
Compiler Construction

supplementary notes for Lent Term 2000

A C Norman

Part IB, II(G) and the Diploma

1 Introduction

For the year 2000 the Compiler Construction course will be given partly by Arthur
Norman and partly by Martin Richards1. The main notes from the course as given
by Alan Mycroft are being issued in their normal form: these notes form a sup-
plement and explain

• Which lectures will be given by which lecturer;

• How the order in which material will be presented this years differs from
the order in the main lecture notes;

• Details of Java versions of some compiler-construction tools where the main
notes discuss C-based ones;

• Minor other areas where there will be changes of content or emphasis this
year.

The overall syllabus, and hence the scope of the examinationremains just as
before: those concerned may consult the laboratory’s selection of syllabus state-
ments on its web site. The lectures will concentrate on a particular set of Java
compiler construction tools, but the main body of notes (being unaltered from last
year) continue to explain lex and yacc (the standard C based toolkit). In such cases
where there have been changes it it expected that (a) any examination questions
will focus on the version as taught this year and covered in these supplements to
the notes, (b) the old version will be discussing something that is intellectually
close to this year’s coverage and so reading about it is liable to help you not hin-
der you and (c) regardless of examinations the material in the notes may provide
useful backup when you come to apply some of these idea in yourlater career.
The first twelve lectures will be given by Arthur Norman, who intends to cover:

1. Introduction;

2. Lexical and Syntax analysis;

3. Parser generation tools, specificallycup andjlex ;

4. Simple type-analysis and checking;

5. Language constructs and their implementation.

The remaining eight lectures, by Martin Richards, will cover

6. Survey of execution mechanisms;

1Alan Mycroft is on leave.

1

7. Translation phase;

8. Code generation;

9. Runtime.

For the first part of the course the main books refereed to willbe Modern
Compiler Implementation in Java[?] and the Red Dragon[1] book2.

A compiler is something that takes the description of a program from a user
and converts it into a form that a computer can make much more direct use of.
It is useful to think of this translation process as being done in two parts. The
first involves un-picking the input files, building neat and rational data-structures
to represent the user’s intents, checking for consistency and then applying gener-
ally valid conversions that simplify or optimise the program. The second part is
concerned with mapping high-level constructs in a programming language down
onto the concrete operations that a real computer can perform. This may involve
making interesting choices about the representation of data, and provides scope
for lots of effort to go into the machine-specific aspects of optimisation. By and
large the two lecturers this year will split coverage at a point where these two
aspects of compilation meet.

Compiler technology is, in various guises, used in many more places than just
things that are explicitly labelled “compiler”. This meansthat an understanding
of the issues and techniques involved can be useful to almostevery computer
scientist. The parsing techniques that form the early phases of a regular compiler
may be useful when decoding all sorts of structured data: HTML, word processor
documents, serialized data being sent as part of a remote method invocation and
many more. Lessons from type-checking and other consistency tests applied by
compilers can help keep other data structures straight. Almost any textual user-
interface will need some sort of parser to disentangle the user’s utterances and a
study of compilers can let us implement things in an organised and uniform (and
hence reliable) way.

Similarly the issues that are central to the codegenerationparts of a compiler
have wide uses elsewhere. Page markup languages (eglatex andpostscript)
are specialised and rather curious programming languages:knowing about com-
pilers must help in implementing them well. Visual text layout systems will still
need to do the same sorts of adjustment and transformations on their data so can
use related technology. Some graphics-rendering procedures may be best per-
formed fast by arranging to generate machine code tuned to the particular situa-
tion and then executing it: again this is related to the code-generation parts of any
compiler.

2So known from the picture on its front cover.

2

Almost any large current system will have an embedded scripting language
and handling that is a compilation process. In these varied applications compila-
tion may not be seen as a central part of what is going on, but without knowledge
of the established techniques of compiler construction it is probable that seriously
slow, clumsy or unreliable solutions will be invented.

