would
have shown thaP = N'P.

This was historically the first problem proved to h&P complete, and still
about the easiest one to deal with directly.

I next go on to discuss some of the many other problems thatlbeen proved
to be NP complete, and in particular show how to reduce the Hamito@ircuit
(which I will define) problem to 3-SAT and hence prove\itP complete. | also
cover the Travelling Salesman Problem (TSP), searching-fdiques in graphs,
the integer knapsack problem and others. You can see eg Canarior the
Cligue problem and Sudkamp for the Hamiltonian circuit. Ybowd note that
for all the results proved there will be multiple (and equatilid) proof strategies,
and so the selection of particular ones is based on a judgeabent which seem
easiest to follow.

Once a problem has been proved@ complete it is tempting to give up on it.
But there are more things to do. Firstly, restricted formsashe N'P complete
problems are irP. Secondly manyVP problems relate to forms of optimisation
where a search for a “best” solution is called for. Sometiliees not always)
slackening off the constraint and seeking a “reasonabtéérahan optimal solu-
tion can lead to solutions i®. Finally the analysis here is in terms of worst case
costs, and amazingly often fd¢’P complete problems there can be algorithms
that are usually (in a rather informal sense!) efficient oichhusually get the
correct answer. | will survey these ways of facing up to thecpcal problem that

15



NP completeness represents.

4 A non-elementary problem

The final section of this course covers a problem that is éddéd and indeed most
of you could write a program that would solve it. However ishle property that
even the best possible program (presumably using tectmimueh more devious
than any you would code up) will have a worst case running thmaeis worse than
27, worse thar2?”, and indeed worse thamysuch formula with any fixed number
of levels of exponentiation. The problem uses “Extended Redtxpressions”
and given one of these asks if the language that it definesthpty €omplement.
This is a short title for the problem but it calls for a littleone explanation. |
should note that the main place | know where this result isidwnted clearly is
Aho Hopcroft and Ullman’s book on the Design and Analysis &faithms, but
that | hope that the notes | include here (together with thutes) are enough to
support the level of understanding | expect from you here.

4.1 Whatis an extended RE?

Ordinary Regular Expressions are built up starting from sbase cases that in-
clude a denotation for the empty language, for the languagedonsists only

of the empty string, and from symbols that stand for eaclerett the alphabet.

Whenever a regular expression is written there ought to beaat hn implicit un-

derstanding of what the alphah®gtis within which we are working. The three
combining rules for REs are

Concatenation: if A andB are regular expressions théB stands for one that
matches aw\ followed by aB;

Alternation: A| B matches anything that matches eithesr B;

Arbitrary repetition: A* is much the same a$ Al AA| AAA| ..., ie it matches
strings that can (somehow) be decomposed into zero or mgnesses each
of which matcheg\.

It is well known that a Regular Expression defines a Regular uageg, and
that Regular Languages form a class closed under interaeamtid complement.
Thus if one were to extent the definition of regular exprassio permit

Intersection: if A andB are regular expressions thé&&B stands for one that
matches ar\ and also matches;

16



Negation: —A matches and string over the alphakbahatA does not.

then this does not alter the class of languages that can logiltes The most
it can do is to give up neater and easier ways of describingesainthese. For
instance over the alphabet that includes all letters facme the extended regular
expression-a represents all stringsxcepfor the one that is made up of the single
lettera. To write this without a negation mark is possible, but altyiguite messy.
About the best | can do easily represents it as two altermtihe first is all strings
that do not contaim at all, and the other is the all strings of length at least 2.

(blcldfe)« | (alblc|d|e)(alblc|d|e)(alb]c|dfe)*

Perhaps you can find something shorter, but | hope | have rhadmoint that the
notation—-a may be convenient.

Another well known result about regular expression is thagmgany regular
expression (and this will include extended ones) there ystematic way of con-
structing a deterministic finite automaton that will acciyg associates language.
This result is part of Kleene’s theorem.

