Compiler Construction

supplementary notes for Lent Term 2000

A C Norman

Part B, [I(G) and the Diploma

1 Introduction

For the year 2000 the Compiler Construction course will bergpeatly by Arthur
Norman and partly by Martin RichartisThe main notes from the course as given
by Alan Mycroft are being issued in their normal form: thesges form a sup-
plement and explain

e Which lectures will be given by which lecturer;

e How the order in which material will be presented this yeafterd from
the order in the main lecture notes;

e Details of Java versions of some compiler-constructiofstathere the main
notes discuss C-based ones;

e Minor other areas where there will be changes of content ghasis this
year.

The overall syllabus, and hence the scope of the examinedibains just as
before: those concerned may consult the laboratory’s seteof syllabus state-
ments on its web site. The lectures will concentrate on aquéatr set of Java
compiler construction tools, but the main body of notesr{peinaltered from last
year) continue to explain lex and yacc (the standard C basékit). In such cases
where there have been changes it it expected that (a) anyirad@on questions
will focus on the version as taught this year and coveredesedtsupplements to
the notes, (b) the old version will be discussing somethirag is intellectually
close to this year’s coverage and so reading about it isditdhelp you not hin-
der you and (c) regardless of examinations the materialamties may provide
useful backup when you come to apply some of these idea inlgt®rrcareer.
The first twelve lectures will be given by Arthur Norman, wimbends to cover:

1. Introduction;
2. Lexical and Syntax analysis;
3. Parser generation tools, specificallyp andjlex ;
4. Simple type-analysis and checking;
5. Language constructs and their implementation.
The remaining eight lectures, by Martin Richards, will cover

6. Survey of execution mechanisms;

LAlan Mycroft is on leave.

7. Translation phase;
8. Code generation;
9. Runtime.

For the first part of the course the main books refereed to helModern
Compiler Implementation in Javg[and the Red Dragon[1] bodk

A compiler is something that takes the description of a pgogfrom a user
and converts it into a form that a computer can make much mioeetcduse of.
It is useful to think of this translation process as beingelontwo parts. The
first involves un-picking the input files, building neat amdional data-structures
to represent the user’s intents, checking for consistendytlaen applying gener-
ally valid conversions that simplify or optimise the prograThe second part is
concerned with mapping high-level constructs in a progrargrfanguage down
onto the concrete operations that a real computer can perfdhis may involve
making interesting choices about the representation @f, datd provides scope
for lots of effort to go into the machine-specific aspects tiraisation. By and
large the two lecturers this year will split coverage at anp@vhere these two
aspects of compilation meet.

Compiler technology is, in various guises, used in many mt@egs than just
things that are explicitly labelled “compiler”. This meatt&t an understanding
of the issues and techniques involved can be useful to alevesty computer
scientist. The parsing techniques that form the early ghata regular compiler
may be useful when decoding all sorts of structured data: H,Wbrd processor
documents, serialized data being sent as part of a remoteothatvocation and
many more. Lessons from type-checking and other consigtieists applied by
compilers can help keep other data structures straight.ostrany textual user-
interface will need some sort of parser to disentangle tlee'ustterances and a
study of compilers can let us implement things in an orgahé®l uniform (and
hence reliable) way.

Similarly the issues that are central to the codegeneratiots of a compiler
have wide uses elsewhere. Page markup languagésé®g andpostscript)
are specialised and rather curious programming langugesving about com-
pilers must help in implementing them well. Visual text laygsystems will still
need to do the same sorts of adjustment and transformatioties data so can
use related technology. Some graphics-rendering proesduny be best per-
formed fast by arranging to generate machine code tunecetpdtticular situa-
tion and then executing it: again this is related to the cgeleeration parts of any
compiler.

2So0 known from the picture on its front cover.

Almost any large current system will have an embedded segpganguage
and handling that is a compilation process. In these vapgtiGations compila-
tion may not be seen as a central part of what is going on, hbbwi knowledge
of the established techniques of compiler constructiompirobable that seriously
slow, clumsy or unreliable solutions will be invented.