2 Lexical and Syntax Analysis

This section of the course is concerned with reading in the file that contains a
program and building an internal representation of that program. Almost always
it is reasonable to imagine that this representation comes in two parts. The first is
a symbol table that keeps track of all the names used by the programmer, and the
symbols recorded in that take their place in aparse tree. This tree will have a node
for each construct and each operator in the original program, and its structure will
make quite explicit all groupings. Most current practical compilers will build and
analyse these structures using three rather separate bodies of code:

Lexical Analysis: This will split the source code up intotokens, ie names, num-
bers, operators and so on. It will discard comments and white-space (ie
blanks and newlines). This is usually done as a separate sub-program (a)
because it can be, and this leads to a clean logical structureoverall, (b) be-
cause this task is (amazingly) often one of the most expensive parts of a
whole compiler, so using careful code and special tricks in it can be valu-
able, and (c) because there are convenient tools that can help write the pro-
gram that does this work;

Parsing: This is sometimes calledsyntax analysis. Very often the compiler de-
signer will select a set of syntax rules that are easy to work with here but
that lead to a parser that is somewhat over-generous in that it will accept
some strings of tokens that do not form real valid programs: these excess
cases are then filtered out later. Proper error detection, reporting and repair
are critical issues for parsers;

Checking and Tree Transformations: These must arrange to generate any di-
agnostics that the earlier steps failed to, and might simplify or otherwise
transform the parse tree into some usefully standard state.

There are a number of key ideas that form the foundations of all sensible ways
to write these parts of compilers:

1. A formal description of the language that you are trying toaccept should
be preparedbefore you start writing any programs at all. This means that

3

a study of compiler construction has to begin with a discussion of the lan-
guage description notations that have emerged as the commonones used in
practise. It also makes it sensible to talk about a rather general categorisa-
tion of possible sorts of languages that one may try to use in programming
languages;

2. A theoretical basis for processing text against these language descriptions
is needed, and the trade-offs involved between exploitation of this and use
of ad hoc programs needs to be understood;

3. In almost all cases there will be practical and fairly convenient tools that turn
descriptions of a language into a program that will parse it.The benefits and
limitations of these and the details of how they are used can be important.

2.1 Lexical Analysis

Amazingly if is often the case that in a real complete compiler a major part of the
time is spent reading the input file and splitting it up into tokens. It will gener-
ally be necessary to remove comments and categorise input asnumbers, symbols,
keywords or punctuation characters. It will often be the case that certain pairs
of punctuation characters, when occurring together, should be treated as a single
item (eg in Java and C the pairs++ and<= (and many more) are treated this way.

One could imagine a programming language with amazingly messy rules about
just how characters should be grouped into tokens, and for instance itmight have
been that the Java designers had wanteda+++++b (with no blanks at all) to be
treated asa++ + ++b which is probably the nearest to a meaningful possibility
for it. For that to happen there would have had to be some way toensure that
in this case the string of five+ signs got clustered into a 2-1-2 break-up. Pretty
well every modern language designer has taken the view that such treatment is
too delicate: one runs the risk of ending up with valid programs that might have
two or more interpretations (in the above example one could imagine the first+
as an infix operator and the remaining four all prefix operators acting onb) nd
there is a risk of the user being confused as well as the compiler. So more or less
universally3 splitting programs into tokens is expected to be done without concern
for context and in a way that can be based on a rather simple program that scans
through the input strictly from left to right.

The descriptive tool used for this will beRegular Expressions. Those of you
who missed out on the Part IA course on them may like to check the notes on
my section of the lab web pages (find where these Compiler Construction notes

3The main counterexample that springs to my mind is FORTRAN, but a careful discussion of
the way in which one might tokenize that really lies twenty years in the past now.

4

are. . .), obtain a copy of last year’s printed notes or read a book. I will not actually
need very great depth of understanding. As examples, here are a few (perhaps
crude) attempts to use regular expressions to describe the shape of a few of the
sorts of token that Java has:

decimalint: (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9) *
octalint: 0(0|1|2|3|4|5|6|7) *
lesseq: <=
plusplus: ++
less: <
keyword_if if

A challenge at this stage is to construct a regular expression that generates exactly
the strings that Java would consider to be valid floating point constants. Before
doing that you almost certainly have to find a very detailed section in a Java book
to find outexactly what the rules are.