4.2 Emptiness of complement

Now | introduce theemptiness of complement probleRor a regular expression
Rthis asks if the language defined bR is empty. Empty languages may seem a
silly thing to consider, and looking for an empty complemether than an empty
language may also appear artificial. Let me at least respotietfirst. IfA andB
arebig regular expressions we might be interested in trying todiedithey are
equivalent in the sense that they define the same languagpossible to do this?
Well considerA&B | —A&—B: if the two expressions denote the same language
to start with this is an extended regular expression withraptg complement. So
apart from theoretical interest this problem, if solvedghtihelp us check REs
for equality.

The emptiness of complement problem is decidable. Takeatigett RE and
construct from it a finite automatdd This process is described in the proof of
Kleene’s theorem and is mechanical — it does not give us adgaidability wor-
ries. If you attended and understood either a PafRégular Languages course
or a Diploma course on Mathematics for Computation Theorywitithave seen
this and could possibly see that you could write a progranetéopm the conver-
sion. Otherwise earlier chapters of Sudkamp’s book may heip Here | just
need to quote the result not re-prove it. Suppose Mhaasn states, then iV
accepts a language with empty complement there must be domg & length
at mostn that it rejects. This result is based on the usual analysiseofact that
in any computation that accepts (or rejects) a string oftleiggeater tham the

17



machine must have repeated a state. Thus an utterly crudéowsdneck things
is to generate all the strings up up ftosymbols over our alphabet and check
whetherMaccepts them all. This is intolerably tedious if we are pcattpeo-
ple, but enough to establish that there is a systematic gudigdmic method of
resolving our problem, ie it is decidable.

4.3 Introduction to proof of hardness

I will now sketch a demonstration that the emptiness of cemgnt problem
for extended regular expressions is astonishingly expersi solve. A proper
presentation can be found in Aho Hopcroft and Ullman’s baakmy attempt
here will be to get across key ideas. What | give here will nad bemplete proof,
and every so often | will rely on plausible (and true) subuhtss

The idea behind this is going to be based on calculationspréd by Turning
Machines when they have a limited length of tape to work wittate that this
bears a distinct resemblance to the starting point we had/fBrcompleteness
analysis via 2-SAT. The insight needed to start us off isith&e can describe the
behaviour of Turing machines that are restricted to usingpupsymbols on their
tape then telling if those machines are every liable to teatel will necessarily
take an amount of time that grows /asloes. | guess | need to say that the halting
problem for unbounded Turing Machines is undecidable, bybu have a TM
which hasV internal states, uses an alphabet of sizand limits its tape to length
k then there are onlys* configurations it can possibly be in and analysing its
potential behaviours just amounts to looking at a finite enatton of that (large)
size. Note that | am not proving that the analysis of tapeaded TMs is difficult
here, | am supposing that somebody else has done that fomuenrgway | do
not expect you to find it an astonishing result. 1 am also notworried about
exactlyhow difficult it is: all | need is that if you give a TM a longerga then it
gets harder to analyse its potential behaviours.

Now a TM with tape limited to length is really a finite automaton, so Kleene’s
theorem tells us that its behaviour can be described usmglae expressions.
What is (I hope) astonishing is that | will be able to show thas thorrible-
sounding conversion is in fact quite easy to do, and doeswobie all the general
mechanism you saw in the full proof of Kleene’s theorem. Iremnore it | use
extended regular expressions the extended-RE | get will le gqampact. This
way of starting from a TM and ending with an extended RE is thedtep. In
style it is just like the reductions done when proving resatbout\’P problems
but here it will provide a proof (by reduction) that the empts of complement
problem is as hard as deciding the termination propertiestsf with averylong
tape.

OK, so my TM hasN states and an alphabet of size Its tape isk long.

18



For my RE | will want a new alphabet that consistsNdfsymbols that stand for
TM states (I will write these a§),), together withrm symbols that are just from
the TMs alphabet (I will use; as such a symbol) and a new symBahat | will
use as a delimiter. | will call the size of this enlarged alpttal/. The TM will
have a transition function that shows what it has to do fottal Nm possible
combinations of state and symbol.

Now | will define atraceof the behaviour of the TM. Itis a string with $-signs
everyk characters, and the text between each pair of stars writedb@state of
the TM tape at one time step. The position of the read-writalhe indicated by
putting aQ); just to the left of the symbol about to be read. Successivekilof
the trace represent the state of the TM at consecutive tinmspd he first block
of trace is its initial state, and in the final block the st@tés a halting one.