2 Lexical and Syntax Analysis

This section of the course is concerned with reading in tleetfilit contains a
program and building an internal representation of thagam. Almost always

it is reasonable to imagine that this representation comésga parts. The first is
asymbol table that keeps track of all the names used by the programmerhand t
symbols recorded in that take their place peasetree. This tree will have a node
for each construct and each operator in the original progeauth its structure will
make quite explicit all groupings. Most current practicairgilers will build and
analyse these structures using three rather separateslmdiede:

Lexical Analysis: This will split the source code up intokens, ie names, num-
bers, operators and so on. It will discard comments and vdpiéee (ie
blanks and newlines). This is usually done as a separat@ragiam (a)
because it can be, and this leads to a clean logical structerall, (b) be-
cause this task is (amazingly) often one of the most expensats of a
whole compiler, so using careful code and special tricks aan be valu-
able, and (c) because there are convenient tools that camied the pro-
gram that does this work;

Parsing: This is sometimes callegyntax analysis. Very often the compiler de-
signer will select a set of syntax rules that are easy to watk here but
that lead to a parser that is somewhat over-generous intthall eccept
some strings of tokens that do not form real valid prograrhesé excess
cases are then filtered out later. Proper error detectiportiag and repair
are critical issues for parsers;

Checking and Tree Transformations. These must arrange to generate any di-
agnostics that the earlier steps failed to, and might sisnpli otherwise
transform the parse tree into some usefully standard state.

There are a number of key ideas that form the foundationd eéakible ways
to write these parts of compilers:

1. A formal description of the language that you are trying¢cept should
be preparedbefore you start writing any programs at all. This means that

3

a study of compiler construction has to begin with a disarssif the lan-
guage description notations that have emerged as the cormnasused in
practise. It also makes it sensible to talk about a ratheeiggicategorisa-
tion of possible sorts of languages that one may try to useagramming
languages;

2. A theoretical basis for processing text against thesgulage descriptions
is needed, and the trade-offs involved between exploitaiicthis and use
of ad hoc programs needs to be understood;

3. Inalmost all cases there will be practical and fairly cament tools that turn
descriptions of a language into a program that will parsehie benefits and
limitations of these and the details of how they are used eamportant.

2.1 Lexical Analysis

Amazingly if is often the case that in a real complete conm@lenajor part of the
time is spent reading the input file and splitting it up int&ens. It will gener-
ally be necessary to remove comments and categorise inpunatsers, symbols,
keywords or punctuation characters. It will often be theectimt certain pairs
of punctuation characters, when occurring together, shbeltreated as a single
item (eg in Java and C the pais and<= (and many more) are treated this way.

One could imagine a programming language with amazinglysgnedes about
just how characters should be grouped into tokens, and $tamce itmight have
been that the Java designers had wamtee+++b (with no blanks at all) to be
treated asm++ + ++b which is probably the nearest to a meaningful possibility
for it. For that to happen there would have had to be some wansore that
in this case the string of fiveé signs got clustered into a 2-1-2 break-up. Pretty
well every modern language designer has taken the view tizht seatment is
too delicate: one runs the risk of ending up with valid progsehat might have
two or more interpretations (in the above example one coukibine the first-
as an infix operator and the remaining four all prefix opessmting onb) nd
there is a risk of the user being confused as well as the cem@@b more or less
universally splitting programs into tokens is expected to be done witbhoocern
for context and in a way that can be based on a rather simptganothat scans
through the input strictly from left to right.

The descriptive tool used for this will deegular Expressions. Those of you
who missed out on the Para Icourse on them may like to check the notes on
my section of the lab web pages (find where these Compiler Gansin notes

3The main counterexample that springs to my mind is FORTRAN atcareful discussion of
the way in which one might tokenize that really lies twentgngein the past now.

