
Algebraic Manipulation

A. C. Norman

January 1994

1 Introduction

These notes cover the Lent Term lecture course on Computer Algebra. There are
now a number of plausible textbooks that cover the relevant material too, but some
of them have quite ridiculous prices while others key themselves very strongly to
one particular (perhaps commercial) algebra system, so I find it hard to produce
a clear-cut and simple recommendation on that front. I will mention some of the
options in the lectures but have tried to collect the topics that need most careful
documentation here. In parts of the course where I think thatthe lectures them-
selves can give adequate coverage these printed notes may degenerate to section
headings or cryptic comments.

There are a number of different algebra systems available these days, and it
can be useful to try examples out on one of them. This can both give you an un-
derstanding of why the various algebraic algorithms discussed here are important,
and how the application of computer algebra feels. It shouldnot matter much
which system you use, but it is useful to have one single concrete syntax for ex-
amples included here. I have used REDUCE, since that is both a system that I
know well and it is also available to all of you both on Phoenixand CUS. To use
REDUCE on CUS you will need to set up some Unix environment variables be-
fore starting the system itself — the “man reduce” entry explains what has to be
done. Phoenix users should try “help reduce” to ensure that they have up to date
instructions for loading the system. REDUCE can also run on almost any other
style or brand of computer you can think of, and there is a freedemonstration ver-
sion for MSDOS which is not capable of solving huge problems but which may
be helpful for the small-scale investigations needed in support of this course. A
full REDUCE manual is available on-line, but you almost certainly do not want
to print it all out, so to help with experimentation and getting a feel for the system
I include a glossary of the operators, keywords and switchesthat are provided.

People who have their own copies of Maple, Axiom, Macsyma, Mathematica
or Derive will find that the same sorts of fundamental issues come up with those
system as do with REDUCE, and although the details of how thingsare expressed
will differ most of this course should still be relevant. Just as numerical analysis
does not depend (much) on whether the processes are coded in Fortran, C or ADA,
there is much useful that can be said about computer algebra that transcends the
differences between particular packages.

This course covers Computer Algebra from two rather different perspectives.
The first views it as an area in which there are many interesting and unexpected
algorithms to be described. It can thus be viewed as a specialised extension of

1

the earlier “Data Structures and Algorithms” course illustrating the challenges of
one particular application domain. In this context the nature of Computer Algebra
means that it can involve looking at algorithmic interpretations or uses of what
had previously seemed to be inapplicable pure mathematicalresults. A signifi-
cant amount of essential material on the algorithms needed in computer algebra
is included in Knuth’s “Art of Computer Programming” (mainlyVolume 2 on
semi-numerical algorithms). Despite the age of that work itis still very readily
available and its explanation of (for example) the polynomial GCD problem is
quite sufficient for a first course.

The second thread in this course is in applications. As algebra systems be-
come more widely available1 many calculations which would previously have
been attacked by pure numerical methods will be treated symbolically. When
this succeeds the results will frequently be more general ormore reliable then the
results of numerical analysis. With this in view this courseincludes some basic
ideas about the proper use of algebra systems, analogous to the hints that will be
incorporated in a first course on numerical analysis. Perhaps the one overview
remark in this context is that algebra systems are generallyexpected to produce
exactly correct values — and the big problem with numerical analysis is the con-
trol or (rounding) error. So how can anything possibly go wrong if you work
algebraically? The answer is that clumsy application of an algebra system can use
all the memory and all the CPU time you have an still not producea result, even
in cases where alternative approaches could turn out results in very short order.

2 Computing with Polynomials

2.1 Introduction

A common exercise in the use of programming languages that support dynamic
storage allocation and records is that of representing and differentiating algebraic
formulae. Formulae are represented directly as parse trees. Addition, subtraction,
multiplication and so on just create new tree nodes, and substitution, differen-
tiation and some other obviously useful operations are rather easy to code up.
Getting a user’s input into parse tree form is just a direct application of material
from a course on compiler construction. Displaying a formula to typeset quality
can be harder, but is fundamentally a problem in text handling or graphics. Parse

1For at least the last 20 years algebra systems have been (as reported by their designers) on the
verge of massive wide-scale acceptance.

2

trees can represent all sorts of formulae almost equally well — nodes can stand
for logarithms and trigonometric functions, or summationsor integrals. But it is
very difficult to answer questions about formulae (for instance to detect if they are
zero!) or guarantee to simplify them properly.

A very good start towards a proper development of computer algebra is to con-
centrate on a very limited class of expressions — polynomials. For these (made
up out of coefficients2 and indeterminates using the operations of addition and
multiplication) everything can be made well-behaved. And it even turns out that
many real-world applications of computer algebra require nothing more!

2.2 Canonical and Normal forms

A Canonical Form for a class of expressions is one that formulae in the relevant
class can be converted into such that any two equivalent formulae get mapped
into exactly the same structure. Note that this may not be exactly the same as a
naive interpretation of the word “simplificaton”. For instance a canonical form
for polynomials can be obtained by multiplying out all brackets, collecting terms
and then arranging the remaining terms in some standard order. But for a formula
such as(a + b + c)10 performing these steps causes a small and well-structured
expression to expand into something large and rather ugly. Despite this a good
basis for a polynomial algebra system will involve a canonical form.

A weaker idea than that of a canonical form is anormal form. Here the only
requirement is that when transformed any expression that isequivalent to zero gets
mapped onto the object “0”. Note that with a normal form it is possible to make
reliable comparisons (for equality) between pairs of expressions: to compareu
andv just formu − v and reduce it to its normal form — if the result is visibly
“0” the two original objects were equal. Given such an equality test theoreticians
will assert that a canonical form can be produced. One enumerates all valid ex-
pressions (is is not hard to show that there are only a countable number) and maps
each expression onto the first item in this enumeration that it is equal to. Such a
recipe is not very practical.

2usually just integers, but it is also reasonable, and sometimes very useful to support rational
numbers.

3

2.3 Distributed and Recursive representations

If you multiply (a + b + c)2 out you can write the result as

1

1
a2 +

2

1
ab +

2

1
ac +

1

1
b2 +

2

1
bc +

1

1
c2

where I have sorted the terms lexographically. Each term hasa coefficient (which
will be shown here as a rational number) and may mention several variables each
raised to some integer power. This representation is known as distributed. With
distributed representations it is often useful to suppose that there are just a few
indeterminates and that their names are known in advance — then a term just has
to record the exponents associated with each indeterminate. An exponent of zero
allows for variables not visibly present. So for instance the first two terms of the
above expression could be represented as records:

[1, 1 : 2, 0, 0] % (1/1) * aˆ2 * bˆ0 * cˆ0
[2, 1 : 1, 1, 0] % (2/1) * aˆ1 * bˆ1 * cˆ0

and complete polynomials are now just lists of terms. The representation is clearly
easy to implement and work with.

An alternative scheme would view(a + b + c)2 firstly as a polynomial in just
a, which expands out to

1a2 + (2(b + c))a1 + (b + c)2a0.

Concentrating just on the top level of this structure it is made up out of terms
each of which has a coefficient, a main variable and a degree. The trick is that
the coefficients are now not just integers but they can be polynomials in variables
that are “less important” thata. The benefit of this recursive representation is
that many operations can be coded as if they were just workingon univariate
polynomials (an easier case), allowing the power of recursion into the coefficients
deal with all the subsidiary variables.

If the terms in a polynomial are kept sorted then (in either case) adding poly-
nomials is (almost) the same as merging lists as used in merge-sort.

Integration and differentiation of polynomials are basically easy term-by-term
operations.

2.4 Polynomial multiplication: unsorted representations

When one looks at polynomial multiplication it is slightly harder. Multiplication
by a single term is very easy. So multiplication by a general polynomial can be

4

achieved by multiplying by each of the terms in it and adding the sub-results so
generated. The bad news is that (unexpectedly, perhaps) this turns out to have a
bad worst case cost. If the two input polynomials haven andm terms in them
then naive multiplication can have cost proportional tom2n. To show this is
unreasonable note that there are at worstmn terms in the product, so all the terms
can be generated inmn stages, then ensuring that these are collected into the
correct order can be done inmn log(mn) steps.

The bottleneck is ensuring that the product polynomial is created with its terms
properly sorted. One way to respond to this challenge is to accept that the terms
that make up a polynomial will not be kept in any special order. But now com-
bining like terms on addition in a reasonably fast way becomes a non-obvious
process. The lectures will explain an unordered merge algorithm (based on the
use of hash tables) that can leave addition of unsorted polynomials fast while re-
ducing the cost of multiplication to aroundmn steps. The main penalty of using it
is that polynomials when printed out will be presented with their terms all jumbled
up, or maybe extra sorting effort will be required in the print routines.

3 Computing with Truncated Power Series

3.1 Introduction

Many mathematical and physical problems do not have neat solutions in closed
form, but do have solutions that can be expanded as series in terms of one of the
variables present in the problem. Even when closed form solutions do exist, these
series solutions will still usually be easier to find and almost as useful: this sec-
tion is concerned with the application of algebra systems tothis task. There are
many techniques available for deriving series solutions toequations, and it should
be expected that whichever of these is used the same results will be produced.
Examples given here will show, however, that there can be dramatic differences
in the amounts of computer time and memory that will be consumed when differ-
ent approaches are taken to the solution of any given problem. There can also be
large differences in the complexity of the mathematical andcomputational conse-
quences of following different routes towards a solution, so a user has to develop
an awareness of the various possibilities for compromise between simple but slow
algorithms and elaborate and delicate but fast ones. When it is only necessary to
produce the first few terms in the series expansion of some fairly simple function it
will usually be appropriate to use the most direct method available, but even quite

5

modest looking problems can consume quite unreasonable amounts of computer
time if attacked in too clumsy a way, and for large problems itwill be essential to
consider efficiency when planning solution techniques.

Even though proper power series are infinite in extent all useful computation
with them will work with just their first few terms. The treatment of power series
given here will treat the expansions as formal ones, that is to say it will not concern
itself with the question as to whether any given series converges, or for what range
of its independent variable it gives how accurate an approximation to some true
result. Indeed there are some calculations that can quite properly be performed
using series without any concern about convergence: for instance when the values
of individual coefficients in the series are more interesting than the behaviour of
the series as a whole3. Although truncated series are only approximations to the
function that they represent, the coefficients in them are expected to be calculated
exactly using exact integer and fractional arithmetic: in this way the algebraic
approximation of a series has a different character to numerical schemes that use
floating point arithmetic and where it is hard to produce formal descriptions of the
introduced error.