Those of you who are on the ball will already have notes that I am cheating
somewhat: but it is a cheat that is universally accepted! Theregular expression
I showed above for a decimal integer will match an arbitrarily long sequence of
digits. In a real Java program you ought never to see a decimalconstant standing
for a value more than23

1 − 1 for an int or26
3 − 1 for a long. However for the

purposes of lexical analysis the usual understanding is that these constraints are
based on themeaning of the string of characters and so overflow will be checked
for later on. A typical lexical analyser will treat a sequence of 50 digits as a single
token representing an integer and leave it to later parts of the compiler to moan
about the number being too big. In practical lexical analysers one may impose
some upper bound on the length of a name or number (to allow forthe size of
buffers used to store things) but it is normal to pretend thatthis is not so!

Three key things motivate the use of regular expressions as away of describing
tokens:

1. They are easy to write and seem natural and convenient to work with. At
least this is true if various extended notations are used: but the well devel-
oped theory allows us to be certain that these extensions do not bring any
unpleasant side-effects;

2. They appear to be a good natural fit to our intuitive idea of how how text
should be split into tokens;

3. A big result, Kleen’s theorem, tells us that any regular expression can be
converted into the description of a finite automaton that will “accept” items
matching the expression. This leads to a good way to implement tokenizers

5

based on regular expressions: finite automata allow one to recognise tokens
working efficiently character at a time.

Using the most primitive notation of Regular Expressions would be possible
here but is so clumsy as to be unworkable. The short-cuts mostnormally used will
be

• alternation between various characters can be compressed,for instance[a-zA-Z]
might be used to stand for any single letter. Expanded out it would have to
be written something like(a|b|c| . . .|z|A|B| . . .|Y|Z)

• The notationS+ is used to stand for one or more instances ofS in much that
way thatS* stood for zero or more repetitions, as in[0-9]+ for a string
of digits of length at least one.

• It is sometimes useful to layer on a notation that is much morebased directly
on finite automata. Such a facility allows the tokenizing engine to be in
one of a number of major states. These might, for instance, represent the
situation of being in the middle of processing a string, a comment or normal
program text.

Anybody who has spent time working through the Regular Languages and
Automata lecture notes will be aware that following throughthe application of
Kleen’s theorem to derive a finite automaton from a regular expression is some-
what tedious: not something most people would like to do by hand very often.
However it is systematic enough that programs to do it are neither large nor espe-
cially complicated. I will come back to a description of a useof a particular such
tool after I have discussed the next stage of parsing.

2.2 Parsing

Once again the key to parsing involves finding a way to describe grammars. The
method that has become totally dominant involvesphrase structure grammars.
The supposition is that the material to be parsed is a sequence of tokens (not just
of characters) and that the parsing only depends on the typesof these tokens not
on any other attributes. For instance if a number can appear at some place then
any number can appear. Thus an obvious start to defining a grammaris to list all
the tokens that can possibly appear. These are referred to asTerminal Symbols.
On then has another set of symbols, referred to asNon-Terminal Symbols. One
non-terminal is identified as aStart Symbol. The grammar is completed by giving
a set of re-write rules. Each of these (in the most general case) has a sequence
of symbols (maybe some terminal and some non-terminal) on the left and another

6

such sequence on the right. There must be at least one non-terminal in the pattern
in the left hand part of a rule. The set of sentences that make up the language
defined by such a grammar can be obtained by starting with the start symbol.
Then any time a sequence on the left of a rule appears in the string it can be
replaced by the corresponding sequence on the right. If at some stage a string
with no non-terminals arises then that string is part of the language. If there is
no way of generating a string of terminals, however many productions (the term
usually used for what I just started to call re-write rules) are used then that string
is not part of the language.

It turns out to be interesting and sensible to consider various restrictions on
the form of the productions.