4

are...), obtain a copy of last year’s printed notes or reasbd bl will not actually
need very great depth of understanding. As examples, hera gaw (perhaps
crude) attempts to use regular expressions to describehtipe 0f a few of the
sorts of token that Java has:

decimalint: (1]2|3|4]5|6|7]8]9)(0|1]|2|3|4|5|6|7|8]|9) *
octalint: 0(0|1]2|3|4|5]6|7) *

lesseq: <=

plusplus: ++

less: <

keyword_if if

A challenge at this stage is to construct a regular expresbat generates exactly
the strings that Java would consider to be valid floating jpoimstants. Before

doing that you almost certainly have to find a very detailedisg in a Java book

to find outexactly what the rules are.

Those of you who are on the ball will already have notes tham Icheating
somewhat: but it is a cheat that is universally accepted! régelar expression
| showed above for a decimal integer will match an arbityaioihg sequence of
digits. In a real Java program you ought never to see a deciomstant standing
for a value more thaf®1 — 1 for an int or2°3 — 1 for a long. However for the
purposes of lexical analysis the usual understanding istliese constraints are
based on theneaning of the string of characters and so overflow will be checked
for later on. A typical lexical analyser will treat a sequerd 50 digits as a single
token representing an integer and leave it to later partee@tompiler to moan
about the number being too big. In practical lexical analyssme may impose
some upper bound on the length of a name or number (to allowh®size of
buffers used to store things) but it is normal to pretend tthiatis not so!

Three key things motivate the use of regular expressionsvay af describing
tokens:

1. They are easy to write and seem natural and convenient o with. At
least this is true if various extended notations are usetthieuwell devel-
oped theory allows us to be certain that these extension®tdbrimg any
unpleasant side-effects;

2. They appear to be a good natural fit to our intuitive ideaaf Inow text
should be split into tokens;

3. A big result, Kleen’s theorem, tells us that any regulgrrezsion can be
converted into the description of a finite automaton thalt‘adcept” items
matching the expression. This leads to a good way to impléto&anizers

based on regular expressions: finite automata allow onetgrése tokens
working efficiently character at a time.

Using the most primitive notation of Regular Expressions idae possible
here but is so clumsy as to be unworkable. The short-cutsmoostally used will
be

e alternation between various characters can be comprdeséetstancda-zA-Z]
might be used to stand for any single letter. Expanded oubitivhave to
be written something likéalblc| ...|z|]A|B| ...|Y|2)

e The notatior5+is used to stand for one or more instanceS of much that
way thatS+ stood for zero or more repetitions, as[(R9]+ for a string
of digits of length at least one.

e Itis sometimes useful to layer on a notation that is much rbased directly
on finite automata. Such a facility allows the tokenizingiaego be in
one of a number of major states. These might, for instanpeesent the
situation of being in the middle of processing a string, ae@nt or normal
program text.

Anybody who has spent time working through the Regular Laggsand
Automata lecture notes will be aware that following througk application of
Kleen’s theorem to derive a finite automaton from a regul@ression is some-
what tedious: not something most people would like to do hydheery often.
However it is systematic enough that programs to do it artheelarge nor espe-
cially complicated. | will come back to a description of a wéa particular such
tool after | have discussed the next stage of parsing.

2.2 Parsing

Once again the key to parsing involves finding a way to desgiammars. The
method that has become totally dominant involpbsase structure grammars.
The supposition is that the material to be parsed is a sequdriokens (not just
of characters) and that the parsing only depends on the tfgesse tokens not
on any other attributes. For instance if a number can appesomae place then
any number can appear. Thus an obvious start to defining a graisrtalist all
the tokens that can possibly appear. These are referredTe@asial Symbols.
On then has another set of symbols, referred tdlas Terminal Symbols. One
non-terminal is identified as@art Symbol. The grammar is completed by giving
a set of re-write rules. Each of these (in the most genera)dass a sequence
of symbols (maybe some terminal and some non-terminal) ®tefhand another

such sequence on the right. There must be at least one mom&tin the pattern
in the left hand part of a rule. The set of sentences that mpkidel language
defined by such a grammar can be obtained by starting withttre symbol.
Then any time a sequence on the left of a rule appears in timg strcan be
replaced by the corresponding sequence on the right. Ifraessiage a string
with no non-terminals arises then that string is part of treglage. If there is
no way of generating a string of terminals, however many petidns (the term
usually used for what | just started to call re-write rule® ased then that string
is not part of the language.