The first example problem given here is somewhat artificial, but will make it
possible to introduce a number of the facilities of the Reducealgebra system. It
is to find the coefficient ofx20 in the series expansion of(1 + x)100. There are a
number of ways of attacking this problem. With access to an algebra system the
easiest is probably just to display(1 + x)100 with brackets multiplied out and pick
out the term inx20 by eye. The request to Reduce is just:

(1 + x)ˆ100;

and the displayed result covers several pages. The next refinement would be to get
Reduce to select out the required coefficient from the full formula. This can be
done using the built-in selector functioncoeffn , which takes three arguments:
an expression to inspect, the name of a variable and the degree in that variable of
the coefficient required. Thus the desired value can be displayed by:

coeffn((1 + x)ˆ100, x, 20);

A rather different technique for solving our problem makes recourse to the
binomial theorem and an assertion that the desired value is just the binomial co-
efficient 100C20. To compute this we can define two Reduce procedures, one for
factorials and the second for binomial coefficients:

3eg. when the series is thought of as the expansion of some generating function.

6

procedure fact n;
for i := 1:n product i;

procedure binom(n, r);
fact n / (fact r * fact(n-r));

binom(100, 20);

This produces results noticeably more cheaply than the direct selection of the
x20 term out of the fully expanded formula, but at the cost of requiring much more
mathematical knowledge and of being a method that is not obviously adaptable to
solving related problems, such as finding the coefficient ofx20 in (1 + x + x2)70.

Even this scheme provides for further variations. The definition ofbinom(n,r)
given above is computationally wasteful and can be rewritten as

procedure binom1(n, r);
if (2 * r > n) then

(for i := r+1:n product i) / fact(n-r)
else (for i := n-r+1:n product i) / fact r;

which makes an attempt to avoid multiplying factors into theresult if they will
subsequently be divided out. The definitionbinom1 is slightly faster thanbinom ,
but it will only make enough difference to be noticed in caseswhere very heavy
use is made of it. Conversely the same values can be defined in terms of a basic
identity satisfied by binomial coefficients:

procedure binom2(n, r);
if r=0 or r=n then 1
else binom2(n - 1, r - 1) + binom2(n - 1, r);

As n increases the cost of using procedurebinom2(n,r) grows very rapidly.
Calculatingbinom2(100,20) would certainly require that thebinom2 was
called with eitherr=0 or r=n a number of times equal to the value eventually to
be returned, i.e. 535983370403809682970. On the fastest Reduce implementa-
tions on large mainframes it could be that a million such exits could be taken per
second, in which case the entire calculation would completein about 17 million
years. Evenbinom2(20,10) a very substantial calculation.

As a final attack on the original problem it is worth considering another math-
ematical result that states that the terms in a series expansion are related to the
derivatives of the function being expanded. In Reduce the derivative of y with

7

respect tox is obtained by writingdf(y,x) , and the nth derivative can be re-
quested asdf(y,x,n) . Evaluating an expression at a valuev for the variablex
is performed using a construct of the formsub(x=v, <expression>) . Us-
ing these we can obtain the coefficient we require by writing just:

sub(x=0, df((1 + x)ˆ100, x, 20)) / fact 20;

The method shown earlier usingcoeffn was only applicable if the expres-
sion being decomposed was built up using just the operators+, − and∗. This
scheme using differentiation is a little more expensive butcan be applied to a
much larger range of functions.

3.2 Simple iterative methods

When series expansions are produced it is almost invariably the case that inter-
mediate calculations generate terms of much higher degree than will be required
in the final result. It makes sense to discard such unwanted terms as early in the
course of a computation as possible. In Reduce if terms inx with degreen or
more are to be ignored a directive of the form

let xˆn = 0;

should be issued. This indicates that until further notice any terms involvingxn or
higher powers ofx should be suppressed. If at some later stage in a calculationthis
action is not required the rule introduced by the “LET” statement can be removed
by

clear xˆn;

In the code given earlier to find the coefficient ofx20 in a large formula it
would have been sensible to issue

let xˆ21 = 0;

before calculating(1 + x)100 thereby avoiding a large proportion of the work that
want into finding high degree terms in the full expansion. WhenReduce is used
to compute with power series in some variable,x say, the readability of the results
it produces is often enhanced by setting some output controlflags by saying:

factor x;
on div,revpri;

8

These do not have any effect on Reduce’s internal workings or the values of
the algebraic results that it produces: they just control the format in which results
are displayed. Their effects can be cancelled to return to Reduce’s default print
style by

remfac x;
off div,revpri;

With these flags set and a truncation established so that powers of x higher
than (say) the 10th will not appear it is possible to considersome techniques for
exploiting power series arithmetic.

The first of these to be considered is Picard’s method for solving ordinary dif-
ferential equations, which will be illustrated using the equationt′ = 1+ t2 (which
of course has the exact solutiont = tan(x) providedt(0) = 0). Picard’s method
develops a solution to the equation starting from some initial approximation by
repeatedly substituting its approximation into the right hand side of the equation
and integrating to get a new approximation:

let xˆ11 = 0;
factor x; on div;
tt := 0;
for i := 1 : 6 do

write tt := int(1 + ttˆ2, x);

Running this program4 will cause Reduce to display a succession of values for
the power series, and it will be observed that the initial terms in the series stabilise
rapidly, and that in this particular case each integration leads to one more correct
term in the series. Note that the above code relied on the Reduce integration oper-
atorint handing back a result with a zero constant of integration. Itis also worth
noting how for even rather simple calculations the rationalnumber coefficients
that get generated can become quite complicated.

For an example differential equation where the required solution has a nonzero
value atx = 0 considerr′ = −r2g′ for some known power seriesg (here we will
useg = 1 + x). By choosingr(0) = 1/g(0) this has an exact solutionr = 1/g.
Assuming that a suitable let statement is in force, the Reducecode is

g := 1 + x;

4The code usestt rather than justt as the variable since REDUCE reserves plaint and will
get upset if you try to use it here.

9

r := r0 := 1 / sub(x=0, g);
for i := 1:10 do r := r0 + int(-rˆ2 * df(g, x), x);

where it should be remarked thatsub(x= <value>, <expression>) makes
the specified substitution forx in the given expression (used here to evaluateg at
x=0), anddf(g,x) stands for the derivative ofg with respect tox . With g set
up as shown this program computes the series1 − x + x2 − x3 + . . . which is
perhaps not very exciting. However if its initial line is altered it can compute an
expansion of the reciprocal of any power series despite the fact that Reduce does
not have a built in capability for series division, and this is worthy of note. As
before this Picard iteration exhibits first order convergence: to obtainn correct
terms in the results it is necessary to perform the integration stepn times.

In cases where the function defined by a differential equation is known, as in
the two examples given so far, the terms in a series expansioncan be found by
differentiation, as in

tt := for i := 0:10 sum
(sub(x=0, df(tan x, x, i)) / fact i);

which should generate the same series fortt as was produced earlier. In many
cases it turns out that the Picard iteration produces results faster even though it
at first seems to be doing more work. For instance a test on thetan(x) expan-
sion finding terms up to degree 20 inx showed Picard’s method to be about 50%
faster than repeated differentiation. Obviously the cost difference will vary greatly
from problem to problem, and in some cases it will involve order of magnitude
differences.

The important thing in the above iterations is not the presence of an integration
operator, but the fact that if an expansion correct to ordern in x is substituted into
the right hand side result will be an expansion correct to some higher order. This
can be achieved by multiplication byx as well as by integration, as in

r := 1;
for i := 1:10 do write r := 1 + x * r;

which provides another way to compute1/(1 − x), and which can easily be ad-
justed to expand other quotients in series form. Iterationsof this form can often
be derived by just separating an equation into a set of leading terms that do not
depend onx and a correction factor that does. Even in cases where this does not
at first seem possible a little rearrangement can help: consider the problem of ex-
panding

√
1 + x as a power series. To find an iterative formula for deriving the

10

expansion it is necessary to put in a leading term for the expansion, and so express
the square root in the form1 + xq. Then the fact that this is the square root of
1 + x amounts to the identity

(1 + q)2 = 1 + x

and after a very small amount of rearrangement this leads to the iteration

q := 1;
for i := 1:10 do q := (1 + x * qˆ2) / 2;

which is certainly easier to program than a formula based on use of the binomial
expansions.

A somewhat similar form of rearrangement can be needed if a differential
equation has terms in it which are multiplied by powers ofx, as in Legendre’s
equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

where the need to divide by(1 − x2) can be avoided by rearranging the equation
to give a recurrence rule

dy := dy0 + int(xˆ2 * df(dy, x) + 2 * x* dy - n * (n+1) * y, x);
y := y0 + int(dy, x);

with y0 anddy0 providing initial conditions. Observe that in this case it is rea-
sonable to use the derivative ofdy in the right hand side of the first assignment
because it is immediately multiplied byx2, which compensates for the shift in
order produced in the differentiation.

The general idea behind Picard’s iteration is that evaluating the right hand side
of the recurrence formula must produce a result correct to a higher degree inx
than the previously best known approximation to the solution y. In many cases
each iteration will just increase the order of accuracy of the solution by one, but in
some cases (e.g. the one just given) each iteration may increase accuracy by two
(or even more) terms.

3.3 Newton’s method and second order convergence

Probably the best known iterative technique in numerical analysis is Newton’s
method. To find a solution to the equationf(z) = 0 it starts with some initial
approximationz0 and defines a sequence of further approximations by

zn+1 = zn − f(zn)/f ′(zn).

11

Except when the solution forz that is being found is a repeated root off(z) =
0 this iteration exhibits second order convergence, ie. the number of correct digits
in the approximationszn roughly doubles each timen increases by one. This very
general iteration can be applied in the context of power series calculations. The
initial approximation can almost always be taken to be just the leading (constant)
term of the desired series, and this is usually trivial to find. The general form of
the iteration involves a power series division, and although some algebra systems
support this directly Reduce does not. However the required quotient can be com-
puted using a special case of the Newton iteration itself. Consider the function
f(z) = y − 1/z, thenf(z) = 0 will be solved whenz = 1/y. f ′(z) = 1/z2, and
so Newton’s iteration simplifies to something in which no division is present. A
suitable starting value forz0 will be obtained by substitutingx = 0 into the power
seriesy to obtain the leading term, which being numeric can be divided by. Thus
the program for computing a power series a for1/y becomes

z := 1 / sub(x=0, y);
for i := 1:n do z := z * (2 - y * z);

together with a suitable let statement that will avoid termswith too high a degree
in x from accumulating. Second order convergence in this context means that
each step in the iteration doubles the number of correct terms in the series, and
so if for example an expansion correct to terms inx16 is required it will be neces-
sary to make the iteration count (n in the program fragment) four. This iterative
scheme for computing the reciprocal of a power series can be packaged to provide
a general series division capability for Reduce by encapsulating it in a procedure:

let xˆ16 = 0;

procedure tpsquotient(a, b, x);
begin

scalar z, z1;
z := 1 / sub(x=0, b);
repeat << z1 := z;

z := z * (2 - z * b)
>> until z = z1;

return a * z
end;

The procedure tpsquotient will always perform one unnecessary iteration at
the end of computingz, the reciprocal ofb, since it decides when to stop by

12

observing when Newton’s formula does not lead to a change in the value ofz, but
in almost all circumstances this small inefficiency will be unimportant. Some of
the work done by the above procedure is unnecessary for another reason: during
early stages in the iteration it is known that the intermediate results will only be
accurate to low order in terms of powers ofx, but the globalLET Xˆ16 = 0
reduction does not reflect this. A more refined version of the algorithm would
arrange to truncate all intermediate results to keep the smallest possible number
of terms in them. With Reduce the heavy use ofLET andCLEARthat this would
involve is clumsy, and for second order (where only a very fewcycles of the
iteration are needed) the extra complication is usually notworthwhile.