The first such set of conditions looks backwards in this course: insist that the
left hand side of each production is just a single non-terminal, and each right hand
side is either empty or consists of just a terminal followed by a non-terminal. Eg

S ⇒ A
A ⇒ a B
B ⇒ b A
B ⇒

In this example I have used upper case letters for non-terminals and lower case
for terminals. Some typographic distinction is generally useful, but just what is
used will depend on context. IfS is the starting state then this grammar gen-
erated the languagea(ba) * . In general grammars restricted in this severe way
correspond very naturally to descriptions of non-deterministic finite automate (the
non-terminals are states, and where there is a production with an empty right hand
side that marks an accepting state).

The next useful class of phrase structured grammars impose just the constraint
that the left hand side of each production should be a single non-terminal, as in
the example:

S ⇒ A
A ⇒ a A a
A ⇒ b A b
A ⇒

Informal study of this should convince you that the languageit defines is that
of palindromes over the alphabet{a,b} . We know that this language is not
regular so no regular expression could define it and no finite automaton could
accept it. Grammars where the left hand sides of productionsare single non-
terminals are known ascontext free grammars. Results you know already say that
regular languages can be recognised using finite automata. Avery similar style

7

of result asserts that context free languages can be accepted by stack automata.
These augment a finite-state control mechanism with a stack!Just as there is a
pumping lemma for regular languages (and it can be used to show that certain
languages are not regular) there is a pumping lemma for context free languages
and again it can be used to show that some languages are not context free. The
usual example to quote is the languageanbncn This consists of the stringsabc ,
aabbcc , aaabbbccc and so on where in each case the number of occurrences
of each letter match.

Many texts on parsing discuss a class of grammars known ascontext sensitive.
I will not emphasis these here, but will mention the way in which they correspond
to a model of computation again later on.

Unconstrained phrase-structure grammars still generate languages. Once again
they correspond to a model of computation: in this case Turing Machines. The fact
that the ability to parse a general grammar of this form can call on the full power
of general computation (and conversely any Turing machine program can have
its behaviour captured in a language defined by some phrase structure grammar)
tells us that there will be many undecideable problems around and that general
grammars will not usually be sensible things to work with.

A final remark is that since there are computations that even aTuring Machine
can not perform there will be languages that can not be definedat all phrase struc-
ture grammars. The most obvious example will be the languageof “all programs
in existing computer language X subject to the extra constraint that they must ter-
minate”. And of course this would be a grammar we really did want our compiler
to accept, so it could generate a diagnostic “this program may not terminate” for
input that had that property!

Many years of experience has shown that context free grammars are powerful
enough to express the structure that people want in programming languages, but
constrained enough to be practical to work with. But just as when I explained
that regular languages were used for lexical analysis but that left over issue such
as name-length, over-large numeric values and so on, when weuse context free
grammars for parsing we give up on checking such things as having variables
referenced only when in scope, having types used consistently, guaranteeing that
the programs we parse will terminate and all sorts of other conditions. Some of
these can be checked in later parts of a compiler.

Before looking at detailed parsing parsing techniques thereis a slight area of
conflict between the language theory approach and the practical one we need. The
idea of mapping a grammar onto an automaton works in the context of “accepting
the language’s. This means it is directly valuable if we wanta syntax checker that
reports a simple yes/no answer as to whether our input text satisfies the rules of
our grammar. However in most real compilers one wants more: atrace of which
production rules were fired to get to the input sentence. These can be interpreted as

8

a parse tree for the program. Extending a parser to build one of these is typically
not that hard, but the big issue that this does raise is that ofambiguous grammars.
These are one where some particular sentence might be generated on two or more
ways. In each case the parsing mechanism will accept the text, but there is no
certainty which parse tree will be created. The simple approach to this is to restrict
attention to grammars that are not ambiguous. A more complicated scheme allows
grammars to start off ambiguous but provides ways of annotating the grammar to
ensure that just one version of the parse can actually happen.

A further messy area is that of error recovery. The beautifultheory of stack
automata allows us to accept valid programs really rather efficiently. It does not
automatically help too much with producing error messages that are much better
than

+++ Error: your file does not contain a valid program.

and this is a bit sad. Again practical parsers will need to extend the theory with
practical techniques (and sometimes tricks) to do better.

