Algebraic Manipulation

A. C. Norman

January 1994

1 Introduction

These notes cover the Lent Term lecture course on Computebsdg There are
now a number of plausible textbooks that cover the relevaneérnal too, but some
of them have quite ridiculous prices while others key thduesevery strongly to
one particular (perhaps commercial) algebra system, sal liffinard to produce
a clear-cut and simple recommendation on that front. | wéhtion some of the
options in the lectures but have tried to collect the topheg heed most careful
documentation here. In parts of the course where | thinktti@tectures them-
selves can give adequate coverage these printed notes mayedate to section
headings or cryptic comments.

There are a number of different algebra systems availakeletdays, and it
can be useful to try examples out on one of them. This can beghygu an un-
derstanding of why the various algebraic algorithms disedsiere are important,
and how the application of computer algebra feels. It showitimatter much
which system you use, but it is useful to have one single @eaayntax for ex-
amples included here. | have used REDUCE, since that is botstamsythat |
know well and it is also available to all of you both on Phoeaind CUS. To use
REDUCE on CUS you will need to set up some Unix environment viagabe-
fore starting the system itself — the “man reduce” entry akpd what has to be
done. Phoenix users should try “help reduce” to ensure ltiegthave up to date
instructions for loading the system. REDUCE can also run orosirany other
style or brand of computer you can think of, and there is adezaonstration ver-
sion for MSDOS which is not capable of solving huge problemisvizhich may
be helpful for the small-scale investigations needed irpsupof this course. A
full REDUCE manual is available on-line, but you almost certado not want
to print it all out, so to help with experimentation and geita feel for the system
I include a glossary of the operators, keywords and switthegtsare provided.

People who have their own copies of Maple, Axiom, Macsymathdanatica
or Derive will find that the same sorts of fundamental isswae up with those
system as do with REDUCE, and although the details of how thangexpressed
will differ most of this course should still be relevant. 1as numerical analysis
does not depend (much) on whether the processes are codartirami-C or ADA,
there is much useful that can be said about computer algeataranscends the
differences between particular packages.

This course covers Computer Algebra from two rather diffepamspectives.
The first views it as an area in which there are many intergstimd unexpected
algorithms to be described. It can thus be viewed as a spsEziagxtension of

the earlier “Data Structures and Algorithms” course iltaghg the challenges of
one particular application domain. In this context the ratf Computer Algebra
means that it can involve looking at algorithmic interptietas or uses of what
had previously seemed to be inapplicable pure mathemastisalts. A signifi-
cant amount of essential material on the algorithms neededmputer algebra
is included in Knuth’s “Art of Computer Programming” (mainiolume 2 on
semi-numerical algorithms). Despite the age of that woik gtill very readily
available and its explanation of (for example) the polyrain@CD problem is
quite sufficient for a first course.

The second thread in this course is in applications. As adgepstems be-
come more widely availablemany calculations which would previously have
been attacked by pure numerical methods will be treated shoally. When
this succeeds the results will frequently be more generadare reliable then the
results of numerical analysis. With this in view this coumsgludes some basic
ideas about the proper use of algebra systems, analogdus ants that will be
incorporated in a first course on numerical analysis. Perliag one overview
remark in this context is that algebra systems are genegapigcted to produce
exactly correct values — and the big problem with numericallysis is the con-
trol or (rounding) error. So how can anything possibly go mgaf you work
algebraically? The answer is that clumsy application oflgalaa system can use
all the memory and all the CPU time you have an still not procucesult, even
in cases where alternative approaches could turn out saautery short order.

2 Computing with Polynomials

2.1 Introduction

A common exercise in the use of programming languages thgtostidynamic
storage allocation and records is that of representing dfetehtiating algebraic
formulae. Formulae are represented directly as parse #ekktion, subtraction,
multiplication and so on just create new tree nodes, andtitutiisn, differen-
tiation and some other obviously useful operations areera¢iasy to code up.
Getting a user’s input into parse tree form is just a diregtiaption of material
from a course on compiler construction. Displaying a forantal typeset quality
can be harder, but is fundamentally a problem in text hagdimgraphics. Parse

1For at least the last 20 years algebra systems have beemp¢aseceby their designers) on the
verge of massive wide-scale acceptance.

trees can represent all sorts of formulae almost equally-wehodes can stand
for logarithms and trigonometric functions, or summationsntegrals. But it is
very difficult to answer questions about formulae (for ins&to detect if they are
zero!) or guarantee to simplify them properly.

A very good start towards a proper development of compuggtah is to con-
centrate on a very limited class of expressions — polynanigbr these (made
up out of coefficient€ and indeterminates using the operations of addition and
multiplication) everything can be made well-behaved. Anelven turns out that
many real-world applications of computer algebra requathimg more!

2.2 Canonical and Normal forms

A Canonical Form for a class of expressions is one that formulae in the retevan
class can be converted into such that any two equivalentuia@nget mapped
into exactly the same structure. Note that this may not betgxthe same as a
naive interpretation of the word “simplificaton”. For ineta a canonical form
for polynomials can be obtained by multiplying out all brats collecting terms
and then arranging the remaining terms in some standard @defor a formula
such as(a + b + ¢)'Y performing these steps causes a small and well-structured
expression to expand into something large and rather ugésple this a good
basis for a polynomial algebra system will involve a canahiorm.

A weaker idea than that of a canonical form is@mal form. Here the only
requirement is that when transformed any expression tlegiwvalent to zero gets
mapped onto the object “0”. Note that with a normal form it @spible to make
reliable comparisons (for equality) between pairs of egpians: to compare
andv just formu — v and reduce it to its normal form — if the result is visibly
“0” the two original objects were equal. Given such an equadist theoreticians
will assert that a canonical form can be produced. One eratesall valid ex-
pressions (is is not hard to show that there are only a colentaimber) and maps
each expression onto the first item in this enumeration thatdqual to. Such a
recipe is not very practical.