Having synthesised a power series division procedure it is now easy to use
Newton’s method to more elaborate equations. For instance finding y =

√
a

wherea is some formula such as1 + x can easily be achieved by starting with

y := sqrt(sub(x=0, a));

and using the iteration

y := (y + tpsquotient(a, y, x)) / 2;

and for simple formulae a the results will match those that could have been pre-
dicted using binomial expansions. The scheme is, however, equally easily used on
problems where the solution can not obviously be obtained otherwise. Consider
the equation

2y3 − y = 1 + x

and the problem of expanding its solutiony as a power series inx. It is first
necessary to consider an initial approximation, and this can be found by discarding
all instances ofx from the original problem to leave

2y3 − y = 1

which has a solutiony = 1. For this particular equation the other potential initial
values for y are complex, and it might be that the originator of the problem can
indicate that only a real solution is required: otherwise itwould also be necessary
to consider the other possible starting values fory, viz the complex numbers(−1+
i)/2 and(−1 − i)/2.

Newton’s formula then dictates the iteration to be used:

yn+1 = yn − (2y3
n − yn − 1 − x)/(6y2

n − 1)

and this translates directly into a program

13

y := 1;
for i := 1:4 do

y := y - tpsquotient(2 * yˆ3-y-1-x, 6 * yˆ2-1, x);

As for the reciprocal program the number of correct terms in the result double
each time the iteration is used, and so a very small number of cycles of the loop
will usually be adequate. By changing the first line of the above fromY:=1; to
Y:=(1+I)/2; the same program would find an expansion for one of the other
solutions to the original equation. In a similar way the program that finds

√
1 + x

using Newton’s method will naturally find the other solutionto y2 = 1 + x, i.e.
−
√

1 + x, if started with−1 as an initial value fory.
Applying the iteration

zn+1 = zn − f(zn)/f ′(zn)

involves repeated evaluation of the derivativef ′(zn) and division by it, both of
which may be expensive operations. A simple modification of the Newton Raph-
son iteration keeps using the initial approximation tof ′ (which is often just a
number), so that each step in the iteration is faster:

zn+1 = zn − f(zn)/f ′(z0).

This modified Newton’s method generally exhibits first orderconvergence, but in
cases where the functionf ′ is more complicated than f the reduced cost per step
can result in it be more efficient overall.

3.4 The use of undetermined coefficients

The discussion so far has concentrated on the order of accuracy of series expan-
sions. In the following section an alternative view will be presented. This consid-
ers the leading error term in an approximation, and attemptsto eliminate it. The
result will generally be a new approximation where the leading is of higher degree,
and so this new leading error term will be eliminated next. When expressions are
dense (ie. almost all possible terms in the expression are present) there is no prac-
tical difference between repeated approximation methods expressed as iterations
over the degrees of formulae and those thought of as the successive elimination of
leading error terms. For sparse expressions, however, termby term methods can
lead to useful saving.

14

3.4.1 Series reversion

Consider the problem where a functiony(x) is defined by a power series

y = y0 + y1x + y2x
2 + . . .

and it is desired to express x as a function of y, also in seriesform:

x = x0 + x1y + x2y
2 + . . .

The coefficientsxi can be derived using a repeated approximation algorithm. Itis
first necessary to exhibit the initial terms of the expansion. By drawing a graph
of y againstx it can be seen that the problem is only a sensible one ify0 =
x0 = 0, and in that casex1 = 1/y1. The dependence of the remainingxi on
the known coefficientsyi can be derived in a step by step manner. Thus to find
x2 a provisional expansion forx is set up with a new indeterminate acting as an
undetermined value forx2. Here the symbolz will be used, and so to order 2 iny,

x = (1/y1)y + zy2.

This can now be substituted into the original identity, keeping only those terms
with degree no higher than 2 iny. The two sides of the identity should be in
agreement in their constant and linear terms (because the those terms in the ex-
pansion forx were supposed to be correct already), and so they2 term can be used
to give an equation to be solved forz. This establishes thatx2 = −y2/y

3
1. If higher

order terms are required the same sequence of steps can be repeated. Re-using the
symbolz, to order 3 iny,

x = (1/y1)y − y2/y
3
1y

2 + zy3.

and substituting this into the equation fory in terms ofx will again lead to an
equation which can be solved to findx3, with similar calculations leading to as
many more terms in the expansion forx as are required.

3.4.2 Series techniques with other than simple polynomialsaround

Imagine a polynomial in the variablesa, b, c andu, v andw. Now imagine thatu
stands foreix, v for eiy andw for eiz. Basic arithmetic on the polynomials is not
altered by their interpretation as complex exponentials. The rules for integration
and differentiation need altering, but not in very dramaticways. The effect is that

15

for very little extra cost rather broader class of expressions can be handled. But
who wants to worry with complex exponentials? Well the magicstep is to write

sin x = (eix − e−ix)/(2i)

and similarly forcos(x) — suddenly a system capable of dealing with complex
exponentials can deal with formula involving a bunch of polynomial style vari-
ables and a collection of trig functions. The restricted sort of series with sines and
cosines in are knows as Poisson Series.

As an example of repeated approximation applied to Poisson Series it is almost
easy to generate an expansion of the solution to the Kepler equation,

e = u + x sin(e)

by starting with a first approximatione0 = 0 and repeatedly substituting into
the right hand side of the equation. The calculationsin(e) can be performed by
substituting the Poisson series approximation fore into the power series for the
sin function.

3.5 History, state of the art, future prospects

3.5.1 Delaunay’s analytic lunar theory

A major classical use of Poisson Series was in producing an analytic Lunar The-
ory. One of the early triumphs of computer algebra was the reproduction of a
series of massive calculations that had been performed by hand by the French-
man Ch. Delaunay. Since then the same technology has been applied to artificial
satellite theory.

3.5.2 Selection done during multiplication rather than afterwards

In repeated approximation methods many operations are performed in circum-
stances where it is known that high order terms in the result will not be mean-
ingful. Major savings in both time and space can be achieved if the polynomial
multiplication procedures are adjusted so that they respect the cut-off (known as
a selection) and avoid generating parts of the result that would be of toohigh an
order.

16

3.5.3 Specialised power series packages

Various special purpose computer algebra systems have beenwritten at various
times with the specific aim of making polynomial, power series and Poisson series
working as fast as possible. By fixing the names of variables and limiting the
magnitude of exponents it becomes possible to use very tightly packed and neat
datastructures, which again helps speed and space efficiency. In a Cambridge
context the main system to note isCAMAL. As computers have become larger and
faster the special purpose algebra systems have somewhat fallen from favour.

3.6 Case studies

3.6.1 Legendre polynomials done lots of different ways

This section tries to illustrate that even for polynomial and series calculations there
can be many very varied ways of calculating the same values. These may differ
radically in terms of programming convenience or the demands that they place
upon an algebra system. You might like to try the following out to see which are
easier to get working and which run fastest.

1. Using pure polynomial arithmetic the Legendre Polynomials can be com-
puted using a recurrence formula.

p0(x) = 1

p1(x) = x

pn(x) = ((2n − 1)xpn−1(x) − (n − 1)pn−2(x))/n

2. The formuladn/dxn(1−x2)n/n! (Roderigue’s formula) computes the same
polynomials using differentiation of polynomials.

3. If you write the power series expansion

1√
1 − 2x2t + t2

=
∞
∑

i=0

pi(x)ti

and work out explicit values for the coefficientspi(x) then once again you
will have found the Legendre polynomials.

4. The differential equation(1−x2)y′′−2xy′+n(n+1)y = 0 has a polynomial
solution that is thenth Legendre polynomial.

17

3.6.2 Van der Pol equation

Consider the equation
y′′ + y = ey′(1 − y2)

subject to constrainty′(0) = 0. If e is small this is nearly just a simple harmonic
oscillator. For small oscillations (ie. the average value of y is small) ife is positive
the amplitude of the oscillations will tend to increase. Forlarge amplitudes on
average1 − y2 will be negative and this will damp things down. Somewhere in
between there is a stable state — alimit cycle. I will sketch (but not give full
details of) how Poisson Series can be used to find the limit cycle. The technique is
applicable to a wide range of weakly nonlinear periodic and and almost periodic
systems, and can be thought of as a very simplified model of what was involved
in lunar and satellite theory analysis.

3.7 Exercises

1. Compare performance for lots of ways of computing
√

1 + x, 1/(1 − x),
tan(x) series.

2. Tchebychev polys: check them out in a suitable book and seehow many
different ways of evaluating them you can invent. For instance Tn(x) =
cos(n arccos(x)).

3. Show how to interpolate a polynomial through (x1, y1), (x2, y2), . . . (xn, yn)

4. The Duffing equation isy′′ + y = ey3. Compare with Van Der Pol.

4 Rational Functions

4.1 Introduction

In section two all expressions were put in the form of series.This made it possible
to generate expansions of the solution to various algebraicand differential equa-
tions, but meant that a simple fraction such as1/(1 − x) had to be represented by
some initial segment of the infinite series1 + x + x2 + . . .

This transformation can be avoided if quotients are kept as such. The main
technical problem that this raises for algebra system implementors is one of keep-
ing the resulting fractions reduced to their lowest terms. Even when high powered

18

algorithms are used this process can be unexpectedly costlywhen the formulae be-
ing processed are of high degree or involve many different indeterminates, and so
the first part of this section discusses ways of reducing the need for the calculation
of greatest common divisors (GCDs) in calculations. Of course for sufficiently
small problems the techniques described will represent irrelevant complication,
but as progressively larger computations are attempted it will often be the case
that GCD calculation limits what can be done on a given computer in a reasonable
amount of time.

The procedures discussed here are applicable to formulae built up out of in-
tegers and indeterminates using addition, subtraction, multiplication and division.
The word “polynomial” will be taken to apply to those formulae with no division
in them (not even fractional coefficients), and all other cases will be treated as
quotients of pairs of polynomials. Such quotients will be called rational func-
tions. Thus(1/2)x+(1/3) will be thought of as a rational function with the poly-
nomial3x + 2 as its numerator and the constant polynomial 6 as its denominator.
This is in fact the way that the formula is represented insidethe Reduce algebra
system, and theON DIVflag used in 3.2 just changes the style in which results
are printed, not the internal organisation of the system. A consequence of this
is that in Reduce some built-in functions that require polynomials as arguments
(e.g.COEFF, REDUCE) take a strict view and expect to be given expressions with
whole number (and not fractional) coefficients.