The main Compiler Construction notes and the Red Dragon book describe
various ways for moving from the specification of an unambiguous context free
grammar to a parser based on it. In this supplement to the notes I am not going to
write all that out again, but I should cross-reference some of the key terms: LL-
parsing, Recursive Descent, left-recursion, LR-parsing, shift, reduce, precedence:
general precedence and operator precedence, LR(0), LR(k), start-sets, character-
istic finite state machine, ALR, LALR. A general message from all that is that
there is a great deal of quite complicated technology that goes into understanding
and building good parsers! The course expects you to understand what the options
are and to be able to apply the techniques by hand to small grammars.

2.3 CUP and JLex

Building any sort of LR parser by hand is tedious. For the grammars of full
programming languages it is not really feasible. However the steps involved are
all systematic, and so people have written parser generators to do the bulk of the
work for you. A notable feature of these is that (for syntax checking at least) there
can be asingle program that is an interpreter for a general stack automaton. The
transitions it must make in response to input symbols can allbe stored in a neat
tabular form. Processing an input symbol then involves taking the current state
and the new symbol and looking in the table: what will be foundis an action
which will be eithershift or reduce. The first of these pushes an item onto the
stack, the second pops one or more items before putting a replacement on. In each
case the machine will generally change its state. The main parsing loop is thus

9

actuallyvery simple and it only performs a rather few instructions as it deals with
each new input symbol. Thus parsing is typically rather fast. All the cleverness
goes into the preparation of the tables!

If you study a book on parsing techniques you will find that there are several
available, notably LR(k), SLR and LALR. These differ in the pain it is to generate
the tables, how compact the tables are and how wide a range of grammars can be
coped with. Typical real parser generators use LALR which isnot the easiest one
to understand but counts as a “best buy” in terms of ability tocope with the widest
range of grammars for sensible table size.

The software tool discussed here is called CUP, and a version has been placed
in the laboratory web pages close to where these compiler construction notes live.
When I was preparing this course I came across several different versions of CUP
and for now I suggest you use the version I have provided a copyof so we are all
certain we are talking about exactly the same thing!

A generated parser will need to call on a lexical analyser to give it a sequence
of tokens. The interface between the two programs is a potential area for con-
fusion and although one could in theory interface almost anylexical analyser to
almost any generated parser it is much easier if the two startof consistent. Thus as
part of the CUP kit that I provide there is a compatible lexicalanalyser generator
called Jlex. In each case the main documentation (includingcopyright statements)
is there as an HTML file. In case of doubt please read the documentation, which
I wish to consider as an extension to this handout (again for those of you minded
to litigation I should indicate that there will not be examination questions on the
minutiae of CUP and Jlex based on material only available in their manuals, but
you will find that writing your own parsers using them will cause you to under-
stand them much better (which will be good for both exams and for project work
next year and later in life) and the manuals will be helpful then).

To introduce CUP and JLex I will provide the example that comeswith them,
which builds a very simple desk calculator. This example is just big enough to
illustrate the main features. First consider lexical analysis. Here I am going to
support a very simple syntax so that the only symbols used arenumbers, addition,
multiplication, parentheses and a semicolon. I think up textual names for each,
for instanceINTEGER, SEMI and so on. Then prepare the following file, which
should be calledminimal lex.:

import java_cup.runtime.Symbol;
%%
%cup
%%
";" { return new Symbol(sym.SEMI); }
"+" { return new Symbol(sym.PLUS); }

10

" * " { return new Symbol(sym.TIMES); }
"(" { return new Symbol(sym.LPAREN); }
")" { return new Symbol(sym.RPAREN); }
[0-9]+ { return new Symbol(sym.NUMBER,

new Integer(yytext())); }
[\t\r\n\f] { / * ignore white space. * / }
. { System.err.println(