It is probably neatest to display traces on several linesly wiline- break
inserted before each $. Then corresponding positions otafieeof the TM will
align vertically. The following trace is for a silly TM thatas with a tape full
of b symbols and scans rightwards turning them all iatoWhen it detects the
end of its tape the read-write head moves one space left anddbhine enters its
halting state, which | have written &b

$Qobbbb
$aQbbbb
$aaQobb
$aaaQob
$aaaaQo
$aaaaaQ
$aaaaHa
$

If you are upset about the idea of “detecting the end of ite’'tdp not be. You can
think of the $ as a special symbol pre-written where the tagepposed to end. If
you want to work out an example for yourselves | would suggestyou design
a TM that works on an alphabet thatdsverb.1. and a few control symbols, and
that counts in binary through all thebit numbers before it stops. Doing so will
count as revision for the Computation Theory course morewWaR on this one.

| intend to show how to create an extended RE that will matcly tmbse
strings that are proper traces for some given TM.

For the bulk of this explanation | am going to dodge one @altissue, which
is that of ensuring that items in a string are spaced a fixed (gpically large)
distance apart. My temporary fudge will be to use a notatibo stand fork
copies of the symbat. | will also use a wild-card?” that is really an abbreviation
for (alb| .. .) alternating over all my alphabet. There is a risk that thbsetshands
will let me write things down unduly compactly, so | will neealshow (later on)

19



that once | have a regular expression using them | can expauoud to fit in with
just the rules of extended regular expressions without emcpansion.

4.4 Constructing an extended RE for a trace

Because | am working with extended regular expressions | itaerdry to build
up a single expression that will match all valid traces, ocan build up one that
will detect allinvalid traces (and if necessary take a complement at the end to
get the one | actually need). The two ways of working are pnstll equivalent:

in one the little fragments that | generate will need to bé&duh together with
and operations and in the other | will need a lot@fsymbols. In the lectures |
will probably present the construction as of an extended REwould match all
valid traces. This choice might be justifiable because itlves making a positive
statement about a trace, and that is perhaps easier to tamtkthan a negative
one. Here I will write things out as descriptions of the waysvhich a trace can
fail to be valid. The advantage of this is that it is perhapsiexato verify that
all possible failure modes have been described than it is1¢ore that the RE
components fully enforce proper behaviour. But | stressttietwo presentations
differ only by the insertion of a few-" signs and maybe use of DeMorgan’s
rule. For Extended Regular Expressions the extradperators are not an issue.
Looking at semi-extended regular expressions (where youipandbut notnot)
would mean you had to be a bit more careful, and Aho Hopcraftdihman do
that.

To build up my whole extended RE | will set up a sequence of sepaub-
expressions each of which detestsmeway in which a trace could not match
the Turing machine’s behaviour, and then | will just combatihese with “—”
operators to make a bigger RE that can detect all possibleegiancies. The
complement of the language defined by this big extended REclg#irly consist
just of traces of proper terminating computations that theckn perform. Thus
the complement will be non-empty only if the Turing machiras la terminating
computation. Please remember that thisasthe same as the Halting Problem
because here | am limiting the TMs to use only a tape of lehgth

| will start off with the easy ones:

Must have dollars after every k characters | give here a rather simple RE that
describes valid configurations on the tape. Take its comgherio get all
the invalid ones:

$((—$)"8)"

A dollar sign then blocks each of which is a chunk afymbols that are not
dollars and then another dollar.

20



State (), at start of tape to begin Again | will describe things in a positive way
here and take the complement of this before combining witteteogd “—”
operators

$Qo?”

Initial symbols on TM tape In the trace it is important that there be only a sin-
gle symbol from the sé? in each display of the TMs state. For all except the
first block this will be enforced by the rules for the TM traiwsit but some-
thing is needed to indicate that to start with the tape corganly symbols
from the TM alphabet. | will allow my RE to describe all possibM cal-
culations for this machine, and hence will permit the machmstart with
arbitrary tape contents. In fact this rule is just an ext@msof the previous
one:

$Q0(CLO‘CL1 .. >*$7*

The only things | allow after the two initial symbakand ), are things
from the TM'’s alphabet, all the way until | find the net