The remainder of this section investigates the algorithms used for rational
function manipulation and various closely related processes (e.g. factorisation).
Some understanding of these can help a user appreciate why large GCD calcula-
tions can be so extraordinarily costly, while others that seem at first sight to be as
complicated are completed very rapidly. The algorithms also provide an illustra-
tion of the way in which techniques derived from abstract “modern” algebra find
a direct applicability in the solution of apparently elementary problems. Some
of the algorithms will be illustrated by code fragments showing how they could
be implemented by a Reduce user: these may form prototypes foruser written
packages for other mathematical procedures.

4.2 Reducing the need for GCD calculations

In many cases when a fractionp/q occurs in the course of an algebraic calculation,
p and q will have no common factors. If they do have a common factor, say
g = gcd(p, q), then the quotient should be represented as(p/g)/(q/g), where
both divisions byg will be exact. For uniformity it will be normal to ensure that

19

the leading coefficient in the denominatorq is positive, if necessary by multiplying
top and bottom of the fraction by−1.

Throughout a calculation the repeated checking of fractions for factors that
need cancelling represents an overhead. This is particularly so if it happens that no
significant gcds are ever found. Unfortunately simple gcd algorithms exhibit their
worst behaviour (ie. they consume most time and store) precisely when they are
eventually going to report that their inputs are coprime, and so with early algebra
systems the size of problem that could be solved was stronglylimited by the form
of the rational function arithmetic involved. With the larger memories and better
algorithms now available many more algebraic problems can be handled without
gcd calculation giving trouble, but it is still the case thatfor large calculations it
can still be necessary to take steps to reduce the costs associated with reducing
fractions to their lowest terms. Thus most problems should initially be presented
to the algebra system as if rational function manipulation were not a problem: if
resource limits prevent the required results from being obtained it may be worth
considering some of the transformations discussed below.

The first principal to be applied when performing large scalealgebra is to
avoid computing a result that contains more information than is actually required.
Apparently equivalent ways of writing even quite simple fragments of code can
lead to very different computational behaviours. For instance given four polyno-
mialsp, q, r ands it may be necessary to decide ifp/q = r/s. The obvious test to
apply would be

if (p/q) = (r/s) then ...

but this involves reducing the fractionsp/q andr/s to their lowest terms, which
will turn out to be unnecessary. A second attempt, which although mathematically
equivalent to the above will be computationally different is

if (p/q) - (r/s) = 0 then ...

where not only arep/q andr/s reduced to their lowest terms, but if nonzero their
difference also has to be so reduced. Since the only information that is required
is whether the difference is zero, it will probably be betterto concentrate on its
numerator, avoiding all gcd calculations and writing

if p * s = r * q then ...

Another example in the same vein involves a test to see if the polynomial q
divides exactly intop. The test

20

r := p/q;
if den r = 1 then ...

forms the rational function(p/q) and tests if its denominator is one. If so it is
clear thatq divided exactly intop, and in this case the quotientr will often be
required for further processing. Ifq is not a factor ofp the above code will reduce
the fractionp/q to its lowest terms, and if the reduced fraction is not needed
computing it will be a waste of time: the test

if remainder(p, q) = 0 then ...

does not suffer from this, but does have the disadvantage that it does not auto-
matically provide a value for the quotientp/q in the exact division case, even
though the process of producing the remainder will have had to go through the
steps needed to obtain it. Later on there will be an explanation of how users can
obtain access to the function that Reduce uses internally fortest division5, thus
providing a way of obtaining further improved performance at the cost of having
to understand more about the fine details of the algebra system being used.

In general if calculations are performed on rational functions and fractions are
not reduced to lowest terms promptly the size of expressionsgrows explosively.
In special cases, however, it can be predicted in advance that this will not be so:
for instance it may be known that some series of calculationswill necessarily lead
to an answer expressed in its lowest terms even without any gcd calculations being
performed to ensure this.

In such cases it may be advantageous to instruct the algebra system not to
attempt to reduce fractions to lowest terms. In Reduce this isdone with a directive

off gcd;

the effect of which can be cancelled byON GCD. Since calculations which benefit
from this treatment are fairly rare it seems possible that the best use ofOFF GCD
mode is to allow the user to see how dramatically expressionscan grow if not kept
in reduced form, and hence how important a good gcd algorithmis in an algebra
system!

Having adjusted a program so that it does not compute more than the minimal
interesting part of an answer it can be becomes useful to seekways of simplifying
the problem formulation. Any transformation that reduces the degrees of polyno-
mials found in the problem or which reduces the number of variables present will

5See “testdivide” defined shortly.

21

be useful, and to a lesser extent transformations which remove large numeric val-
ues can help. It is often possible to make changes of variables so that factors that
appear in the denominators of intermediate expressions become simply powers
of some indeterminate — this renders greatest common divisor extraction trivial.
Thus if in some calculation there are two variablesu andv, and the denominator
of many fractions will involve powers ofu+ v it will be useful to introduce a new
symbol (w say) to representu + v and use a substitution such as

... sub(v = w - u, <formula>) ...

to express original expressions in terms of it. A simple substitution at the end
of the calculation will then make it possible to present results in terms of the
original variables. It can make sense to introduce a new indeterminate to rep-
resent the reciprocal of some complicated denominator evenwhen it is not then
possible to eliminate any of the original variables. For instance in calculations
involving a matrixM and its inverse, the introduction of a symbol that stands for
1/determinant(M) can often simplify things substantially.

In some cases it is possible to reformulate calculations so that rational function
arithmetic is not needed at all. If, for instance, there is a way of predicting in ad-
vance some common denominator for all the expressions that will arise throughout
a calculation then everything can be reduced to polynomial arithmetic, which is
generally well behaved. Later in this section (in the discussion of thesubresultant
PRS method for computing gcds) there will be an example of a case where the
mathematical structure of a calculation makes it possible to predict factors that
are guaranteed to divide exactly into some of the intermediate results, and this
dividing out of predicted exact factors saves significant amounts of time.

The costs of computing greatest common divisors can grow rapidly with the
size of the expressions involved, and this means that it is generally better to per-
form several small gcd calculations rather than allowing common factors to build
up and finally do a single large reduction. An application of this principle can be
found inside the implementation of Reduce where two rationalfunctions are to be
added. The natural way of forming the sum of(a/b) and(c/d) would be to com-
pute the numeratorp = ad+ cb and the denominatorq = bd of the result and then
form them into a fraction(p/q) cancelling any common factors. The scheme that
is in fact used tries to find common factors as early as possible so as to reduce the
size of intermediate results and hence the cost of the final gcd calculation. First
the greatest common divisor,g, of b andd is computed. Now the numerator of
the final result can be evaluated asp = a(d/g) + c(b/g) and the denominator as
q = b(d/g) where the divisions indicated are known to be ones that will be exact.

22

If it happens thatg is large (for instanceb andd might be the same) this will result
in significantly smaller values forp andq. In forming the final quotient(p/q) it is
still necessary to look for further common factors. Ifb andd are coprime the new
method is no help, but in many realistic cases it speeds calculations up by a useful
amount. Analogous optimizations are possible when formingproducts and quo-
tients of rational functions, and potentially within any user-written code that ever
generates the numerator of a rational function separately from its denominator.

A scheme that has been proposed (but not widely adopted) thatsubsumes sev-
eral of the above ideas is that of representing expressions as partially factored
forms. Rather than keeping all brackets multiplied out and the numerators and
denominators of expressions separate, a partially factored representation holds
values as products of powers of items. Negative powers are used to indicated
factors that belong in the denominator of the expression. During multiplication
and division common factors are merged, and in some cases gcdcalculations will
reveal further factorisations of some of the terms. For instance if the product of
x2 − 1 andx + 1 were to be required the process of merging lead to the result
(x − 1)(x + 1)2. During addition and subtraction and factors common to the ex-
pressions being combined will remain separated out, but other terms will have to
be expanded out thus destroying knowledge of their factor structure.

The final suggestion here for reducing the demands on a gcd procedure in-
volves breaking away from the closed form representation ofquotients and drop-
ping back to the use of power series. Section 4.4.2 illustrates how it is possible to
recover an exact rational result from its power series representation subject only to
the need to have a bound on the degrees of the numerator and denominator of the
expected rational function. For univariate calculations where it is known a priori
that the result will be fairly simple but where intermediatestages in the working
would lead to rational functions with very high degree denominators this radical
transformation can perform wonders.

To end this section here is the REDUCE code for test division mentioned ear-
lier. As defined here it returns the quotient of its argumentsif the division involved
is exact. Otherwise it returns 0. It expects to be given polynomial arguments, but
does not check. The explanation of the incantation used to provide this interface
to a system-level function within Reduce is outside the scopeof this section.

symbolic procedure testdivide(p, q);
mk! * sq (quotf(numr simp! * p, numr simp! * q) ./ 1);

flag(’(testdivide), ’opfn);

23

4.3 Polynomial Remainder Sequences

4.3.1 Integer GCD

Computing the greatest common divisor of a pair of positive integers can be done
simply and efficiently using Euclid’s algorithm:

PROCEDURE numeric_gcd(a, b);
IF b = 0 THEN a
ELSE numeric_gcd(b, remainder(a, b));

4.3.2 Polynomial Remainder and pseudo-remainder

The same idea can be applied to find polynomials once we understand what is
meant by the “remainder” operation in that case. Dividing one univariate polyno-
mial by another is a pretty straightforward process and whatgets left at the end is
clearly the remainder. But observe the case whenx2 + 1 is divided by2x− 1: the
quotient comes out as1

2
x + 1

4
and the remainder as3

4
. The fractional coefficients

here are not a help at all, and turn out not to contribute usefully to GCD calcula-
tions, so it is normal to get rid of them. A few moment’s thoughwill show that
the only denominators that can be introduced are powers of the leading coefficient
of the polynomial that is being divided by. If, before the remaindering step, the
other polynomial is multiplied by a suitable power of same then the unwanted
fractions will not appear. This variation on computing a remainder is known as
thepseudo-remainder of the two polynomials.

If the recursive representation is used for polynomials then a scheme the com-
putes univariate pseudo-remainders can be applied directly (to the top level of the
recursive datastructure) to obtain multi-variate remainders. But note now that the
result obtained will depend on the ordering of variables in the structure. You may
like to try out a very simple case — evaluate the pseudo-remainder whena2 + b2

is divided by2a + b first when each polynomial is treated as being in terms of a
main variablea then in terms ofb.