"Illegal character: "+yytext()); }

This may look a little dense, and for a grammar as simple as this you might think
you could do as well writing the whole lexical analyser by hand. However for big-
ger examples the use of Jlex will really pay off! There are some section separators
involving percent signs, and a directive telling Jlex it will be working with CUP.
But then the main body of the file consists of (extended) regular expressions fol-
lowed by actions to perform when the expression concerned isfound. Here most
of the regular expressions are simple constant strings, such as"+" . In such cases
the action is to return something indicating what had been found. The classed
Symbol andsym represent part of the details of the interface to CUP. The pat-
tern [0-9]+ matches integers, and Jlex arranges that the functionyytext()
can be called to retrieve a string that is the actual set of digits read (and here they
are decoded to make a JavaInteger). The empty action associated with spaces,
tabs and newlines causes them to be ignored, and the final pattern (just a dot) is a
catch-all that gets activated if no other patterns match.

If you have the set of files I provide you can build a lexical analyser out of this
file by saying

java -jar Jlex.jar minimal.lex

and you will see a pile of informative messages that may or maynot impress you,
but you should then find (barring errors) that a file calledYylex.java has been
created for you. Do not rush to compile it! Until the CUP bit hasbeen done you
will not have thesym class available and so you will see errors.

To cope with CUP I will work in two stages. In the first I will showa CUP
parser that just check syntax and moans if it finds something wrong. Call this one
minimal.cup and go

java -jar cup.jar < minimal.cup

which should make filesparser.java andsym.java for you:

import java_cup.runtime. * ;

parser code

11

{:
public static void main(String args[])

throws Exception
{

new parser(new Yylex(System.in)).parse();
}
:}

terminal SEMI, PLUS, TIMES, LPAREN, RPAREN;
terminal Integer NUMBER;

non terminal expr_list, expr_part;
non terminal Integer expr;

precedence left PLUS;
precedence left TIMES;

expr_list ::= expr_list expr_part | expr_part;
expr_part ::= expr SEMI;
expr ::= NUMBER

| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN
;

The section labelledparser code allows you to include an arbitrary bit
of Java in the generated file, and is used here to set up and run the parser. The
constructed parser will read stuff and process it when you call its parse method.

The next bit lists your terminal and non-terminal symbols. Aconvention of
spelling the terminals in upper case and the non-terminals in lower has been fol-
lowed, but by declaring all the symbols you make things very nice and explicit.
TheNUMBERterminal is declared to be able to carry back anInteger value to
you. The others will not carry any information beyond their own type.

Finally there is the context free grammar. The symbol::= marks a produc-
tion, and vertical bars separate alternatives. The grammaras given is ambiguous,
but theprecedence declarations instruct CUP to resolve ambiguities to make
multiplication bind more tightly then addition and to make both operations as-
sociate to the left. The exact options for and understandings about ambiguity
resolution are a mildly murky area!

When you compile all the generated Java code you now have and try it you
will get a parser that should do nothing provided you feed it input in accordance

12

with the syntax it supports, but which should moan if you deviate from that.
The next version ofminimal.cup does a bit more. Each production in the

grammar is decorated with asemantic action, which is Java code to be executed
when the relevant reduction is performed. Items in the grammar can now have
names attached (following a colon) to make it possible to refer back to them in
the semantic action. Non-terminals can now be given types sothat you can do
interesting things with them. In this example the non-terminal expr is given the
type Integer (it could not be given the typeint since valid types here have
to be sub-classes ofObject). Then the actual numeric value can be extracted
using theintValue() method. You will see that the actions here compute the
value of the expression. They could equally well have build aparse tree. In all
cases they form segments of Java code enclosed in funny brackets{: to :} and
including an assignment to the special pseudo-variableRESULT. Within such a
block the names attached to components of the pattern (egexpr:e attaches the
namee to anexpr that is read) can be treated as items with the type declared for
the relevant symbol.