2usually just integers, but it is also reasonable, and sonestivery useful to support rational
numbers.

2.3 Distributed and Recursive representations

If you multiply (a + b + ¢)? out you can write the result as

1, 2 2 1, 2 1,
1a + 1ab+ 1ac+ 1b + 1bc+ 1c

where | have sorted the terms lexographically. Each ternaltaefficient (which
will be shown here as a rational number) and may mention akvariables each
raised to some integer power. This representation is knaaisaibuted. With
distributed representations it is often useful to suppbs¢ there are just a few
indeterminates and that their names are known in advanceer-dterm just has
to record the exponents associated with each indetermiAatexponent of zero
allows for variables not visibly present. So for instance filhst two terms of the

above expression could be represented as records:

1, 1: 2, 0, 0] % (1/1) x a2 % b0 * cO0
[2,1: 1,1, 0] % (2/1) xal * bl » c0

and complete polynomials are now just lists of terms. Theasgntation is clearly
easy to implement and work with.

An alternative scheme would viefs + b + ¢)? firstly as a polynomial in just
a, which expands out to

1a> 4 (2(b+ ¢))a' + (b + ¢)%a’.

Concentrating just on the top level of this structure it is mag out of terms
each of which has a coefficient, a main variable and a degrie.trick is that
the coefficients are now not just integers but they can benpoiyals in variables
that are “less important” that. The benefit of this recursive representation is
that many operations can be coded as if they were just worimgnivariate
polynomials (an easier case), allowing the power of reoursito the coefficients
deal with all the subsidiary variables.

If the terms in a polynomial are kept sorted then (in eithese¢adding poly-
nomials is (almost) the same as merging lists as used in As@Mye

Integration and differentiation of polynomials are baljcaasy term-by-term
operations.

2.4 Polynomial multiplication: unsorted representations

When one looks at polynomial multiplication it is slightlyrdar. Multiplication
by a single term is very easy. So multiplication by a geneadymomial can be

4

achieved by multiplying by each of the terms in it and addimg $ub-results so
generated. The bad news is that (unexpectedly, perhagsutinis out to have a
bad worst case cost. If the two input polynomials havandm terms in them
then naive multiplication can have cost proportionaltén. To show this is
unreasonable note that there are at worstterms in the product, so all the terms
can be generated imn stages, then ensuring that these are collected into the
correct order can be doneinn log(mn) steps.

The bottleneck is ensuring that the product polynomialesited with its terms
properly sorted. One way to respond to this challenge is te@tchat the terms
that make up a polynomial will not be kept in any special ardg&ut now com-
bining like terms on addition in a reasonably fast way becomaon-obvious
process. The lectures will explain an unordered merge ififigor(based on the
use of hash tables) that can leave addition of unsorted potials fast while re-
ducing the cost of multiplication to arouman steps. The main penalty of using it
is that polynomials when printed out will be presented whiit terms all jumbled
up, or maybe extra sorting effort will be required in the prisutines.

3 Computing with Truncated Power Series

3.1 Introduction

Many mathematical and physical problems do not have neatiso$ in closed
form, but do have solutions that can be expanded as seriesms of one of the
variables present in the problem. Even when closed forntisakido exist, these
series solutions will still usually be easier to find and adtras useful: this sec-
tion is concerned with the application of algebra systenthitotask. There are
many techniques available for deriving series solutioresjieations, and it should
be expected that whichever of these is used the same resliltseevproduced.
Examples given here will show, however, that there can bmaditia differences
in the amounts of computer time and memory that will be coresimhen differ-
ent approaches are taken to the solution of any given problérare can also be
large differences in the complexity of the mathematical emaputational conse-
guences of following different routes towards a solutianasuser has to develop
an awareness of the various possibilities for compromissden simple but slow
algorithms and elaborate and delicate but fast ones. Wheroiily necessary to
produce the first few terms in the series expansion of sorg &mple function it
will usually be appropriate to use the most direct methodaiviz, but even quite

modest looking problems can consume quite unreasonablarasof computer
time if attacked in too clumsy a way, and for large problenmgilitbe essential to
consider efficiency when planning solution techniques.

Even though proper power series are infinite in extent alul®mputation
with them will work with just their first few terms. The treaémt of power series
given here will treat the expansions as formal ones, thatsay it will not concern
itself with the question as to whether any given series cga or for what range
of its independent variable it gives how accurate an appraton to some true
result. Indeed there are some calculations that can quitgedly be performed
using series without any concern about convergence: faancs when the values
of individual coefficients in the series are more intergstiman the behaviour of
the series as a whofe Although truncated series are only approximations to the
function that they represent, the coefficients in them apeeted to be calculated
exactly using exact integer and fractional arithmetic: hirs tway the algebraic
approximation of a series has a different character to nigadeschemes that use
floating point arithmetic and where it is hard to produce fakdescriptions of the
introduced error.

The first example problem given here is somewhat artificiai vall make it
possible to introduce a number of the facilities of the Redalgebra system. It
is to find the coefficient o£° in the series expansion ¢f + x)'%. There are a
number of ways of attacking this problem. With access to gelak system the
easiest is probably just to displéy+ x)'°° with brackets multiplied out and pick
out the term inv?° by eye. The request to Reduce is just:

(1 + x)"100;

and the displayed result covers several pages. The nexémadim would be to get
Reduce to select out the required coefficient from the fulinfigla. This can be
done using the built-in selector functi@oeffn , which takes three arguments:
an expression to inspect, the name of a variable and theealaygteat variable of
the coefficient required. Thus the desired value can bealisglby:

coeffn((1 + x)°100, x, 20);

A rather different technique for solving our problem makesaurse to the
binomial theorem and an assertion that the desired valuesighe binomial co-

efficient'°°Cy,. To compute this we can define two Reduce procedures, one for

factorials and the second for binomial coefficients:

3eg. when the series is thought of as the expansion of someagiegefunction.