4.3.3 a PRS to compute a GCD

If a polynomiala(x) is writtenanx
n + . . . + a1x + a0 then we defined thecontent

of a to begcd(an, . . . , a0). For instance the contents of2yx2 +4(y3−1)x−8y+4
(when viewed as a polynomial inx) is just 2. The content of a polynomial does
not have to be just number if all the coefficients have some common factor that

24

involves subordinate variables, as in(y−1)x+(y−1) which clearly has contents
y − 1. If a polynomial has a content of1 it is referred to as beingprimitive and a
dividing a polynomial by its content gives itsprimitive part.

Now suppose we have two primitive polynomials and want theirGCD. The
GCD will also be primitive. Is this obvious to you? Use the Euclidean GCD
algorithm starting with the two inputs, but doing pseudo-remainders rather than
true remainders all the way. At the end you will have a polynomial that isalmost
the desired GCD. But the pseudo-remaindering operation can have left unwanted
extra coefficient-domain factors multiplied through, so the true answer wanted is
just the primitive part of what comes out of the Euclidean method. You might
suspect that the need for this final calculation of a primitive part was just because
we used pseudo- rather than real remainders, but in fact use of real remainders
would have left in equally nasty stray multipliers, but onesthat could be fractional
and hence even more painful to handle. If you work through a small example (I
suggestx2 − 1 andx2 + 2x + 1) you will see what happens quite clearly — it
is not very difficult. The series of results computed during the gcd process is a
polynomial remainder sequence or PRS.

Now I can take the GCD of pairs of primitive polynomials: what about the
general case. Well that can now be achieved by splitting eachof my real input
polynomials into contents and primitive parts. Taking the gcds of the contents is
a calculation in the coefficient domain so I suppose (by recursion) that it is easy.
Taking the gcd of the primitive parts is what I have just covered. I finally multiply
the two sub-results together. Easy!

4.3.4 Euclidean, Primitive, Reduced, Subresultant, Trial division

This section is not written out in detail here because Knuth covers it pretty well
— but the main messages are:

1. If you compute a PRS of even medium-degree polynomials the coefficients
in the intermediate results can become huge, and working with them domi-
nates the computing time of the entire process. A simple GCD procedure is
not useful for serious applications.

2. The coefficient growth can be cured somewhat by taking primitive parts at
each step in the generation of the PRS. But then the cost of all the coeffi-
cient GCDs involved in working out the contents that are to be divided by
becomes an embarrassment.

25

3. Some clever mathematics (not covered in this course) makes it possible to
predict factors that can be divided out. These factors are infact just certain
powers of the leading coefficients of polynomials that aroseearlier in the
PRS. The effect is that at least almost always the bad growth incoefficients
can be cured at quite modest cost.

4. Since the values divided out by theReduced andSub-resultant methods are
just powers of previous leading coefficients, an easier scheme to program
and understand just keeps a list of these previous coefficients and uses test
division to remove unwanted factors of them. The test division turns out to
be much cheaper than the gcds that were at first needed to keep everything
primitive.

4.3.5 Eliminating main variable between two polys: Resultant

This is maybe an aside: if you have two equations each in two unknowns you
may want to eliminate one of the variables between them. If you look at the steps
that you take you will find that you are computing a PRS, and thatthe univariate
equation you end up with is just the final polynomial in that sequence. Moral:
PRSs arise in GCD calculations but have other uses too.

4.3.6 PRS as Gaussian elimination on a certain matrix

Imagine two polynomialsa andb with degreesn andm and coefficientsai andbi.
Consider the matrix

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an−1 an−2 . . .
0 an an−1 . . .
0 0 an . . .
...

. . . a1 a0 0

. . . a2 a1 a0

bm bm−1 bm−1 . . .
0 bm bm−2 . . .
...

. . . b1 b0 0

. . . b2 b1 b0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

26

If you imagine doing Gaussian Elimination on this matrix youwill rapidly dis-
cover that the steps you take bear an uncanny resemblance to those that need to
be used when computing a PRS. The determinant of the above matrix is known as
the resultant of the two polynomialsa andb with respect to the variablex. The
importance of resultants (here) is that they show a perhaps unexpected link be-
tween PRS calculation and simple linear algebra (ie. solvingsimultaneous linear
equations and computing determinants). This link is at the root of the mathemat-
ics that led to the Reduced and Sub-resultant GCD algorithms. This course does
not provide me with sufficient time to explore it further!

4.4 Evaluation/Interpolation methods

The PRS methods for computing GCDs work, but a serious problem with them is
that their worst case is when the GCD that is to be found is just 1. In that case the
remainder sequence will be of maximum length and despite allattempts to keep
them small intermediate coefficients still grow pretty alarmingly. But if you take
two polynomials at random their GCD is probably 1. It would be nice to have a
method which behaved best in this especially common case.

4.4.1 Modular Probabilistic Checking

Consider first the univariate case. The only big cost in computing a PRS is because
the coefficients tend to get big. Tryapproximate coefficient arithmetic to prevent
this. In particular, choose a primep and perform all arithmetic modulop. If p is
a single precision integer then this avoids all the painful overhead of allowing for
multiple-precision intermediate results. But is the resultcomputed by a modular
PRS any use at all? Yes! If the modular calculation indicated that two primitive
polynomials are coprime then they really are. The only possible problem is when
the modular calculation says there is a real non-trivial GCD,since then it could be
that the polynomials are really coprime and the apparent GCD is an artefact of the
approximate arithmetic, and anyway the modular GCD does not instantly allow
us to recover the real one.

For multivariate polynomials it can be useful to reduce to the univariate case
by substituting random (well, arbitrary, or pseudo-randomor something) integer
values for all bar one indeterminant. If this is done modp it can not lead to
over-large numbers. Then a modular PRS is computed for the resulting univariate
polynomials. This provides a cheap and in fact rather reliable test that identified
most cases where the full GCD will be 1.

27

4.4.2 The Hensel Construction

Given the above cheap check it would be very nice if the true GCDcould be recon-
structed from a modular image in non-trivial cases. For multi-variate polynomials
the way of doing this is known as the Hensel Construction, and we will see it in
action again when we come to factorisation. The presentation here is at first going
to gloss over a few problem areas to try to give as clear an overview as possible.
So imagine a bi-variate case where polynomials inx andy are being used. We are
computing the gcd ofa(x, y) andb(x, y). First viewa andb as power series iny,
eg.

a(x, y) = a0(x) + a1(x)y + a2(x)y2 + . . .

Of course this will only be a finite series, stopping at the highest degree term in
y present ina. Now suppose that the required gcd ofa andb will be g(x, y), and
write h = a/g. This division of course goes exactly sinceg, being the gcd ofa
andb, must divide neatly intoa.

The key step is then to observe the (obvious) identitya = gh but to write it out
in power series form. Looking at the various powers ofy in this gives a series of
identities (I have written justai instead ofai(x) etc. here to keep things concise,
but everything mentioned will be dependent onx).

a0 = g0h0

a1 = g0h1 + h0g1

−(g1h1) + a2 = g0h2 + h0g2

−(g1h2 + g2g1) + a3 = g0h3 + h0g3

. . .

I have collected terms on the two sides of the equals sign in a slightly curious way,
but otherwise the equations are pretty straightforward. Next considergcd(a0, b0).
If we arelucky6 this will be exactlyg0, the leading term in the power series repre-
sentation of the required gcd. Then we can computeh0 asa0/g0. The first of our
equations has just been satisfied. Now suppose we can solve the next equation to
find g1 andh1, then all the subsequent equations would be of the same form,ie.

g0hi + h0gi = <something>

and thus it will be possible to compute as many of the coefficients gi as are re-
quired. The largest one that can possibly be nonzero is the one corresponding to

6The term “lucky” is treated as a technical term here!

28

the highest power ofy present in the gcdg, and this is bounded by the degree iny
of a andb.

To show how to solve the odd equations we have come up with I need to
impose two technical constraints. The first is thatg0 andh0 must be co-prime.
For now let me just observe that this can only possible fail tobe so if the original
polynomialsa and b had repeated factors, and that it is possible to reduce the
general problem one where no repeated factors are present. The second condition
is that all the polynomials that we are working with have their coefficients reduced
modulo a suitable7 primep. The reason for this is that when working modp it is
possible to divide any coefficient by another, while when working with integer
coefficients some such divisions may not go exactly.

Now before showing how to solve the given equation forpolynomials let’s
look at the analogous one for integers, and for givenu andv try to find α andβ
such thatαu + βv = 1. This can be achieved by looking at a remainder sequence
that computes the gcd ofa andb. Start by writinga = 1a+0b andb = 0a+1b, and
note that ifq = ba/bc then remainder(a, b) = a − qb, or otherwise1a + (−q)b.
Following through each value in the remainder sequence can be expressed as a
combination of the two previous ones, and hence as a linear combination of the
original valuesa andb. Eventually ifgcd(a, b) = 1 this will lead to the final 1
in the remainder sequence being expressible in the formαa + βb as required. By
multiplying these valuesα andβ by any valuec that valuec can be expressed as a
linear combination ofa andb. The same basic process can be used on coefficients
(with modular coefficients), and hence completes the methodfor extending a uni-
variate gcd to a bivariate one. It can clearly be used to cope with polynomials in
any number of variables.

4.4.3 Hensel and integer coefficients

The Hensel construction as sketched above makes it possibleto reconstruct a mul-
tivariate gcd, but only with coefficients reduced modp. To get back to integer
coefficients a little more is needed. In fact this is remarkably easy and similar to
the ideas we have already seen. Observe that if we write integers in radixp an
integern can be written out as a combination of digits8

n = n0 + n1p + n2p
2 + . . .

7The rules about what counts as “suitable” are not especiallycomplicated but are not discussed
in depth here.

8Negative numbers might need a little more effort, but that isnot a real difficulty and will be
glossed over here.

29

where each digits is restricted to the range 0 top − 1. This looks sufficiently like
a power series that the previous presentation of the Hensel construction can be
applied to it. The methods even work cheerfully if instead ofjust numbers we
work with polynomials written out as

a(x, y) = a0(x, y) + a1(x, y)p + a2(x, y)p2 + . . .

where now the correct normalisation constraint is that all the coefficients in each
ai(x, y) must be bounded byp. Use of the Hensel construction in this way makes
it easy to extend a gcd that has been computed correctly modulo p to one that is
correct modulop2, p3, and so on until a value has been produced correct modulo
some power ofp that is larger than any possible integer coefficient in the true
answer. At this stage the computed result must in fact be the true gcd.

4.4.4 Unluckiness

Sometimes the modular-number based gcd processes will failbecause the prime
used interacts badly with the particular polynomials used.For instance if one
worked modulo 3 and while trying to computegcd(x+1, x+4) something would
be bound to go wrong because modulo 3 the two inputs alias together. A com-
plete program has to cope with this by being prepared to accept that the Hensel
extension process may fail to converge. In that case trying other primes and and
other small adjustments9 make it possible to proceed. Fortunately it can be shown
in this case that almost all primes will be “lucky”.