import java_cup.runtime. * ;

parser code
{:
public static void main(String args[])

throws Exception
{

new parser(new Yylex(System.in)).parse();
}
:}

terminal SEMI, PLUS, TIMES, LPAREN, RPAREN;
terminal Integer NUMBER;

non terminal expr_list, expr_part;
non terminal Integer expr;

precedence left PLUS;
precedence left TIMES;

expr_list ::= expr_list expr_part | expr_part;
expr_part ::= expr:e

{: System.out.println(" = "+e+";");

13

:} SEMI;
expr ::= NUMBER:n

{: RESULT=n; :}
| expr:l PLUS expr:r

{: RESULT=new Integer(
l.intValue() + r.intValue());

:}
| expr:l TIMES expr:r

{: RESULT=new Integer(
l.intValue() * r.intValue());

:}
| LPAREN expr:e RPAREN

{: RESULT=e; :}
;

To try to show that this technology scales I now include a small section of Jlex
and CUP input files that I use to define a parser for a subset of thelanguage ML.
First an extract from the code that provides a lexical analyser:

";" { return new Symbol(sym.SEMICOLON); }
"op" { return new Symbol(sym.OP); }
"(" { return new Symbol(sym.LPAR); }
")" { return new Symbol(sym.RPAR); }
"[" { return new Symbol(sym.LBRACKET); }
"]" { return new Symbol(sym.RBRACKET); }
"," { return new Symbol(sym.COMMA); }
":" { return new Symbol(sym.COLON); }
"˜" { return new Symbol(sym.NEGATE); }
"->" { return new Symbol(sym.ARROW); }
"=>" { return new Symbol(sym.BIGARROW); }
"|" { return new Symbol(sym.VBAR); }
"_" { return new Symbol(sym.UNDERSCORE); }
"nil" { return new Symbol(sym.NIL); }
"unit" { return new Symbol(sym.UNIT); }
"not" { return new Symbol(sym.NOT); }
"true" { return new Symbol(sym.TRUE); }
"false"{ return new Symbol(sym.FALSE); }
"if" { return new Symbol(sym.IF); }
"then" { return new Symbol(sym.THEN); }
"else" { return new Symbol(sym.ELSE); }
"as" { return new Symbol(sym.AS); }
"and" { return new Symbol(sym.AND); }

14

"fn" { return new Symbol(sym.FN); }
"let" { return new Symbol(sym.LET); }
"in" { return new Symbol(sym.IN); }
"end" { return new Symbol(sym.END); }
"fun" { return new Symbol(sym.FUN); }
"val" { return new Symbol(sym.VAL); }
"local"{ return new Symbol(sym.LOCAL); }
"rec" { return new Symbol(sym.REC); }
[A-Za-z][A-Za-z0-9_] *

{ return new Symbol(sym.NAME,
new String(yytext())); }

[0-9]+ { return new Symbol(sym.NUMBER,
new BigInteger(yytext())); }

and now a rather smaller (in proportion) extract from the CUP rules about the
syntax.

terminal String NAME;
terminal java.math.BigInteger NUMBER;
terminal NIL, OP, UNIT, NOT, NEGATE, TRUE;
terminal FALSE, LPAR, RPAR, LBRACKET, RBRACKET;
terminal COMMA, IF, THEN, ELSE, AS, AND, ARROW;
terminal VAL FN, LET, IN, END, SEMICOLON, COLON;
terminal VBAR, UNDERSCORE, BIGARROW, FUN, LOCAL;
terminal REC;
terminal Graph PLUS, MINUS, TIMES, DIVIDE;
terminal Graph REMAINDER, LESS, GREATER;
terminal Graph LESSEQ, GREATEREQ, EQUAL;
terminal Graph NOTEQUAL, ANDALSO, ORELSE, CONS;

nonterminal program, prog1;
nonterminal Graph aexp, aexp2, exp, exp1, exp2;
nonterminal Tuple aexp1;
nonterminal Rule match, rule;
nonterminal Graph op;
nonterminal Type ty;
nonterminal Pattern pat, pat1, apat, apat2;
nonterminal PatTuple apat1;
nonterminal Args fb3;
nonterminal Definition dec, dec1, vb, vb1;
nonterminal Definition fb, fb1, fb2;