Symbols on the tape do not change arbitrarily

7*(~(Qo|Q1 . . .))a?* —a?*

This is my first case where it has been nicest to describe what motis
happen rather than what must. Theat the start and end then just permit
recognition of the bad thing anywhere within the whole trace. Nuidea
is that this one sub-expression | have written should be thboitas written
out lots of times, one for each possible Turing Machine symbdt then
says (actually rather directly) that if you see a symbah the tape and it
is not preceded by a state (ie if the Turing machine head igeading it
at the moment) and if the symbol that arises juslymbols later (ie at the
corresponding position in the trace for the next time stefi¢s then we do
not have a good trace. That feels like a mouth-full, and itsdoean that
| have just listedn® chunks of regular expression. Buitis a constant so
that does not worry me.

The TM's transition rule applies The transition rule will show have explana-
tions of what to do for any combination of Turing Machine syhdal
state. It documents what symbol is written back to the tape,hehéhe
read-write head moves left or right and what the new TM stateilshioe.
Again it turns out to be best to make a list of all ways that tlasld be

SRemembern was the size of my alphabet, and so is fixed.

21



violated. The expected pattern when the TM moves left will $ookething
like
aQb...Q all

where the dots must represent exadtly 1 symbols. The idea is that the
TM is in state@) and is reading symbdl. To its left is a symbat. In the
next block of the tape the TM head has moved left so it will e@ad«, and

it has changed théinto ' and set its new state &%'. To write out all ways
in which this might be violated involves listing expressitorsall possible
values ofz, b and Q, but that still is onlym?N cases.

7*aQb?* N ((-Q)(Qa)|(Qa=b'))?*
Must have halting state(,, in last block

7 Qn(~(Qol@ul .- .)"$

This says that &), is present, and that what follows it is a string made up of
anything except other statés and then the end of the trace. Again negate
it to get an RE to describe violations.

| think that the above document all the properties neede@sorthe a proper
Turing Machine trace. One thing to note is that the REs wilhpethe TMs tape
to start off in utterly any state, so so solving the emptirigs®mplement problem
for it amounts to deciding if there enyinitial data that could be presented to this
particular TM that would cause it to halt. In the above préston | have still
fudged the issue of symbols being separated by a distaraoed | have also used
a collection of other short-hand notations. In a few placeave used “...” and
I need to count how much text that really expand to, and ingdddave written
down one bit of RE but then indicated that it should be reptiddots of times. |
have also used a question mark to stand for an arbitrary symbo

Let me deal with the last of these first. The RE | have writteri*asan be
expanded in one of two ways:

¢
or

(8]Qol@] - - laolar] ...)"

The advantage of the first is that it is very compact, and for Rkeds who
are happy with the empty languaget seems good. The second presentation just
lists all symbols in the RE’s alphabet explicitly: it is pepseeasier to understand
(if more bulky). For this course | do not mind which you use.cAHopcroft and
Ullman considessemi-extendeREs as well as extended ones. These just add an

22



and operation, not anot one, and and so they would probably prefer the second
version.

Now how bulky is the extended RE | have got by combining all tampo-
nents listed above? For a TM wifki states using an alphabet of sizehe whole
extended RE will consist of around? N components (mostly from the parts that
ensure that the TM transitions are correctly followed). cifd do not allow use
of a— operator within my sub-expressions and so have to use tgélereplace-
ment for—¢ (and similarly for—a, —b" etc) each of these components is only of
length some small constant time (m+N). Thus apart from tineareing oddity
about strings of lengtk | can have an extended RE of size that depends only on
the size of a description of the TM, not on the length of the potation it will
perform.

45 Rulers

The remaining challenge is to take an RE that has been writiieig the informal
extra notatior?* in it to specify that some symbols are separated by a distance
and show how | can expand things to get a simpler (but someaifgr) RE that
describes the same language.

I will do this first using a mechanism that works well for smadllues ofk,
and will then show how to extend it. Suppose for instance wetegito do this
for k = 6. | first write down the obvious and easy RE

W XXX X1

[Note that | have used a pair of slightly odd symbols here tesstthat | want
something that will not clash with the symbols in my origifE]. This clearly
describes any string that has twosymbols marking the two ends of a sub-string
of length 6. | will refer to such an RE agaler, in this case of length 6.