It turns out to be interesting and sensible to consider uari@strictions on
the form of the productions.

The first such set of conditions looks backwards in this cauirssist that the
left hand side of each production is just a single non-teamend each right hand
side is either empty or consists of just a terminal followgdimon-terminal. Eg

S = A

A = aB

B = bA

B =
In this example | have used upper case letters for non-talmend lower case
for terminals. Some typographic distinction is generabgful, but just what is
used will depend on context. B is the starting state then this grammar gen-
erated the languagg(ba) *. In general grammars restricted in this severe way
correspond very naturally to descriptions of non-deterstimfinite automate (the
non-terminals are states, and where there is a productibrewiempty right hand
side that marks an accepting state).

The next useful class of phrase structured grammars impssthg constraint

that the left hand side of each production should be a singtetarminal, as in
the example:

oo >

A a
ADb

> > >0
R

Informal study of this should convince you that the languaggefines is that

of palindromes over the alphabgt,b} . We know that this language is not
regular so no regular expression could define it and no finiteraaton could
accept it. Grammars where the left hand sides of productwessingle non-
terminals are known antext free grammars. Results you know already say that
regular languages can be recognised using finite automateeryAsimilar style

of result asserts that context free languages can be adceptack automata.
These augment a finite-state control mechanism with a stackt as there is a
pumping lemma for regular languages (and it can be used tw #hat certain
languages are not regular) there is a pumping lemma for xofree languages
and again it can be used to show that some languages are rnekxicfsrae. The
usual example to quote is the languagé™c™ This consists of the stringabc,
aabbcc , aaabbbccc and so on where in each case the number of occurrences
of each letter match.

Many texts on parsing discuss a class of grammars knowardext sensitive.

I will not emphasis these here, but will mention the way inethihey correspond
to a model of computation again later on.

Unconstrained phrase-structure grammars still geneaxatpibges. Once again
they correspond to a model of computation: in this case g§ulachines. The fact
that the ability to parse a general grammar of this form cdlrocathe full power
of general computation (and conversely any Turing machnognam can have
its behaviour captured in a language defined by some phnaggse grammar)
tells us that there will be many undecideable problems at@md that general
grammars will not usually be sensible things to work with.

A final remark is that since there are computations that eviamriag Machine
can not perform there will be languages that can not be deéinalliphrase struc-
ture grammars. The most obvious example will be the lango&tg! programs
in existing computer language X subject to the extra comdttiaat they must ter-
minate”. And of course this would be a grammar we really diciwaaur compiler
to accept, so it could generate a diagnostic “this program mea terminate” for
input that had that property!

Many years of experience has shown that context free grasnanarpowerful
enough to express the structure that people want in prognagnianguages, but
constrained enough to be practical to work with. But just agnmhexplained
that regular languages were used for lexical analysis latl¢ft over issue such
as name-length, over-large numeric values and so on, wharms&eontext free
grammars for parsing we give up on checking such things am¢amariables
referenced only when in scope, having types used condigtgoaranteeing that
the programs we parse will terminate and all sorts of otheditmmns. Some of
these can be checked in later parts of a compiler.

Before looking at detailed parsing parsing techniques tiseaeslight area of
conflict between the language theory approach and the pahotie we need. The
idea of mapping a grammar onto an automaton works in the xooitéaccepting
the language’s. This means it is directly valuable if we waayntax checker that
reports a simple yes/no answer as to whether our input tésfisa the rules of
our grammar. However in most real compilers one wants moteaca of which
production rules were fired to get to the input sentence. dbas be interpreted as

8

aparse tree for the program. Extending a parser to build one of thesepEajly
not that hard, but the big issue that this does raise is thanbifiguous grammars.
These are one where some particular sentence might be ggheretwo or more
ways. In each case the parsing mechanism will accept thelekthere is no
certainty which parse tree will be created. The simple aggindo this is to restrict
attention to grammars that are not ambiguous. A more coatplicscheme allows
grammars to start off ambiguous but provides ways of animgtéhe grammar to
ensure that just one version of the parse can actually happen

A further messy area is that of error recovery. The beautifebry of stack
automata allows us to accept valid programs really ratHerexftly. It does not
automatically help too much with producing error messabasdre much better
than

+++ Error: your file does not contain a valid program.

and this is a bit sad. Again practical parsers will need terdithe theory with
practical techniques (and sometimes tricks) to do better.