6

procedure fact n;
for i := 1:n product i;

procedure binom(n, r);
fact n / (fact r * fact(n-r));

binom(100, 20);

This produces results noticeably more cheaply than thetdsedection of the
2% term out of the fully expanded formula, but at the cost of igqg much more
mathematical knowledge and of being a method that is noboisly adaptable to
solving related problems, such as finding the coefficient?dfn (1 + x + 22)™.

Even this scheme provides for further variations. The d&bimpf binom(n,r)
given above is computationally wasteful and can be rewriie

procedure binoml(n, r);
if (2 *r > n) then

(for i := r+1:n product i) / fact(n-r)

else (for i := n-r+1:n product i) / fact r,

which makes an attempt to avoid multiplying factors into thsult if they will
subsequently be divided out. The definittunoml is slightly faster thabinom ,
but it will only make enough difference to be noticed in castgre very heavy
use is made of it. Conversely the same values can be definedrn t# a basic
identity satisfied by binomial coefficients:

procedure binom2(n, r);
if =0 or r=n then 1
else binom2(n - 1, r - 1) + binom2(n - 1, r);

As n increases the cost of using procedbireom2(n,r) grows very rapidly.
Calculatingbinom2(100,20) would certainly require that thkinom2 was
called with either=0 orr=n a number of times equal to the value eventually to
be returned, i.e. 535983370403809682970. On the fastesicReahplementa-
tions on large mainframes it could be that a million suchsegduld be taken per
second, in which case the entire calculation would compiesbout 17 million
years. Everbinom2(20,10) a very substantial calculation.

As a final attack on the original problem it is worth considgranother math-
ematical result that states that the terms in a series exjpaase related to the
derivatives of the function being expanded. In Reduce thvatere of y with

7

respect tax is obtained by writingdf(y,x) , and the nth derivative can be re-
quested adf(y,x,n) . Evaluating an expression at a valuéor the variablex

is performed using a construct of the fosub(x=v, <expressi on>). Us-
ing these we can obtain the coefficient we require by writursd:j

sub(x=0, df((1 + x)"100, x, 20)) / fact 20;

The method shown earlier usigeffn was only applicable if the expres-
sion being decomposed was built up using just the operatprs and«. This
scheme using differentiation is a little more expensive d¢arn be applied to a
much larger range of functions.

3.2 Simple iterative methods

When series expansions are produced it is almost invariflel\case that inter-
mediate calculations generate terms of much higher debgesewill be required
in the final result. 1t makes sense to discard such unwantedstas early in the
course of a computation as possible. In Reduce if termswith degreen or
more are to be ignored a directive of the form

let xX’n = 0O;

should be issued. This indicates that until further notimgtarms involvingz™ or
higher powers of should be suppressed. If at some later stage in a calcutaton
action is not required the rule introduced by thé&T” statement can be removed

by
clear x'n;

In the code given earlier to find the coefficient:o¥ in a large formula it
would have been sensible to issue

let x21 = 0O;

before calculating1 + z)'°° thereby avoiding a large proportion of the work that
want into finding high degree terms in the full expansion. WReduce is used
to compute with power series in some variabisay, the readability of the results
it produces is often enhanced by setting some output cditagd by saying:

factor x;
on div,revpri;

These do not have any effect on Reduce’s internal workingbewalues of
the algebraic results that it produces: they just cont@Ilftiimat in which results
are displayed. Their effects can be cancelled to return ta&es default print
style by

remfac X;
off div,revpri;

With these flags set and a truncation established so thatrpafe& higher
than (say) the 10th will not appear it is possible to consgitene techniques for
exploiting power series arithmetic.

The first of these to be considered is Picard’s method forsglerdinary dif-
ferential equations, which will be illustrated using theiationt’ = 1 +¢* (which
of course has the exact solutior= tan(x) provideds(0) = 0). Picard’s method
develops a solution to the equation starting from someain&pproximation by
repeatedly substituting its approximation into the rigahd side of the equation
and integrating to get a new approximation:

let x"11 = O;
factor x; on div;
it ;= 0;
fori ;=1 : 6 do
write tt = int(1 + tt"2, Xx);

Running this prografwill cause Reduce to display a succession of values for
the power series, and it will be observed that the initiahi®m the series stabilise
rapidly, and that in this particular case each integrateau to one more correct
term in the series. Note that the above code relied on the Redtegration oper-
atorint handing back a result with a zero constant of integratiois.dtso worth
noting how for even rather simple calculations the ratiamaihber coefficients
that get generated can become quite complicated.

For an example differential equation where the requiredtsmni has a nonzero
value atr = 0 considen’ = —r?¢’ for some known power serigs(here we will
useg = 1 + z). By choosingr(0) = 1/¢(0) this has an exact solution= 1/g.
Assuming that a suitable let statement is in force, the Redade is

g =1+ x;

4The code usett rather than just as the variable since REDUCE reserves ptaind will
get upset if you try to use it here.

r:=r0 := 1/ sub(x=0, Q);
for i := 1:10 do r := r0 + int(-r2 «df(g, Xx), X);

where it should be remarked tratb(x= <val ue>, <expr essi on>) makes
the specified substitution forin the given expression (used here to evalgpss
x=0), anddf(g,x) stands for the derivative @f with respect tox. With g set
up as shown this program computes the setiesz + 22 — 23 + ... which is
perhaps not very exciting. However if its initial line isetéd it can compute an
expansion of the reciprocal of any power series despitedtiettiat Reduce does
not have a built in capability for series division, and tresaniorthy of note. As
before this Picard iteration exhibits first order convergento obtainn correct
terms in the results it is necessary to perform the integmattepn times.