4.5 Factorisation and algebraic number arithmetic

Factorising polynomials follows on from gcd calculation asthe next major algorithm-
cluster. One first restricts attention to primitive polynomials. Then removes the
frivolous complication of repeated factors.

4.5.1 Square-free decomposition

If a polynomialu(x) has a repeated factor thengcd(u, du/dx) will be non-trivial.
By following up on this observation it is possible to do a number of gcd operations
that will expressu unambiguously in the form

u = Ku1u
2
2u

3
3 . . .

9which will be mentioned briefly in the lectures.

30

where eachui is now free of repeated factors.

4.5.2 Kroneker’s algorithm

A classical way of finding factors of a polynomial can be illustrated by looking
for possible quadratic factors ofu(x). Find all integer factors of each ofu(0),
u(1) andu(2). For each possible combination of one factor fromu(0), one from
u(1) and one fromu(2) it is possible to interpolate a quadratic. If this quadratic
has integer coefficients and divides exactly intou then we have found a factor as
desired. If there is any quadratic factor we will come acrossit is this search.

This method can clearly be used to see factors of any desired degree, but in be-
comes grotesquely expensive for non-trivial cases and is not obviously adaptable
to the needs of multivariate cases.

4.5.3 Berlekamp/Hensel

A better way to factorise polynomials will start by reducingan arbitrary input to a
univariate polynomial modulo a primep. If this can be factorised then the Hensel
construction will make it possible to reconstruct the multivariate factors over the
integers.

Berlekamp’s algorithm factorises a univariate polynomial modulo some given
prime. The inputs are:

A polynomial u(x), which should be primitive and square-free.

A prime p.

We will imagine that the (irreducible) factors ofu(x) arew1(x), w2(x),. . . ,
wj(x). All arithmetic mentioned here will be done modulo the selected primep,
and so all coefficients will be in the range 0 top − 1.

The factorisation process works by considering the class ofpolynomialsv(x)
that have the properties:

degree(v) < degree(u)

u divides exactly into(v − 0)(v − 1)(v − 2)...(v − [p − 1]).

It will turn out that these polynomialsv can be found quite easily, and that from
them it is possible to derive the factorswi that will be our final results. I will
demonstrate the first of these facts first.

31

Finding thev polynomials: Because we are working modulo a prime p the
formula

(v − 0)(v − 1)...(v − [p − 1])

can be simplified tov(x)p − v(x). A further result relating to polynomials with
modular coefficients asserts that this in turn is equal tov(xp) − v(x). The justifi-
cation of these two steps is not included in this note, but theresults are standard
mathematical ones. The condition thatu(x) dividesv(xp)−v(x) can be expressed
as

v(xp) − v(x) = 0 (mod u(x)).

A polynomialv can be characterised by a vector giving its coefficientsv0, v1, . . . ,
vn−1 (we know that the degree ofv is to be less than that ofu, and so can establish
the number of coefficients to be considered). The equation weare solving now
turns into

v0(x
0 − x0 mod u) + v1(x

p − x1 mod u) +

v2(x
2p − x2 mod u) + vn−1(x

(n−1)p − xn−1 mod u) = 0

where all the polynomials involved now have degrees less than that ofu(x). Each
of the polynomialsxkp − xk can be written out as a row of coefficients, and the
rows (one for each value ofk) stacked to form a matrix, generally known asQ.
The equation that was to be solved now takes the form of a matrix multiplication:

(v0, v1, . . .)Q = 0.

Solving such a set of equations is a standard piece of linear algebra. The com-
plete set of solutions forv form a vector space and a set of independent vectors
spanning this space is known as a null space basis for the matrix Q. To save space
I will not fill in the full details here, but finding a null spacebasis proceeds by go-
ing through the steps of Gaussian elimination as if the matrix involved contained
coefficients for a set of linear equations. For equations it is unusual and generally
an error for the matrix to be found to be singular: for a null-space finding algo-
rithm this is just what is expected and the null vectors amount to nothing more
than a record of how and when singularity was found.

If a basic set ofj independent null vectors are found then all solutions to our
original equation can be expressed as linear combinations of these. Since we are
working (mod p) these linear combinations can only have numbers in the range
0 top − 1 as coefficients, and so a grand total ofpj solutions forv(x) exist.

32

Deriving factors: Ifu(x) divides exactly into(v−0)(v−1)...(v− [p−1]) then
necessarily all the factorswi(x) also divide into it. But except for the dull case
thatv is a constant,(v−0), (v−1) and so on are all pairwise coprime, and so this
means that eachwi must divide exactly into some particular one of the(v − s).
This leads to the observation that given some particular factor w1 (say) and one of
ourv polynomials, there is a constants such that:

w1 divides exactly intou(x) [of course it does!],

w1 divides exactly into(v(x) − s).

Sincew was a proper factor ofu(x) its degree is greater than zero, and since
it divides intov(x)− s its degree is at most the same as that ofv, which is in turn
strictly less than that ofu. Sou(x) andv(x)−s have aw as a common factor. We
computeg as their greatest common divisor. The polynomialg will be either the
factorw1 itself or some multiple of it, but since the degree ofg is less than that of
u the identity

u(x) = g(x)(u(x)/g(x))

has exhibited a non-trivial split ofu(x). There is no way of telling what values
will work in the above, but provided the primep is fairly small it is quite cheap
enough to try all the possible values 0, 1, . . . ,[p − 1] until one is found to lead to
a factorisation ofu(x).

In fact the number of independent null vectors that are foundis exactly equal
to the number of irreducible factor thatu(x) will have, and by performing gcd
operations betweenu(x) and terms of the form(v − s) letting v range over the
null space basis ands over the numbers from 0 to[p − 1] it is always possible to
complete the factorisation ofu(x).

Example: Factoriseu(x) = x7 + x5 + x3 + x2 + 1 modulo the prime 2.
Start by writing down

x0 − x0 = 0

x2 − x1 = x2 + x (mod u(x)), (mod 2)

x4 − x2 = x4 + x2

x6 − x3 = x6 + x3

x8 − x4 = x6 + x3 + x

x10 − x5 = x4 + x

x12 − x6 = x5 + x2 + 1.

33

The right hand sides are just the remainders left when the left hand sides are
divided byu(x), and so in the first 4 cases where the degree of the left hand side
is less than that ofu(x) all that has happened is that mod 2 arithmetic has allowed
us to write+ instead of−.

This makes theQ matrix:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

• • • • • • •
• X X • • • •
• • X • X • •
• • • X • • X

• X • X • • X

• X • • X • •
X • X • • X •

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and I can exhibit two independent null vectors:

[1, 0, 0, 0, 0, 0, 0]
and [0, 1, 1, 0, 0, 1, 0].

You can check that if you multiply either of these row vectorsby the matrix
(mod 2) you get zero. Once again I am not going to go into the finedetails of the
(simple) calculation that leads to this null space basis - I will just go on from the
fact that I have v-polynomialsv1 = 1 andv2 = x5 + x2 + x to work from. The
fact that there are two independent null vectors indicates that my polynomial will
have 2 factors. I now compute

gcd(u, v1 − 0), gcd(u, v1 − 1), gcd(u, v2 − 0), gcd(u, v2 − 1)

and expect one of these to be non-trivial. In this case it turns out thatgcd(u, v2 −
0) = x4 + x + 1, and so this is one of the factors ofu. The other is easily found
(by dividing the known one intou(x)) to bex3 + x + 1, and since we knew that
u(x) had just two factors we are finished.

Observations: For large primesp this algorithm becomes costly because of
the need to try all possible values ofs. It is therefore usual to use it with primes
in the range (say) up to 100. The casep = 2 can be handled particularly neatly
using bit-vectors to represent all of the polynomials and exclusive-OR and shift
instructions for some of the operations on them. For large primes (e.g. about the
size of a machine word) there are slightly more elaborate variants on the algorithm
- see Knuth vol. 2 for some pointers. A coded version of the complete algorithm
is no more than a couple of pages long.

34

4.5.4 Algebraic number arithmetic

The natural technical follow-on to gcd and factorisation algorithms involvealge-
braic numbers. These are values that arise as the roots of polynomial equations.
Thus values such as

√
2 and 3

√
5 are covered, as will be the imaginaryi and the

roots of any higher degree equation such asα5 + α + 1 = 0.
Three main approaches are taken, and these correspond to different interpre-

tations of what a symbol such as
√

2 really stands for:

1. Root isolation: Given a polynomialu(x) set up a sequence of polynomials
si with s0 = u, s1 = u′ andsi+2 = −remainder(si, si+1). Note that apart
from the negative signs this is just a PRS. Now look at the curious function
S(z) which counts the number of sign changes in the sequences0(z), s1(z),
. . . . For any rational numberz with u(z) 6= 0 it is clearly possible (if
perhaps expensive) to compute the integerS(z) quite unambiguously. Now,
as I hope I will be able to make slightly plausible by drawing pictures on
the blackboard,|S(z1) − S(z2)| gives the number of real rootsu(x) has
betweenz1 andz2! Given this tool (A Sturm Sequence, but note it is just
another sort of PRS)) the roots ofu can be counted and isolated to utterly
arbitrary accuracy.

2. Minimal Polynomial Arithmetic: Represent any algebraic number by a
symbol and a polynomial equation that it satisfies. Thus for

√
2 write (ω :

ω2 − 2 = 0) and for 3
√

5 use(η : η3 − 5 = 0). Note that this representation
simultaneously allows for both the

√
2 that is about 1.414 and the one that

is -1.414, ie. what is being represented is really±
√

2.

To combine values that are represented this way is actually rather straight-
forward. Consider the addition of the the values mentioned above. Write
out a set of equations:

ω2 − 2 = 0

η3 − 5 = 0

ν − (ω + η) = 0

where the first two equations are the definitions ofω andη and the final one
expresses the arithmetic operation being performed. Now just eliminateω
andη from these equations to leave one in justν and a representation for
the algebraic number sum has been derived as required. Hah! Eliminating

35

variables between polynomial equations was what resultants were about,
and again we are really using a method based on the PRS.

3. Reduction rewrites: Set up rewrite rules like(
√

2)2 → 2 andi2 → −1.
Apply these throughout your calculations whenever possible. Hope or ex-
pect that this will lead to consistent and well-simplified results. A major
problem that can arise with the use of rewrites is that sometimes some com-
plicated rewrites can interfere with each other so that the order in which
reductions are performed influences the final result produced. For polyno-
mial rewrites it is possible to extend any initial set of rules into a so-called
Groebner base which has the good property that whatever strategy is used
for selecting rewrites to apply the same end result will always be obtained.
Algorithms for the construction of Groebner bases have beena central part
of research into Computer Algebra over the last about 15 years, and you
should inspect the specialist literature if you want to knowmore about them
or about more of their applications.