The main Compiler Construction notes and the Red Dragon boakrides
various ways for moving from the specification of an unambiggicontext free
grammar to a parser based on it. In this supplement to the hata not going to
write all that out again, but | should cross-reference sofrteekey terms: LL-
parsing, Recursive Descent, left-recursion, LR-parsind, seduce, precedence:
general precedence and operator precedence, LR(0), LR{K)ssts, character-
istic finite state machine, ALR, LALR. A general message frohtladt is that
there is a great deal of quite complicated technology thas gato understanding
and building good parsers! The course expects you to uraahersthat the options
are and to be able to apply the techniques by hand to smallngaasn

2.3 CUP and JLex

Building any sort of LR parser by hand is tedious. For the gransnof full
programming languages it is not really feasible. Howeverdteps involved are
all systematic, and so people have written parser gensratalo the bulk of the
work for you. A notable feature of these is that (for syntagaiting at least) there
can be aingle program that is an interpreter for a general stack automatba
transitions it must make in response to input symbols cabheaitored in a neat
tabular form. Processing an input symbol then involvesnigkhe current state
and the new symbol and looking in the table: what will be foumi@n action
which will be eithershift or reduce. The first of these pushes an item onto the
stack, the second pops one or more items before putting@ceplent on. In each
case the machine will generally change its state. The masingaloop is thus

actuallyvery simple and it only performs a rather few instructions as @lslvith
each new input symbol. Thus parsing is typically rather.fadk the cleverness
goes into the preparation of the tables!

If you study a book on parsing techniques you will find thatéhare several
available, notably LR(k), SLR and LALR. These differ in theIpdiis to generate
the tables, how compact the tables are and how wide a rangamigars can be
coped with. Typical real parser generators use LALR whiatoisthe easiest one
to understand but counts as a “best buy” in terms of abilityojee with the widest
range of grammars for sensible table size.

The software tool discussed here is called CUP, and a vers®béren placed
in the laboratory web pages close to where these compilesteartion notes live.
When | was preparing this course | came across several diffeegsions of CUP
and for now | suggest you use the version | have provided a cbpy we are all
certain we are talking about exactly the same thing!

A generated parser will need to call on a lexical analyseie ija sequence
of tokens. The interface between the two programs is a patearea for con-
fusion and although one could in theory interface almostlarigal analyser to
almost any generated parser it is much easier if the twoatadnsistent. Thus as
part of the CUP kit that | provide there is a compatible lexeahlyser generator
called Jlex. In each case the main documentation (incluchpgright statements)
is there as an HTML file. In case of doubt please read the doctatien, which
| wish to consider as an extension to this handout (agairhfmse of you minded
to litigation | should indicate that there will not be examiion questions on the
minutiae of CUP and Jlex based on material only available eir tinanuals, but
you will find that writing your own parsers using them will cauyou to under-
stand them much better (which will be good for both exams angrfoject work
next year and later in life) and the manuals will be helpfeirth

To introduce CUP and JLex | will provide the example that comigls them,
which builds a very simple desk calculator. This exampleugt pig enough to
illustrate the main features. First consider lexical asigly Here | am going to
support a very simple syntax so that the only symbols usedwarbers, addition,
multiplication, parentheses and a semicolon. | think upuixnames for each,
for instancNTEGER SEMI and so on. Then prepare the following file, which
should be calledninimal lex.:

import java_cup.runtime.Symbol;

%%

%cup

%%

"" { return new Symbol(sym.SEMI); }
“+" { return new Symbol(sym.PLUS); }

10

*" { return new Symbol(sym.TIMES); }
“(" { return new Symbol(sym.LPAREN); }
)" { return new Symbol(sym.RPAREN); }
[0-9]+ { return new Symbol(sym.NUMBER,
new Integer(yytext())); }
[\t\\n\f] { / * ignore white space. *[}
. { System.err.printin(
"lllegal character: "+yytext()); }