In cases where the function defined by a differential eqnaticknown, as in
the two examples given so far, the terms in a series expagsiorbe found by
differentiation, as in

tt := for i := 0:10 sum
(sub(x=0, df(tan x, x, 1)) / fact i);

which should generate the same seriestiforas was produced earlier. In many
cases it turns out that the Picard iteration produces wefadter even though it
at first seems to be doing more work. For instance a test omaille’) expan-
sion finding terms up to degree 204rshowed Picard’s method to be about 50%
faster than repeated differentiation. Obviously the cotr@nce will vary greatly
from problem to problem, and in some cases it will involveesrdf magnitude
differences.

The important thing in the above iterations is not the presear an integration
operator, but the fact that if an expansion correct to orderz is substituted into
the right hand side result will be an expansion correct toesbigher order. This
can be achieved by multiplication hyas well as by integration, as in

r .= 1;
for i ;= 1:10 do write r ;= 1 + X * [

which provides another way to computé(1 — x), and which can easily be ad-
justed to expand other quotients in series form. Iterat@rihis form can often
be derived by just separating an equation into a set of lgairms that do not
depend o and a correction factor that does. Even in cases where tefs miot
at first seem possible a little rearrangement can help: denghe problem of ex-
pandingy/1 + = as a power series. To find an iterative formula for deriving th

10

expansion itis necessary to put in a leading term for theresipa, and so express
the square root in the form + x¢. Then the fact that this is the square root of
1 4+ 2 amounts to the identity

(1+g¢?=1+z
and after a very small amount of rearrangement this leadsetadration

q =1
for i := 1:10 do g = (1 + X *q'2) | 2

which is certainly easier to program than a formula basedsenafi the binomial
expansions.

A somewhat similar form of rearrangement can be needed iffareintial
equation has terms in it which are multiplied by powerscpfas in Legendre’s
eguation

(1 -2y — 22y +n(n+1)y=0

where the need to divide byt — x?) can be avoided by rearranging the equation
to give a recurrence rule

dy = dy0 + int(x"2 *df(dy, X) + 2 *xxdy - n *x(n+l) *y, X);
y = y0 + int(dy, X);

with yO anddy0O providing initial conditions. Observe that in this casesitéa-
sonable to use the derivative dy in the right hand side of the first assignment
because it is immediately multiplied by, which compensates for the shift in
order produced in the differentiation.

The general idea behind Picard’s iteration is that evaigeatie right hand side
of the recurrence formula must produce a result correct tmlaeh degree in
than the previously best known approximation to the sofutio In many cases
each iteration will just increase the order of accuracy efdblution by one, butin
some cases (e.g. the one just given) each iteration mayase@ccuracy by two
(or even more) terms.

3.3 Newton’s method and second order convergence

Probably the best known iterative technique in numericallyesis is Newton’s
method. To find a solution to the equatigfz) = 0 it starts with some initial
approximationz, and defines a sequence of further approximations by

Zn4l = Zn — f(zn)/f/(zn)

11

Except when the solution farthat is being found is a repeated rootfdt) =
0 this iteration exhibits second order convergence, ie. theber of correct digits
in the approximations,, roughly doubles each timeincreases by one. This very
general iteration can be applied in the context of poweeseralculations. The
initial approximation can almost always be taken to be jostiéading (constant)
term of the desired series, and this is usually trivial to fimtie general form of
the iteration involves a power series division, and altliosgme algebra systems
support this directly Reduce does not. However the requinetient can be com-
puted using a special case of the Newton iteration itself. stgiem the function
f(z) =y —1/z, thenf(z) = 0 will be solved wher: = 1/y. f'(z) = 1/2% and
so Newton’s iteration simplifies to something in which noisiion is present. A
suitable starting value fox, will be obtained by substituting = 0 into the power
seriesy to obtain the leading term, which being numeric can be diviole Thus
the program for computing a power series affgy becomes

z == 1 / sub(x=0, v);
for i ;= 1:n do z = z *(2 -y *2);

together with a suitable let statement that will avoid temits too high a degree
in from accumulating. Second order convergence in this commans that
each step in the iteration doubles the number of corrects@nnthe series, and
so if for example an expansion correct to termsitis required it will be neces-
sary to make the iteration count (n the program fragment) four. This iterative
scheme for computing the reciprocal of a power series camblegged to provide
a general series division capability for Reduce by encapegld in a procedure:

let Xx’16 = O;

procedure tpsquotient(a, b, X);
begin
scalar z, z1;
z ;= 1 / sub(x=0, b);
repeat << z1 = z;
z =z*(2 -2z *b)
>> until z = z1;
return a *z
end,;

The procedure tpsquotient will always perform one unneagsiseration at
the end of computing, the reciprocal ob, since it decides when to stop by

12

observing when Newton’s formula does not lead to a chandeeindlue of:, but
in almost all circumstances this small inefficiency will be&important. Some of
the work done by the above procedure is unnecessary for@n@ason: during
early stages in the iteration it is known that the intermediasults will only be
accurate to low order in terms of powersafbut the globalLET X"16 = 0
reduction does not reflect this. A more refined version of tigeréghm would
arrange to truncate all intermediate results to keep thélesh@ossible number
of terms in them. With Reduce the heavy usé BT andCLEARthat this would
involve is clumsy, and for second order (where only a very tgwles of the
iteration are needed) the extra complication is usuallywathwhile.