4.6 Exercises

4.6.1

Find an example that illustrates that when the sum(a/b) + (c/d) is evaluated as
(a(d/g)+ c(b/g))/(b(d/g)) [whereg = gcd(b, d)] the final quotient can still need
a common factor removed from the numerator and denominator.

4.6.2

Show how to form the product and quotient of(a/b) and(c/d) using sequences
of small gcd calculations rather than a single large one. Note that it is possible
to exploit the fact that the incoming expressions should already be in their lowest
terms and so gcd(a,b)=gcd(c,d)=1 can be assumed.

4.6.3

Use Berlekamp’s algorithm to find a polynomial of the formx16 + xn + 1 which
is irreducible mod 2. Clearlyn will be in the range 1 to 15, and an argument
of symmetry shows that it is only necessary to considern from 1 to 7. A value
of n that gives an irreducible polynomial corresponds to the position of a tap in
a feedback shift-register (as shown below) that will cycle with largest possible

36

period: such shift registers can be used to generate checksums or pseudo-random
bitstreams.

XOR��
��

stage 15

stage n-1

6

?

0 1 2 14 15- - - - ... - -

Each stage in the shift-register is a D type flip-flop (all driven by a common clock
signal), with the shift register’s input being derived by forming the exclusive OR
of the output from the final and some intermediate stage. Possible lengths of
cycles in the bit patterns generated by this arrangement arerelated to the factor
structure (mod 2) of a polynomial that has 1 coefficients at the places where taps
are taken from the shift register. Textbooks on error correcting codes (e.g. Peter-
son, 19xx) provide further explanation and background: it was for the analysis of
this sort of circuit that Berlekamp’s algorithm was first introduced.

5 Transcendental Functions

5.1 Introduction

Consistent algebraic calculation with formula involving transcendental functions
is difficult. In particular, for many of the classes of algebraic formulae that seem
natural it is known to be impossible to produce a systematic way of determining if
an expression is zero or not. IfE is an expressions which might possibly be zero,
but there again might not be, the simplification of formulae such asAE+B can not
proceed. Other questions become hard to answer: the expressionsEexp(x2) + x
has an integral in closed (elementary) form if and only ofE = 0, and so the
inability to decide if an expression vanishes means that it is impossible to exhibit
a reliable and complete integration algorithm.

A frustrating aspect of the main undecidability result for algebraic simplifica-
tion is that key technical aspects of the proof suggest strongly that current under-
standing in the area is incomplete, and that the pessimism expressed above may
not be entirely justified. To explain this, a sketch of a proof(due to Richardson)

37

that identifying real-valued functions that are in fact zero will be given. Many
details of the proof will be omitted or glossed over, but the line of argument given
can be made watertight. The purpose of showing this proof is so that a certain key
oddity in it can be exposed and not with the intent that the proof as a whole be
followed in detail.

Richardson’s result shows that there is no algorithm that will reliably deter-
mine if a real function of a single real variable is in fact identically zero. The
class of functions it allows are built up from the variablex, the constantπ and
the integers, using the four normal arithmetic operations,together with uses of the
normal elementary functions:sin, cos, exp, log and sqrt. It is supposed that any
expression that can be shown to have a constant value can be tested to see if it is
zero. If this were not true then deciding if expressions werezero would certainly
be undecidable! Richardson restricts his analysis to real values. Since thelog and
sqrt functions are (in this context) undefined for negative arguments, a function
from the class considered may be partial. The result proved will show that it is
impossible to tell if the function is zero at such places as ithas a value, thereby
allowing for formulae such as((x/x) − 1) which are certainly zero everywhere
except atx = 0, but are undefined there.

The proof proceeds by assuming that there was an algorithm todecide if func-
tions from the given class were zero, and shows how this wouldimply an algorith-
mic solution to a different problem that has already been shown to be algorithmi-
cally undecidable. The known undecidable problem is that ofsolving Diophantine
equations: that is finding sets of integer values that resultin given multivariate
polynomials (with integer coefficients) vanishing. Of course given any particular
Diophantine equation it may be possible to find the solutions: the thing which can
not be done is to produce a single algorithmic method that guarantees to solve any
such equation in a finite amount of time. (In this context solving also includes the
case of deciding that an equation does not have any solutionsin terms of whole
numbers).

Richardson shows how, for any given Diophantine equation, itis possible to
derive an analytic function of one variable such that that function being identically
zero corresponds means that the Diophantine equation has nosolutions. Thus if
it were possible to test the function for zero it would be possible to tell that the
Diophantine equation could not be solved, and that is known to be impossible.

The first step in the derivation of this result looks like the first cheat! Con-
sider a polynomial equation P(x,y,z)=0 where we are only interested interested in
solutions where x, y and z take integer values. Then for any such solution it is

38

certainly true that

P (x, y, z)2 + sin(πx)2 + sin(πy)2 + sin(πz)2 = 0

and indeed a similar statement can be made however many variables were present
in the original formula. Furthermore if we restrict our attention to real values
the new function can only possibly be zero at places that are integer solutions to
P = 0 even ifx, y andz are now thought of as variables that can range over all
possible real values.

The next step shows that from any multivariate function (forinstance the one
just written down) it is possible to derive a function of one variable which takes
the value zero at places related to the zeros of the original function. The essence of
this is the construction of packing functionsp1, p2,. . . (details are not given here)
and the replacement of

f(x, y, z)

by
f(t) = f(p1(t), p2(t), p3(t))

where ast varies the functionsp1, p2, . . . arrange that all possible integer values
of x, y andz are visited eventually. Despite the fact that this may seem peculiar,
this sort of packing transformation is a standard tool in theanalysis of what is
computable and what is not.

The univariate functionf(t) is now multiplied by a large positive value so that
any nonzero minima off(t) are scaled to have value greater than 1. Inventing
a scale value (which will in fact be a function oft derived from the expression
that representedf(t)) is not a particularly obvious step, but can be done. If the
scaled univariate function isF (t), then we now haveF (t) > 1 except in the
immediate vicinity of a place whereF (t) = 0, and these places correspond to
integer solutions of the Diophantine equation we started from.

Finally, Richardson shows how to switch from consideration of whether a
function takes the value zero anywhere to a test on whether ittakes a non-zero
value anywhere. He observes that since we are working in realnumbers, he can
express a version of the absolute value function as, for instance abs(x) = (

√
x)2.

If the use of a square root is objected to he can achieve the same effect using
exponentials and logarithms. He then definesh(x) = (abs(x − 1) − (x − 1))/2
and a quick sketch of the graph ofh(x) shows that if its argument is less than 1
it is nonzero, while ifx > 1 thenh(x) vanishes. This is enough to show that
h(F (t)) can only have nonzero values ifF (t) takes values less than 1 somewhere,

39

and hence iff(t) has roots. So any procedure that can find out ifh(F (t)) is ever
nonzero can be used to solve arbitrary Diophantine equations!

In the above proof the most objectionable step is the synthesis of the absolute
value function as(

√
x)2, which amounts to the synthesis of a non-analytic func-

tion out of several analytic ones, but it has been found amazingly difficult to find
any general way of prohibiting that while still allowing forcalculations with an in-
terestingly rich collection of functions. One obvious possibility would be to work
with complex numbers rather than reals. Doing so reveals that the oddity relat-
ing to the absolute value function is just the tip of a huge iceberg of oddities and
problems that arise when complex-valued functions can havemultiple branches.
For instance when working with algebraic formulae over complex numbers it is
not obvious that

√
x =

√
x or log(x) = 2iπ + log(x) until somebody has decided

if the characters we use to stand for a function should represent one branch or all
possible ones, or what!

5.2 Reducing the number of distinct functions

A good pragmatic approach to calculating with higher functions is to try to avoid
it, or at least reduce the number of potentially interactingfunctions that are present
in the formulae to be worked with.

5.3 Algebraic independence

If we have a formula that involvesx, log(x) and sin(1/x) it might make sense
to try replacing the two nasty functions by new symbols,y andz say. That will
reduce the formula to just a rational function which we already know how to cope
with. The only extra effort needed will be to remember thaty andz need special
treatment when differentiated, for example dy/dx = 1/x. The case above will
in fact survive this re-interpretation, but if the originalformula included various
closely related functions (eg.exp(x) andexp(2x + 1) or log(x) andlog(5x2), or
even just

√
x2) the rational function version of the formula would fail to capture

important aspects of the original.

5.4 Structure Theorems and their uses

A Structure Theorem is a procedure for testing if a collection of exponentials
and logarithms (or whatever) are sufficiently independent that renaming them into
rational function variables is safe. The lectures will sketch the process applied in

40

either the exponential or logarithmic case. If the functions present in an original
formula do not pass the test of a structure theorem the technology provides no
guidance about what can or should be done — the idea is just to certify various
good cases where reliable calculations can be performed anddisallow the sorts of
things that allowed Richardson’s pessimistic result to be proved.

5.4.1 Risch’s Integration algorithm

The main technical triumph built on top of the idea of structure theorems is algo-
rithmic indefinite integration. The idea behind this is thatin well behaved cases it
is possible to predict the form that an integral will have (ifone exists). A general
expression (with a load of undetermined coefficients in it) of that form is then
written down and identified with the original integral. After differentiating both
sides the use of a structure theorem makes it valid to consider everything as ra-
tional function calculation. In particular it is permissible to compare coefficients,
and doing so leads to a bunch of linear equations that can be solved to find values
for the unknown coefficients that had been introduced. If thelinear equations can
be solved an integral has been found, otherwise the lack of a solution amounts
to a proof that no integral in closed form exists. There are special (and extreme)
complications that arise when integrands start off with square or higher roots, or
when higher transcendental functions (error functions etc)̇ are to be handled, and
not all combinations can be coped with, but the vast majorityof the integrals re-
quired in engineering applications can now be done by computer much faster and
more reliably than either hand work or inspection of books oftables allows.

6 REDUCE keywords and switches

Note that Reduce10 is an evolving system — new releases come out every couple
of years and these always add a number of new operators and capabilities. In
some cases awkward old syntax is replaced by a neater way of expressing things.
The list will therefor not always contain a complete list of the functions that are
available, but it does include the ones most important for any examples you might
want to try for this course.

ABS Computes the absolute value of an expression

10And of course all the other major algebra systems.