This may look a little dense, and for a grammar as simple asythu might think
you could do as well writing the whole lexical analyser by thaHowever for big-
ger examples the use of Jlex will really pay off! There are s@ection separators
involving percent signs, and a directive telling Jlex itlvoié working with CUP.
But then the main body of the file consists of (extended) regekpressions fol-
lowed by actions to perform when the expression concernfulired. Here most
of the regular expressions are simple constant stringh, &slg" . In such cases
the action is to return something indicating what had beemdo The classed
Symbol andsym represent part of the details of the interface to CUP. The pat-
tern[0-9]+ matches integers, and Jlex arranges that the fungttext()
can be called to retrieve a string that is the actual set afsdigad (and here they
are decoded to make a Jduéeger). The empty action associated with spaces,
tabs and newlines causes them to be ignored, and the finafrp§tist a dot) is a
catch-all that gets activated if no other patterns match.

If you have the set of files | provide you can build a lexicallgsar out of this
file by saying

java -jar Jlex.jar minimal.lex

and you will see a pile of informative messages that may or nwhympress you,
but you should then find (barring errors) that a file caNgdex.java has been
created for you. Do not rush to compile it! Until the CUP bit le®n done you
will not have thesym class available and so you will see errors.

To cope with CUP | will work in two stages. In the first | will shaavCUP
parser that just check syntax and moans if it finds somethnoggv Call this one
minimal.cup and go

java -jar cup.jar < minimal.cup
which should make fileparser.java andsym.java for you:
import java_cup.runtime. *

parser code

11

{:
public static void main(String args[])
throws Exception

{

}
'}

terminal SEMI, PLUS, TIMES, LPAREN, RPAREN;
terminal Integer NUMBER,;

new parser(new Yylex(System.in)).parse();

non terminal expr_list, expr_part;
non terminal Integer expr;

precedence left PLUS;
precedence left TIMES;

expr_list ::= expr_list expr_part | expr_part;
expr_part ::= expr SEMI,
expr == NUMBER

| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN

The section labellegparser code allows you to include an arbitrary bit
of Java in the generated file, and is used here to set up andheymatser. The
constructed parser will read stuff and process it when ydutsgparse method.

The next bit lists your terminal and non-terminal symbolscaxvention of
spelling the terminals in upper case and the non-termind®yer has been fol-
lowed, but by declaring all the symbols you make things vecg and explicit.
The NUMBERerminal is declared to be able to carry backiateger value to
you. The others will not carry any information beyond theunatype.

Finally there is the context free grammar. The symibel marks a produc-
tion, and vertical bars separate alternatives. The gramasgiven is ambiguous,
but theprecedence declarations instruct CUP to resolve ambiguities to make
multiplication bind more tightly then addition and to maketHb operations as-
sociate to the left. The exact options for and understarsdatgput ambiguity
resolution are a mildly murky area!

When you compile all the generated Java code you now have writdytvu
will get a parser that should do nothing provided you feedpuit in accordance

12

with the syntax it supports, but which should moan if you déxifrom that.

The next version ominimal.cup does a bit more. Each production in the
grammar is decorated withsemantic action, which is Java code to be executed
when the relevant reduction is performed. Items in the gramran now have
names attached (following a colon) to make it possible terrback to them in
the semantic action. Non-terminals can now be given typesaoyou can do
interesting things with them. In this example the non-teahexpr is given the
typeInteger (it could not be given the typmt since valid types here have
to be sub-classes @bject). Then the actual numeric value can be extracted
using theintValue() method. You will see that the actions here compute the
value of the expression. They could equally well have buifzhese tree. In all
cases they form segments of Java code enclosed in funnydtsdckto :} and
including an assignment to the special pseudo-variRESULT Within such a
block the names attached to components of the patteraxj@ge attaches the
namee to anexpr thatis read) can be treated as items with the type declared fo
the relevant symbol.