Having synthesised a power series division procedure ibvg @asy to use
Newton’s method to more elaborate equations. For instamcinfiy = /a
wherea is some formula such ds+ = can easily be achieved by starting with

y = sqgrt(sub(x=0, a));
and using the iteration
y = (y + tpsquotient(a, y, X)) / 2;

and for simple formulae a the results will match those thalc¢cbave been pre-
dicted using binomial expansions. The scheme is, howegeally easily used on
problems where the solution can not obviously be obtainkdratise. Consider
the equation

2’ —y=1+=x
and the problem of expanding its solutignas a power series im. It is first
necessary to consider an initial approximation, and thmsesfound by discarding
all instances of: from the original problem to leave

2y’ —y =1

which has a solutiog = 1. For this particular equation the other potential initial
values for y are complex, and it might be that the originafathe problem can
indicate that only a real solution is required: otherwisgauld also be necessary
to consider the other possible starting valueg/fafiz the complex numbers-1-+
i)/2and(—1—1)/2.

Newton'’s formula then dictates the iteration to be used:

Ynt1 = Un — (202 —yn — 1 —) /(692 — 1)

and this translates directly into a program

13

y = 1;
for i :=

1:4 do
y =

y - tpsquotient(2 *y'3-y-1-x, 6 *y'2-1, X);

As for the reciprocal program the number of correct term&@result double
each time the iteration is used, and so a very small numbeyabé< of the loop
will usually be adequate. By changing the first line of the abfremY:=1; to
Y:=(1+1)/2; the same program would find an expansion for one of the other
solutions to the original equation. In a similar way the peog that finds,/1 + =
using Newton’s method will naturally find the other solutimny? = 1 + z, i.e.
—+/1 + x, if started with—1 as an initial value foy.

Applying the iteration

Zn+l = Zp — f(Zn)/f/(Zn)

involves repeated evaluation of the derivatif/¢z,) and division by it, both of
which may be expensive operations. A simple modificatiorhefNlewton Raph-
son iteration keeps using the initial approximationfto(which is often just a
number), so that each step in the iteration is faster:

Znp1 = 20 — f(20) /' (20).

This modified Newton’s method generally exhibits first ordenvergence, but in
cases where the functiofi is more complicated than f the reduced cost per step
can result in it be more efficient overall.

3.4 The use of undetermined coefficients

The discussion so far has concentrated on the order of agcafaeries expan-
sions. In the following section an alternative view will beepented. This consid-
ers the leading error term in an approximation, and attetopédiminate it. The
result will generally be a new approximation where the legds of higher degree,
and so this new leading error term will be eliminated next. Wexpressions are
dense (ie. almost all possible terms in the expression aept) there is no prac-
tical difference between repeated approximation methgdeessed as iterations
over the degrees of formulae and those thought of as the ssiceelimination of
leading error terms. For sparse expressions, however,hgi@rm methods can
lead to useful saving.

14

3.4.1 Series reversion

Consider the problem where a functigfx) is defined by a power series
Yy =yo+ e+ ypr’ + ...

and it is desired to express x as a function of y, also in séores:
x:x0+x1y+a¢2y2—l—...

The coefficients:; can be derived using a repeated approximation algorithis. It
first necessary to exhibit the initial terms of the expansiBg drawing a graph

of y againstx it can be seen that the problem is only a sensible ong i&

xo = 0, and in that case; = 1/y;. The dependence of the remainimgon

the known coefficientg; can be derived in a step by step manner. Thus to find
x5 a provisional expansion far is set up with a new indeterminate acting as an
undetermined value far,. Here the symbat will be used, and so to order 2 ip

= (1/y)y + 2y>.

This can now be substituted into the original identity, kegponly those terms
with degree no higher than 2 im The two sides of the identity should be in
agreement in their constant and linear terms (because dise terms in the ex-
pansion forr were supposed to be correct already), and sgttierm can be used
to give an equation to be solved farThis establishes that = —,/y3. If higher
order terms are required the same sequence of steps carebéaepRe-using the
symbolz, to order 3 iny,

= (1/y1)y — v /yiy* + 29°.

and substituting this into the equation fgrin terms ofx will again lead to an
equation which can be solved to fing, with similar calculations leading to as
many more terms in the expansion foas are required.

3.4.2 Series techniques with other than simple polynomiasround

Imagine a polynomial in the variablesb, c andu, v andw. Now imagine that
stands fore’®, v for ¢ andw for e**. Basic arithmetic on the polynomials is not
altered by their interpretation as complex exponentialse fules for integration
and differentiation need altering, but not in very dramatays. The effect is that

15

for very little extra cost rather broader class of exprassican be handled. But
who wants to worry with complex exponentials? Well the mas&p is to write

sinz = (e — ™) /(24)

and similarly forcos(z) — suddenly a system capable of dealing with complex
exponentials can deal with formula involving a bunch of palgial style vari-
ables and a collection of trig functions. The restricted ebseries with sines and
cosines in are knows as Poisson Series.

As an example of repeated approximation applied to PoisedesSt is almost
easy to generate an expansion of the solution to the Kepletieo,

e =u+ xsin(e)

by starting with a first approximation, = 0 and repeatedly substituting into
the right hand side of the equation. The calculatiorie) can be performed by
substituting the Poisson series approximationefanto the power series for the
sin function.

3.5 History, state of the art, future prospects
3.5.1 Delaunay’s analytic lunar theory

A major classical use of Poisson Series was in producing aty@mLunar The-
ory. One of the early triumphs of computer algebra was theodkpction of a
series of massive calculations that had been performed by bg the French-
man Ch. Delaunay. Since then the same technology has beeedcaapartificial

satellite theory.