Now take my original RE, which works over some alphabietnd has some-
where in it the short-hangf. | will construct a new RE that works over a bigger
alphabet, specificallyZ x {e#}, ie ordered pairs from the original alphabet and the
new one. Wherever in my original RE | had a symbdh € ) | will now write
our ([a, e]|[a, #]). Doing this expand the bulk of the RE by a factor that is around
the size of the marker alphabfgt, #}, but otherwise leaves the RE describing the
same sets of strings. Similarly | rewrite my ruler replaostyy ([ao, ®]|[ai, o], .. .)
and similarly for#. The symbols:; | am using here are supposed to be just a list
of the symbols in the alphab&L My description of the ruler has expanded by a
factor of aboutX|.

Now | can replace the previously troublesome segriiemtith

[7, M7, o]"[7, A

23



which indicates that the first and last characters in the rustiine paired witl#
markers. The residual “?” marks can be expanded by jusadjsill the possible
characters fronk that could possibly arise. The effect is that the it€nhas been
replaced with something whose bulk is aroukid

Finally | take theandof these two expressions. One preserves the behaviour of
the whole on the first component of the new alphabet, whileséo®nd enforces
the required separation éfpositions.

If the original RE had an alphab&tand was of lengtlh, while the ruler used
an alphabek’ and had lengtlf then the new RE that | construct will have length
aroundl|X'| + I'|X].

| should add a technical note here: the above expansion esmawsingle
instance of the idion?* from an RE. One might fear that it was necessary to do
that expansion all over again for each instance of the sxits-t&”. At least in the
application | have here this is not so and a single ruler camslee to enforce all
of the measurement properties | need.

The key to making my overall results about simulating TM&iasting will
be the construction of concise representations of very talags.

4.6 Long rulers

Suppose | have a ruler of length The first part of this section shows that |
can use it to help me describe the behaviour of any Turing Mactnat | like
provided that that machine only ever looks:atells on its tape. Now | know that
in the first section | just described how to model Turing Maelsiwith unspecified
initial tape contents, but it is trivial to put in a bit of eatRE to force the TM to
start with a blank tape. A trace of its behaviour then hastletitat is the length
of the tape (iek) times the number of steps the TM takes before it halts.

It is easy to produce a TM that uses an alphabet that congigtst¢0”, “1”
and the end-of-tape marker $m which if started on a tape gtienthat is initially
filled with zeros counts up in binary until the tape eventualbntains just ones,
and then terminates. Indeed it is so easy that | will docuntéete! The machine
| will describe has 3 states, and | will call theh B and H. The behaviour and
description of these states is as follows:

A: 1 will call this state “carry 17, and it is also the startingagt of the machine.
If it finds a symbol O it turns it into a 1, enters stdbeand moves left. If it
finds a 1 it turns it into a O, stays in stateand then moves right. If it reads
a $ it switches to staté/ (and it does not matter very much which way it
moves or what it does to the $;

B: This state may be interpreted as “scan back to the start afithder” and is
entered whenever statehas finished incrementing the tape contents by 1.

24



Until it finds a $ it just moves left, leaving the tape unchathg®n reading
a $ it moves right and enters state

H: This is the halting state.

This machine has three states and uses an alphabet of size&l{ing the $
which | use to delimit the usable region of the tape). And gigetape of length
k it clearly goes through* occasions where the read-write head is at the start of
the tape and it is about the increment the number. Well | sspjfoone is being
really pedantically careful here it may be necessary to woi detail whether
the length of my ruler describes the length of the tape or ¢ngth of the tape
plus or minus 1, and whether the length of the tape has to ¢bartell on which
the $ symbols are written. But such fine details only introda¢emall) constant
factor possible difference and really do not matter, so I @ghtinue to write just
2% here. Now a trace of the behaviour of this machine (in theestrat | used the
work trace) before) is distinctly longer thak2”*. All | will need to use here is that
it is longer thar2* so | do not even need to agonise about just how many steps it
takes for the TM to perform each increment operation and teenn to the start
of the tape.