15

precedence right SEMICOLON;
precedence left ORELSE;
precedence left ANDALSO;
precedence right CONS;
precedence nonassoc LESSEQ, GREATEREQ,

EQUAL, NOTEQUAL,
LESS, GREATER;

precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE, REMAINDER;
precedence right ARROW;
/ *

* "->" is specifically more binding than " * "

* so that a type like ’a * ’b->’c

* will be parsed as ’a * (’b->’c)

* /
precedence left COLON;

start with program;

program
::= prog1
| program SEMICOLON prog1
| program SEMICOLON
;

prog1
::= dec1:a {: Graph.text("Statement ");

a.print();
:}

| exp:a {: Graph.text("Expression ");
a.print();

:}
;

exp
::= exp2:a {: RESULT = a; :}
| exp:a COLON ty:b {: RESULT =

new Typed(a, b); :}
| FN match:m {: RESULT = m.abs(); :}

16

| IF exp:a THEN exp:b ELSE exp:c
{: RESULT =

Application.ap3(
new If(), a, b, c);

:}
;

op ::= PLUS:x {: RESULT = x; :}
| MINUS:x {: RESULT = x; :}

etc
;

I obviously do not want you to understand all the details of the above, espe-
cially since it is incomplete. but I hope you can see that in a real(-ish) parser many
more non-terminals will be declared to have types (and thesewill be types as used
to represent the parse tree).

2.4 Comparison with lex and yacc

The commonly-used C parser generator tools are lex and yacc (yet another com-
piler compiler), or their GNU equivalents flex and bison (almost as shaggy as a
yak but more American?). Especially if you are tempted to trybison look carefully
at the license agreement: the program you end up with will contain its version of
the generic parser routines and you may find that if you distribute anything you
are obliged to give away all the source code for the rest of your project for free!

The C versions use simple curly brackets to mark out semanticactions. They
do not attach types to syntactic categories. Instead of linking names to parts of a
patter you have to refer to the parts by number, as in

expr ::= expr ’+’ expr { $$ = $1 + $3; }

where$$ is used in place ofRESULTand the$1 and$3 relate to the first and
third items present in the pattern. In general I think that CUPis somewhat nicer,
but if you have learned to use one you can easily enough adapt to the other.

There are a number of other parser generation kits around, and while lex and
yacc and quite stably dominant in the C world it may still be too early to know
which one will be the ultimate winner for Java. It remains thecase that having
used one it is very probable that others will not give you trouble.

17

3 Other parts of the course

Compared with the main printed notes the course this year is liable to have more
emphasis on describing compiler issues as they relate to ML and Java. This does
not represent a change in coverage, more a slight shift in presentation style. Ac-
tually ML and Java between them raise almost all of the important challenges
that one can come across in compilers, at least if you apply a little imagination
(such as a desire to write Java programs that do massive amounts of floating point
calculations very fast).

The main concept that aspects of compiler construction needs to refer to that
does not show up well in those languages is that of apointer. This is covered in
part in the Computer Architecture courses where they talk about address registers
in computer hardware, and it also gets some coverage inComparative Program-
ming Languages. To allow this latter course to have (almost) completed before the
compiler construction one needs to make much reference to pointers topics that
relate to them will tend to be treated in the second half of thecourse.

4 Exercises and the like

Both the main text-books suggested here have exercises at theend of each chapter.
The computer laboratory has been teaching courses on compilation for over thirty
years and so there is a very adequate collection of past examination questions
available: transliterating some of the old ones so that theymention Java rather
than (say) Algol is itself a valuable exercise. There are also a few exercises in
the main notes, and I view it as implicit in almost any computer-related course
that keen students should try to apply the technology that they are being taught
about in practical cases. So here I can explicitly suggest that you might get the
desk calculator example running, expand it to support a fuller complement of
operations, then give it memories that it can store values: you may by then be
well along the line towards building a simple interpreter for a tidy programming
language. As an alternative work towards a syntax checker for ML or Java or C (or
whatever) based on CUP but now without having to install any semantic actions.

References

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman.Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

18