3.5.2 Selection done during multiplication rather than aferwards

In repeated approximation methods many operations arempeztl in circum-
stances where it is known that high order terms in the resililinet be mean-
ingful. Major savings in both time and space can be achielvdeipolynomial
multiplication procedures are adjusted so that they régpeccut-off (known as
a selection) and avoid generating parts of the result that would be ohigh an
order.

16

3.5.3 Specialised power series packages

Various special purpose computer algebra systems havevor@gen at various
times with the specific aim of making polynomial, power seaed Poisson series
working as fast as possible. By fixing the names of variableslianiting the
magnitude of exponents it becomes possible to use venhtigatked and neat
datastructures, which again helps speed and space efficiegnca Cambridge
context the main system to noteGAMAL As computers have become larger and
faster the special purpose algebra systems have somewbaatffam favour.

3.6 Case studies
3.6.1 Legendre polynomials done lots of different ways

This section tries to illustrate that even for polynomiad @eries calculations there
can be many very varied ways of calculating the same valubesd may differ
radically in terms of programming convenience or the dersahdt they place
upon an algebra system. You might like to try the following tmusee which are
easier to get working and which run fastest.

1. Using pure polynomial arithmetic the Legendre Polyndsnéan be com-
puted using a recurrence formula.

po(z) =
mz) = =z
pa(z) = ((2n—Dzapy-1(z) — (n — D)pp—2(x))/n

2. The formulad™ /dx™(1—x?)" /n! (Roderigue’s formula) computes the same
polynomials using differentiation of polynomials.

3. If you write the power series expansion
1 B G ;
Vi—2z%t+ 8 ;pi(x)t

and work out explicit values for the coefficienigx) then once again you
will have found the Legendre polynomials.

4. The differential equatiofl —z?)y” —2xy'+n(n+1)y = 0 has a polynomial
solution that is thexth Legendre polynomial.

17

3.6.2 Van der Pol equation

Consider the equation

y' +y=ey(l—y?)
subject to constraing’(0) = 0. If e is small this is nearly just a simple harmonic
oscillator. For small oscillations (ie. the average valtig i3 small) ife is positive
the amplitude of the oscillations will tend to increase. Foge amplitudes on
averagel — y? will be negative and this will damp things down. Somewhere in
between there is a stable state —Hmait cycle. | will sketch (but not give full
details of) how Poisson Series can be used to find the limlecyithe technique is
applicable to a wide range of weakly nonlinear periodic amd @most periodic
systems, and can be thought of as a very simplified model of whsa involved
in lunar and satellite theory analysis.

3.7 Exercises

1. Compare performance for lots of ways of computig+ =, 1/(1 — z),
tan(z) series.

2. Tchebychev polys: check them out in a suitable book ancheeemany
different ways of evaluating them you can invent. For ins&f,(x) =
cos(n arccos(z)).

3. Show how to interpolate a polynomial through,(y1), (z2, ¥2), . . . @n, Y1)

4. The Duffing equation ig” + y = ey®. Compare with Van Der Pol.

4 Rational Functions

4.1 Introduction

In section two all expressions were put in the form of sefléss made it possible
to generate expansions of the solution to various algelaradcdifferential equa-
tions, but meant that a simple fraction suchl gl — x) had to be represented by
some initial segment of the infinite series- x + 22 + . ..

This transformation can be avoided if quotients are keptuab.sThe main
technical problem that this raises for algebra system implgors is one of keep-
ing the resulting fractions reduced to their lowest termserEwhen high powered

18

algorithms are used this process can be unexpectedly edstly the formulae be-
ing processed are of high degree or involve many differasgterminates, and so
the first part of this section discusses ways of reducing ¢eel fior the calculation
of greatest common divisors (GCDSs) in calculations. Of cedos sufficiently
small problems the techniques described will represeeatevant complication,
but as progressively larger computations are attemptedllibften be the case
that GCD calculation limits what can be done on a given comput@ reasonable
amount of time.

The procedures discussed here are applicable to formuldaiplout of in-
tegers and indeterminates using addition, subtractioitjphcation and division.
The word “polynomial” will be taken to apply to those formalavith no division
in them (not even fractional coefficients), and all otheresawill be treated as
guotients of pairs of polynomials. Such quotients will bdlezhrational func-
tions. Thus(1/2)z + (1/3) will be thought of as a rational function with the poly-
nomial3x + 2 as its numerator and the constant polynomial 6 as its deragaorin
This is in fact the way that the formula is represented inideReduce algebra
system, and th©N DIV flag used in 3.2 just changes the style in which results
are printed, not the internal organisation of the system.oAsequence of this
is that in Reduce some built-in functions that require poigrads as arguments
(e.g.COEFF REDUCIHtake a strict view and expect to be given expressions with
whole number (and not fractional) coefficients.

The remainder of this section investigates the algorithsedufor rational
function manipulation and various closely related proesgg.g. factorisation).
Some understanding of these can help a user appreciate wjeyGLD calcula-
tions can be so extraordinarily costly, while others thanseat first sight to be as
complicated are completed very rapidly. The algorithms gl®vide an illustra-
tion of the way in which techniques derived from abstract tam” algebra find
a direct applicability in the solution of apparently elertegy problems. Some
of the algorithms will be illustrated by code fragments shmyhow they could
be implemented by a Reduce user: these may form prototypassérrwritten
packages for other mathematical procedures.

4.2 Reducing the need for GCD calculations

In many cases when a fractippig occurs in the course of an algebraic calculation,
p and g will have no common factors. If they do have a common factay, s
g = ged(p, q), then the quotient should be represented;gs)/(q/g), where
both divisions byg will be exact. For uniformity it will be normal to ensure that

19

the leading coefficient in the denominatads positive, if necessary by multiplying
top and bottom of the fraction by1.