Using the construction given earlier | indicated that areesed RE could be
produced for an N-state TM over an alphabet of sitleat was around& m? N (m-+
N) (for some small constarit’) symbols provided that at that stage I still permit-
ted use of the informal notatior?®”. In this caseN = 3andm = 3 so that is
just486 K (regardless, at this stage, of the valuekpf This RE will have as its
alphabet one of size 6, i®,1,$,A,B,H.

Suppose my ruler of length was itself an RE of lengtly and it used an
alphabet of size then | can put the ruler and my TM simulation together to get
a single RE of size aroun@p + 486K ¢q. This bigger messier RE now uses an
alphabet of siz&q (the product of the sizes of the two previous alphabets) but
manages to describe strings that have a symbil them only after (rather more
than)2* symbols.

Why have | done all of this? Well the new RE can now be addpiede a
ruler whose length exceed$ but its size is only a constant factor bigger than
the size of the ruler we were using that was of lengtlSo now | can repeat the
construction using this ruler of leng# to get a trace of length?* out of an RE
that is again only a constant factor bigger than the one adirdnad. And | can
keep on doing this over and over again. | can end up with a ailength

k

52"

4If one takes the trace described by such an RE and puts anoa@di#/ on the front then the
two H symbols (there are exactly 2) serve in the way tha#tmnes did before, while all the other
symbols have to be treated as variation®on

25



with any given height. of powering and the extended RE that describes it is of
size that grows relativedslowly with h.

The length | have for a ruler is at present expressed as a buge bf expo-
nentiation based on the parametethat is the length of my initial ruler, while
what | am interested in is expressing the length of my finamrii terms of the
size of the RE that describes it. | will omit the fine details @fthrematical analysis
to show that all is well here and that | can create rules whesgth is astonish-
ingly exponential in the size of the RE involved, and contegseif with saying
that what | have shown is that

1. | can produce a simple ruler of lengttusing around: symbols;

2. making a ruler that is exponentially bigger than an exgstine only makes
the RE for the ruler a modest factor bigger (because the adphidt is to
be used grows in size as well as the number of symbols writt¢ha RE
you may find that the bulk grows quadratically with the numtidayers of
exponentiation desired);

3. The difference in these growth rates means that you cadgube exponen-
tiation step an extra time or so to ensure that the final raleuge compared
with the RE that describes it rather than just being hugeivel#& £.

Mathematical pedants are welcome to follow up on the fineildéta

4.7 Using a huge ruler

If I have a huge ruler | can readily describe the behaviounwing Machines only
limited to that (huge) tape-length. And by selecting nastywgh such machines
| can make it hard to tell if the TM can ever terminate with thi@aculty growing
with the tape length involved. | am not proving this heret psserting it (again
Aho Hopcroft and Ullman do have a proof, in case you are rdadn, but to me
it seems a jolly reasonable thing to expect to be true). 8glthe emptiness of
complement problem for my extended RE amounts to guaragtéeibe able to
tell whether the TM | have modelled can ever terminate, soghoblem is as hard
as the length of the ruler | can describe, and so is at leastrdsals something that
is super-exponential with any number of powerings you cam@éntion. ie it is
non-elementary.

SAlmostany growth-rate would be modest relative to this!

26



5 Conclusion

These notes have provide an overview of the material coverée course. Some
of the detailed results and all of the exercises have be¢ndeahe (excellent)
supporting textbooks. The unifying ideas that | hope comeuth include:

1. Seeking the very fastest (asymptotic) solution to a mmwbmay lead to
unexpectedly deep and complicated algorithms;

2. Finding lower bounds on the cost of solving problems isartgmt but hard;
3. Relating the cost of pairs of problems is an important ame g technique;

4. Computation by Turing machines provides a useful modepfactical (ie
computing-time analysis) as well as purely theoreticajug decidability)
purposes;

5. Some tasks are easy, some hard and sdmestimpossible.

References

[1] Aho, Hopcroft, and UllmanThe Design and Analysis of Algorithm&ddison
Wesley, 1976.

[2] Leiserson Cormen and RivestAn Introduction to Algorithms MIT and
McGraw-Hill, 1990.

[3] Donald E. Kunth. The Art of Computer Programmingolume II. Addison
Wesley, 3 edition, 1998.

[4] Thomas A SudkamplLanguages and Machinegddison Wesley, 1988.

27