import java_cup.runtime. *]

parser code

{:

public static void main(String argsl])
throws Exception

{

}
'}

terminal SEMI, PLUS, TIMES, LPAREN, RPAREN;
terminal Integer NUMBER,;

new parser(new Yylex(System.in)).parse();

non terminal expr_list, expr_part;
non terminal Integer expr;

precedence left PLUS;
precedence left TIMES;

expr_list ::= expr_list expr_part | expr_part;

expr_part ;= expr.e
{: System.out.printin(" = "+e+";");

13

.} SEMI;
expr = NUMBER:n
{ RESULT=n; 3}
| expr:l PLUS expr:r
{: RESULT=new Integer(
lintValue() + r.intValue());
}
| expr:l TIMES expr:r
{ RESULT=new Integer(
l.intValue() * r.intValue());
3
| LPAREN expr.e RPAREN
{: RESULT=e; 3}

To try to show that this technology scales | now include a ssgatdtion of Jlex
and CUP input files that | use to define a parser for a subset ddutigeiage ML.
First an extract from the code that provides a lexical arealys

{ return new Symbol(sym.SEMICOLON); }
{ return new Symbol(sym.OP); }

{ return new Symbol(sym.LPAR); }

{ return new Symbol(sym.RPAR); }

{ return new Symbol(sym.LBRACKET); }
{ return new Symbol(sym.RBRACKET); }
{ return new Symbol(sym.COMMA); }

{ return new Symbol(sym.COLON); }

{ return new Symbol(sym.NEGATE); }

{ return new Symbol(sym.ARROW); }
"= { return new Symbol(sym.BIGARROW); }
" { return new Symbol(sym.VBAR); }

" { return new Symbol(sym.UNDERSCORE); }
nil" { return new Symbol(sym.NIL); }

"unit" { return new Symbol(sym.UNIT); }

"not" { return new Symbol(sym.NOT); }

"true” { return new Symbol(sym.TRUE); }
"false"{ return new Symbol(sym.FALSE); }

“if* { return new Symbol(sym.IF); }

"then" { return new Symbol(sym.THEN); }

"else" { return new Symbol(sym.ELSE); }

"as" { return new Symbol(sym.AS); }

"and" { return new Symbol(sym.AND); }

14

"fn"
llletll

{ return new Symbol(sym.FN); }
{ return new Symbol(sym.LET); }

“In" { return new Symbol(sym.IN); }

llendll
"fun"
llvalll

{ return new Symbol(sym.END); }
{ return new Symbol(sym.FUN); }
{ return new Symbol(sym.VAL); }

“local{ return new Symbol(sym.LOCAL); }

"I'eC"

{ return new Symbol(sym.REC); }

[A-Za-z][A-Za-z0-9] *
{ return new Symbol(sym.NAME,

new String(yytext())); }

[0-9]+ { return new Symbol(sym.NUMBER,

new Biglinteger(yytext()); }

and now a rather smaller (in proportion) extract from the CuURs about the

syntax.

terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal

nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal

String NAME;

java.math.Biginteger NUMBER,;

NIL, OP, UNIT, NOT, NEGATE, TRUE;

FALSE, LPAR, RPAR, LBRACKET, RBRACKET;
COMMA, IF, THEN, ELSE, AS, AND, ARROW,;
VAL FN, LET, IN, END, SEMICOLON, COLON;
VBAR, UNDERSCORE, BIGARROW, FUN, LOCAL,;
REC;

Graph PLUS, MINUS, TIMES, DIVIDE;

Graph REMAINDER, LESS, GREATER;

Graph LESSEQ, GREATEREQ, EQUAL;

Graph NOTEQUAL, ANDALSO, ORELSE, CONS;

program, progl,

Graph aexp, aexp2, exp, expl, exp2;
Tuple aexpl;

Rule match, rule;

Graph op;

Type ty;

Pattern pat, patl, apat, apat2;

PatTuple apatl;

Args fb3;

Definition dec, decl, vb, vbl;
Definition fb, fbl, fb2;