Throughout a calculation the repeated checking of frastimn factors that
need cancelling represents an overhead. This is partigslaif it happens that no
significant gcds are ever found. Unfortunately simple ggdalthms exhibit their
worst behaviour (ie. they consume most time and store) ggcwhen they are
eventually going to report that their inputs are coprimel sm with early algebra
systems the size of problem that could be solved was strdinghgd by the form
of the rational function arithmetic involved. With the l@mgmemories and better
algorithms now available many more algebraic problems eahandled without
gcd calculation giving trouble, but it is still the case that large calculations it
can still be necessary to take steps to reduce the costsatssowith reducing
fractions to their lowest terms. Thus most problems shauitchily be presented
to the algebra system as if rational function manipulati@mesnot a problem: if
resource limits prevent the required results from beingioled it may be worth
considering some of the transformations discussed below.

The first principal to be applied when performing large scdtgebra is to
avoid computing a result that contains more informatiomtisaactually required.
Apparently equivalent ways of writing even quite simplegiteents of code can
lead to very different computational behaviours. For ins&agiven four polyno-
mialsp, ¢, r ands it may be necessary to decideif¢ = r/s. The obvious test to
apply would be

if (p/q) = (r/s) then ...

but this involves reducing the fractiopgq andr/s to their lowest terms, which
will turn out to be unnecessary. A second attempt, whicloaltin mathematically
equivalent to the above will be computationally differest i

if (p/q) - (r/s) = O then ..

where not only are/q andr/s reduced to their lowest terms, but if nonzero their
difference also has to be so reduced. Since the only infeom#tat is required

is whether the difference is zero, it will probably be betteconcentrate on its
numerator, avoiding all gcd calculations and writing

if p *s = r=*q then ...

Another example in the same vein involves a test to see if tignpmial ¢
divides exactly intg. The test

20

r .= plq;
if den r = 1 then ...

forms the rational functiorip/q) and tests if its denominator is one. If so it is
clear thatg divided exactly intop, and in this case the quotientwill often be
required for further processing. ¢fis not a factor op the above code will reduce
the fractionp/q to its lowest terms, and if the reduced fraction is not needed
computing it will be a waste of time: the test

if remainder(p, q) = 0 then ...

does not suffer from this, but does have the disadvantaddttaees not auto-
matically provide a value for the quotiepfq in the exact division case, even
though the process of producing the remainder will have bagbtthrough the
steps needed to obtain it. Later on there will be an explanaif how users can
obtain access to the function that Reduce uses internalliegrdivisior, thus
providing a way of obtaining further improved performantéh@ cost of having
to understand more about the fine details of the algebramysténg used.

In general if calculations are performed on rational fumrcsiand fractions are
not reduced to lowest terms promptly the size of expressioows explosively.
In special cases, however, it can be predicted in advantehtisavill not be so:
for instance it may be known that some series of calculatiahsiecessarily lead
to an answer expressed in its lowest terms even without ashgajculations being
performed to ensure this.

In such cases it may be advantageous to instruct the alggbtans not to
attempt to reduce fractions to lowest terms. In Reduce tliieng with a directive

off gcd;

the effect of which can be cancelled ®N GCDSince calculations which benefit
from this treatment are fairly rare it seems possible thatist use 0OFF GCD
mode is to allow the user to see how dramatically expressiangrow if not kept
in reduced form, and hence how important a good gcd algonighiman algebra
system!

Having adjusted a program so that it does not compute morettigaminimal
interesting part of an answer it can be becomes useful towgagk of simplifying
the problem formulation. Any transformation that redudesdegrees of polyno-
mials found in the problem or which reduces the number ofdeis present will

5See “testdivide” defined shortly.

21

be useful, and to a lesser extent transformations whichveraosge numeric val-
ues can help. It is often possible to make changes of vagal¢hat factors that
appear in the denominators of intermediate expressionsnbesimply powers
of some indeterminate — this renders greatest common dieidoaction trivial.
Thus if in some calculation there are two variablesndv, and the denominator
of many fractions will involve powers af + v it will be useful to introduce a new
symbol (v say) to represent + v and use a substitution such as

. sub(v = w - u, <formula>) ...

to express original expressions in terms of it. A simple stlign at the end

of the calculation will then make it possible to present lssin terms of the
original variables. It can make sense to introduce a newt@ngenate to rep-
resent the reciprocal of some complicated denominator esem it is not then
possible to eliminate any of the original variables. Fottanse in calculations
involving a matrix)M and its inverse, the introduction of a symbol that stands for
1/determinantM) can often simplify things substantially.

In some cases it is possible to reformulate calculationkatrational function
arithmetic is not needed at all. If, for instance, there isag wf predicting in ad-
vance some common denominator for all the expressions ihatise throughout
a calculation then everything can be reduced to polynonmitiraetic, which is
generally well behaved. Later in this section (in the distws of thesubresultant
PRS method for computing gcds) there will be an example of a caserevthe
mathematical structure of a calculation makes it possiblprédict factors that
are guaranteed to divide exactly into some of the interntedisults, and this
dividing out of predicted exact factors saves significanbants of time.

The costs of computing greatest common divisors can growllsapith the
size of the expressions involved, and this means that itnemgdly better to per-
form several small gcd calculations rather than allowingnewn factors to build
up and finally do a single large reduction. An applicationho$ fprinciple can be
found inside the implementation of Reduce where two ratifuraitions are to be
added. The natural way of forming the sum(afb) and(c¢/d) would be to com-
pute the numeratqgr = ad + cb and the denominatar = bd of the result and then
form them into a fractiorip/q) cancelling any common factors. The scheme that
is in fact used tries to find common factors as early as passibbs to reduce the
size of intermediate results and hence the cost of the firhcgtculation. First
the greatest common divisay, of b andd is computed. Now the numerator of
the final result can be evaluatedjas= a(d/g) + ¢(b/g) and the denominator as
q = b(d/g) where the divisions indicated are known to be ones that wikkXact.