41

ACOS Arc-cosine
ACOSH Arc-cosh
ADD Alternative for+
ALGEBRAIC Used when switching between algebraic and symbolic modes.
ALLBRANCH Switch. Used with SOLVE. (on)
ALLFAC Switch. If on, expressions are displayed with common

factors first. (on)
AND Logical operator
ANTISYMMETRICDeclares operators to be antisymmetric in their arguments.
ARGLENGTH Number of arguments of top level operator in expression.
ARRAY For declaring arrays.
ASIN Arc-sine
ASINH Arc-sinh
ATAN Arc-tan
ATANH Arc-tanh
BEGIN END Compound statement.
BYE Finishes Reduce job, clears it from memory.
CARDNO!* Fortran output option.
CLEAR For removing assignments and substitutions.
COEFF partitions polynomial expression into coefficients
COMMENT Text betweenCOMMENTand ; or $ is ignored.
COMP Switch. Used to invoke Lisp compiler. (off)
CONS Alternative for dot operator (more usual to use.).
CONT Used to continue file input which has beenPAUSEd.
CONVERT Switch. If on, integral real coefficients are replaced

by integers (on)
COS Cosine
COSH Hyperbolic cosine
COT Cotangent
CREF Switch. If on, does a cross-reference analysis. (off)
DEFINE To define synonyms for Reduce keywords and indentifiers.
DEFN Used in symbolic mode.
DEG Leading degree of polynomial in given variable.
DEMO Switch. If on, press return to execute next command

from file input. (off)
DEN Denominator of a rational expression.
DEPEND Sets up dependencies between variables/kernels.
DET Determinant of matrix.

42

DF Partial differentiation of expression.
DIFFERENCE Take difference between two arguments (more usual to use-).
DILOG dilogarithm.
DISPLAY For displaying previous inputs.
DIV Switch. If on, displays have rational fractions,

negative powers. (off)
DO Used inFORloops and withWHILE
E The base of natural logarithms (2.71828...).
ECHO Switch. If on, file input is echoed in display. (on)
EDITDEF Allows interactive editing of user defined procedure.
ED Allows interactive editing of any previous command.
END Terminates aBEGIN ENDblock or a file.
EPS High energy physics: antisymmetric tensor of order 4.
EQ Used in symbolic mode
EQUAL Alternative to=
ERF Error function.
EXP Exponential function.
EXP Switch. If on, expressions are expanded during evaluation.(on)
EXPINT exponential integral.
EXPR Used in symbolic mode.
EXPT Alternative for** or ˆ (raising to a power).
EZGCD Switch. If on, withGCDon, uses EZ-GCD algorithm to

compute gcds. (off)
FACTOR Switch. If on, expressions are displayed in factored form. (off)
FACTOR Declares expressions as factors for displays.
FACTORIZE Factorizes polynomial expression.
FAILHARD Switch. If on, impossible integration returns error. (off)
FIXP Returns true if expression is integer, else false.
FLOAT Switch. If on, allows use of floating point numbers. (off)
FOR Start of program loop.
FORALL LET Declares new substitution rule(s).
FOREACH Used in symbolic mode.
FORT Switch. If on, display is in a Fortran notation. (off)
FORTWIDTH!* Fortran output option.
FREEOF True if first argument does not contain second argument.
G High energy physics: a Dirac gamma matrix expression.
GCD Switch. If on, greatest common divisors are cancelled. (off)
GCD Returns the greatest common divisor of two polynomials.

43

GEQ Alternative for>=
GO (TO) For use with a labelled statement withinBEGIN END.
GREATERP Alternative for>
HIPOW!* Set to highest non-zero power whenCOEFFis used.
I Square root (-1).
IF THEN ELSE Conditional statement.
IN Takes input from external Reduce file(s).
INDEX High energy physics
INFIX Declares new infix operators.
INPUT Used to reference previous inputs in new computations.
INT Switch. Controls whether file input is batch or not.

(default depends on implementation)
INT Integration
INTEGER Declares local integer variables inBEGIN ENDblock.
KORDER Declares internal ordering for variables.
LAMBDA Used in symbolic mode.
LCM Switch. If on, least common multiple of denominators

is used. (on)
LCOF Leading coefficient of polynomial.
LEQ Alternative for<=
LESSP Alternative for<
LET Declares substitutions.
LINEAR Declares operators to be linear in their arguments.
LINELENGTH For setting output linelength - see Manual.
LISP Synonym forSYMBOLIC.
LIST Switch. If on expressions are displayed one term to a line. (off)
LOAD Used in symbolic mode.
LOG Natural logarithm
LOWPOW!* Set to lowest non-zero power whenCOEFFis used.
LTERM Leading term of expression.
MACRO Used in symbolic mode.
MAINVAR Main variable of polynomial.
MASS High energy physics: assign masses to vectors.
MAT Used to assign values to matrices.
MATCH Declares substitutions (less flexible thanLET)
MATRIX Declares matrix variables.
MAX Returns maximum of any number of numerical expressions.
MCD Switch. If on, makes common denominators when adding

44

expressions. (on)
MEMBER Used in symbolic mode.
MEMQ Used in symbolic mode.
MIN Returns minimum of any number of numerical expressions.
MINUS Alternative for-
MODULAR Switch. If on, does arithmetic moduloSETMOD. (off)
MSG Switch. If off, warning messages are not displayed. (on)
MSHELL High energy physics: puts variables “on the mass shell”.
MULT Alternative for*
NAT Switch. If off, display is in form that could be used

for input. (on)
NEQ Not equal to.
NERO Switch. If on, zero assignments are not displayed. (off)
NIL Synonym for zero.
NODEPEND Removes dependencies created byDEPEND.
NOLNR Switch. Integration: may be useful if no closed form

solution. (off)
NONCOM Declares operators to be non-commutative for multiplication.
NOSPUR High energy physics: (traces and Dirac matrix calculations).
NOT Logical operator.
NUM Numerator of a rational expression.
NUMBERP True if argument is a number, else false.
NUMVAL Switch. If on, expressions are evaluated numerically. (off)
OFF Turns off the named mode switches.
ON Turns on the named mode switches.
OPERATOR Declares new prefix operators.
OR Logical operator.
ORDER Declares an ordering for variables in displays.
ORDP True if first argument is ordered ahead of second argument.
OUT Directs output to named file or to terminal (OUT T;).
OUTPUT Switch. If off, there is no printing at the top level. (on)
OVERVIEW Switch. Factorization: connected withTRFAC. (off)
PART Extracting parts of expressions
PAUSE In file input, offers option of continuing from terminal.
PERIOD Switch. Fortran output option (re inclusion of decimal

points). (on)
PFACTORIZE Factorizes univariate polynomial, modulo given prime.
PGWD Switch. Used in symbolic mode. (off)

45

PI Circular constant.
PLAP Switch. Used in symbolic mode. (off)
PLUS Alternative for+
PRECEDENCE Sets precedence of new operators declared byINFIX .
PRECISION Sets precision for real arithmetic, used withON ROUNDED.
PRET Used in symbolic mode. (off)
PRI Switch. If off, all output declarations and switches are

ignored. (on)
PROCEDURE Names statement(s).
PRODUCT Used withFORto find products.
PUT To define synonyms forALGEBRAICor SYMBOLIC.
PWRDS Switch. Used in symbolic mode. (on)
QUIT Exit from Reduce.
QUOTIENT Take ratio of two arguments (more usual to use /).
RAISE Switch. If on case of letters is ignored in keywords,

expressions. (on)
RAT Switch. Used withFACTORfor displaying expressions. (off)
RATIONAL Switch. If on, polynomials use rational numbers. (off)
REAL Declares local real variables inBEGIN ENDblock.
RECIP Take reciprocal of argument (more usual to use 1/argument).
REDERR Print error message.
REDUCT Reductum of expression with respect to variable.
REMAINDER Remainder when first polynomial is divided by second.
REMFAC Clears the effect ofFACTOR.
REMIND High energy physics: removes the effect ofINDEX.
REPEAT UNTIL Provides repetition
RESUBS Switch. If off, no resubstitutions are made after the

first. (on)
RESULTANT Resultant of two polynomials with respect to given variable.
RETRY Tries to do the command in which the last error occurred.
RETURN For transfer out ofBEGIN END.
ROUNDED Switch. If on, gives real number evaluation

(seePRECISION). (off)
SAVEAS Alternative forx:=ws$
SAVESTRUCTR Switch. If on, causesSTRUCTRto store results. (off)
SCALAR Declares local variables inBEGIN ENDblock.
SETQ Alternative to:=
SETMOD Sets modular base, used with mode switchMODULAR.

46

SHARE Used in symbolic mode.
SHOWTIME Displays the elapsed time since lastSHOWTIME.
SHUT Closes output file(s).
SIN Sine
SINH Hyperbolic sine
SMACRO Used in symbolic mode.
SOLVE Solves one or more simultaneous equations.
SOLVEINTERVAL Switch. If on, inexact roots are represented by

intervals. (off)
SOLVESINGULARSwitch. If on, solutions may include arbitrary

constants. (on)
SOLVEWRITE Switch. If on, solutions are displayed. (on)
SPUR High energy physics: traces in Dirac matrix calculations.
SQRT square root
STEP UNTIL Used inFORloops
STRUCTR Displays the structure of an expression.
SUB Replace variable by expression in an expression.
SUCH THAT Used inFORALL LET
SUM Used withFORto find sums
SYMBOLIC Used when switching between algebraic and symbolic modes.
SYMMETRIC Declares operators to be symmetric in their arguments.
T Cannot be formal parameter or local variable in procedure.
TAN Tangent
TANH Hyperbolic tangent
TERMS Number of top level terms in numerator of argument.
TIME Switch. If on, cpu time used by each command is

displayed. (off)
TIMES Alternative for*
TIMINGS Factorization: connected withTRFAC. (off)
TP Transposes a matrix.
TRACE Trace of a matrix.
TRFAC Switch. Factorization: if on, traces operation of

the algorithm. (off)
TRINT Switch. Integration: if on, traces operation of the

algorithm. (off)
UNTIL Used withFORandWHILE
VARNAME Fortran output option, for naming expressions.
VECDIM High energy physics: setting dimensions

47

VECTOR High energy physics: declaring vectors.
WEIGHT Asymptotic commnad for assigning weights.
WHILE DO Provides repetition
WRITE Displays expressions, strings.
WS Used to reference previous outputs for new computations.
WTLEVEL Asymptotic command to reset weight level (default 2).
! * MODE Displays the current mode (algebraic or symbolic).
; Terminator for a command, result is displayed.
$ Terminator for a command, result is not displayed.
:= Assignment symbol
. Dot operator, and decimal point.
<< >> Indicates a group statement.
() Simple brackets.
: May replaceSTEP 1 UNTIL in FORloops, also use with labels.
, Used as separator in lists.
" " Delimits text inWRITEstatement.
% Text between % and end of line is ignored.
! Is an escape character for special symbols in an identifier.
’ Used in symbolic mode.
{ } Used to write lists.

The following arithmetic operators have their usual meaning on algebraic ex-
pressions (** andˆ are synonyms):

+ - * / ** ˆ

The following relational operators have their usual meaning for comparing
numbers:

= >= > <= <

48