15

precedence right SEMICOLON;

precedence left ORELSE;
precedence left ANDALSO;
precedence right CONS;

precedence nonassoc LESSEQ, GREATEREQ,
EQUAL, NOTEQUAL,
LESS, GREATER;

precedence left PLUS, MINUS;

precedence left TIMES, DIVIDE, REMAINDER;
precedence right ARROW;

| *

* "->" is gpecifically more binding than " * "
* so that a type like 'a *'D->"C

* will be parsed as 'a * ('b->"c)

* [

precedence left COLON;

start with program;

program
= progl
| program SEMICOLON progl
| program SEMICOLON

progl
.= decl:a {: Graph.text("Statement ");
a.print();
:}
| exp:a {: Graph.text("Expression ");
a.print();
'}
exp
= exp2:a { RESULT = a; :}

| exp:a COLON ty:b {i RESULT
new Typed(a, b); 3}
| FN match:m { RESULT = m.abs(); :}

16

| IF exp:a THEN exp:b ELSE exp:c
{ RESULT =
Application.ap3(
new If(), a, b, c);

op := PLUS:x { RESULT = x; :}
| MINUS:x { RESULT = x; 1}
etc

| obviously do not want you to understand all the details ef élbove, espe-
cially since itis incomplete. but | hope you can see that iead(rish) parser many
more non-terminals will be declared to have types (and tivdsbe types as used
to represent the parse tree).

2.4 Comparison with lex and yacc

The commonly-used C parser generator tools are lex and yatarother com-
piler compiler), or their GNU equivalents flex and bison (ekhas shaggy as a
yak but more American?). Especially if you are tempted tdispn look carefully
at the license agreement: the program you end up with wiltaionts version of
the generic parser routines and you may find that if you distel anything you
are obliged to give away all the source code for the rest of ponject for free!

The C versions use simple curly brackets to mark out semaations. They
do not attach types to syntactic categories. Instead onighkames to parts of a
patter you have to refer to the parts by number, as in

expr = expr '+ expr { $$ = $1 + $3; }

where$$ is used in place oRESULTand the$1l and$3 relate to the first and
third items present in the pattern. In general | think that G&JBomewhat nicer,
but if you have learned to use one you can easily enough anldpe bther.

There are a number of other parser generation kits aroudyhite lex and
yacc and quite stably dominant in the C world it may still be &arly to know
which one will be the ultimate winner for Java. It remains tase that having
used one it is very probable that others will not give you ireu

17

3 Other partsof the course

Compared with the main printed notes the course this yeaabtelito have more
emphasis on describing compiler issues as they relate torML]ava. This does
not represent a change in coverage, more a slight shift septation style. Ac-
tually ML and Java between them raise almost all of the ingrdrthallenges
that one can come across in compilers, at least if you applyl@imagination
(such as a desire to write Java programs that do massive asmafifloating point
calculations very fast).

The main concept that aspects of compiler constructionseedefer to that
does not show up well in those languages is that pbiater. This is covered in
part in the Computer Architecture courses where they talkie@ddress registers
in computer hardware, and it also gets some covera@oimparative Program-
ming Languages. To allow this latter course to have (almost) completed tzefioe
compiler construction one needs to make much referenceitepe topics that
relate to them will tend to be treated in the second half otthase.

4 Exercisesand thelike

Both the main text-books suggested here have exercisesatded each chapter.
The computer laboratory has been teaching courses on airpifor over thirty
years and so there is a very adequate collection of past eaion questions
available: transliterating some of the old ones so that theption Java rather
than (say) Algol is itself a valuable exercise. There are algew exercises in
the main notes, and | view it as implicit in almost any compugtated course
that keen students should try to apply the technology thet #re being taught
about in practical cases. So here | can explicitly suggestytbu might get the
desk calculator example running, expand it to support @ifudbmplement of
operations, then give it memories that it can store valuest may by then be
well along the line towards building a simple interpreter éatidy programming
language. As an alternative work towards a syntax checkddifcor Java or C (or
whatever) based on CUP but now without having to install anyss#ic actions.

References

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D UllmanCompilers. Principles,
Techniques and Tools. Addison Wesley, 1986.

18