22

If it happens thay is large (for instancé andd might be the same) this will result
in significantly smaller values fqrandgq. In forming the final quotientp/q) it is
still necessary to look for further common factorsb Hndd are coprime the new
method is no help, but in many realistic cases it speedslasilens up by a useful
amount. Analogous optimizations are possible when formpiroglucts and quo-
tients of rational functions, and potentially within anyeusvritten code that ever
generates the numerator of a rational function separatety its denominator.

A scheme that has been proposed (but not widely adopteddubatimes sev-
eral of the above ideas is that of representing expressiopartially factored
forms. Rather than keeping all brackets multiplied out and the matoes and
denominators of expressions separate, a partially fattmpresentation holds
values as products of powers of items. Negative powers ad tesindicated
factors that belong in the denominator of the expressiontingumultiplication
and division common factors are merged, and in some casesatmdations will
reveal further factorisations of some of the terms. Forainsg if the product of

2?> — 1 andz + 1 were to be required the process of merging lead to the result

(r — 1)(z + 1)%. During addition and subtraction and factors common to tie e
pressions being combined will remain separated out, b@rdérms will have to
be expanded out thus destroying knowledge of their factacsire.

The final suggestion here for reducing the demands on a gaguoe in-
volves breaking away from the closed form representatiaquotients and drop-
ping back to the use of power series. Section 4.4.2 illussrhbw it is possible to
recover an exact rational result from its power series sapr&tion subject only to
the need to have a bound on the degrees of the numerator aochighaor of the
expected rational function. For univariate calculatiorere it is known a priori
that the result will be fairly simple but where intermediatages in the working
would lead to rational functions with very high degree demtors this radical
transformation can perform wonders.

To end this section here is the REDUCE code for test divisiontimeed ear-
lier. As defined here it returns the quotient of its arguménle division involved
is exact. Otherwise it returns 0. It expects to be given paiyial arguments, but
does not check. The explanation of the incantation usedawaige this interface
to a system-level function within Reduce is outside the sajjlis section.

symbolic procedure testdivide(p, q);
mk!*sq (quotf(numr simp! * p, numr simp! * Q)

flag(’(testdivide), 'opfn);

23

1 1),

4.3 Polynomial Remainder Sequences
4.3.1 Integer GCD

Computing the greatest common divisor of a pair of posititegers can be done
simply and efficiently using Euclid’s algorithm:

PROCEDURE numeric_gcd(a, b);
IF b =0 THEN a
ELSE numeric_gcd(b, remainder(a, b));

4.3.2 Polynomial Remainder and pseudo-remainder

The same idea can be applied to find polynomials once we uadersvhat is
meant by the “remainder” operation in that case. Dividing anivariate polyno-
mial by another is a pretty straightforward process and \gbtt left at the end is
clearly the remainder. But observe the case witen 1 is divided by2z — 1: the
guotient comes out a§r + i and the remainder $ The fractional coefficients
here are not a help at all, and turn out not to contribute ligafmGCD calcula-
tions, so it is normal to get rid of them. A few moment’s thougii show that
the only denominators that can be introduced are powersdé#ding coefficient
of the polynomial that is being divided by. If, before the sndering step, the
other polynomial is multiplied by a suitable power of samenthhe unwanted
fractions will not appear. This variation on computing a aamaer is known as
the pseudo-remainder of the two polynomials.

If the recursive representation is used for polynomialgs taecheme the com-
putes univariate pseudo-remainders can be applied dirg@atthe top level of the
recursive datastructure) to obtain multi-variate remarsdBut note now that the
result obtained will depend on the ordering of variablehmgtructure. You may
like to try out a very simple case — evaluate the pseudo-nedeaiwhem? + ?
is divided by2a + b first when each polynomial is treated as being in terms of a
main variablex then in terms ob.

4.3.3 aPRStocompute a GCD

If a polynomiala(z) is writtena,z™ + . . . + a1z + ao then we defined theontent

of a to beged(a,, . . ., ag). For instance the contents iz +4(y® — 1)z — 8y +4
(when viewed as a polynomial in) is just 2. The content of a polynomial does
not have to be just number if all the coefficients have somencomfactor that

24

involves subordinate variables, as(in— 1)z + (y — 1) which clearly has contents
y — 1. If a polynomial has a content dfit is referred to as beingrimitive and a
dividing a polynomial by its content gives ipsimitive part.

Now suppose we have two primitive polynomials and want tD. The
GCD will also be primitive. Is this obvious to you? Use the Ededn GCD
algorithm starting with the two inputs, but doing pseudoragnders rather than
true remainders all the way. At the end you will have a polyrabiinat isalmost
the desired GCD. But the pseudo-remaindering operation canlbf unwanted
extra coefficient-domain factors multiplied through, se ttue answer wanted is
just the primitive part of what comes out of the Euclideanhodt You might
suspect that the need for this final calculation of a primaifrart was just because
we used pseudo- rather than real remainders, but in fact fusaloremainders
would have left in equally nasty stray multipliers, but ottest could be fractional
and hence even more painful to handle. If you work through allsexample (I
suggestr? — 1 andz? + 2z + 1) you will see what happens quite clearly — it
is not very difficult. The series of results computed durihg gcd process is a
polynomial remainder sequence or PRS.

Now | can take the GCD of pairs of primitive polynomials: whabat the
general case. Well that can now be achieved by splitting e&chy real input
polynomials into contents and primitive parts. Taking tleegyof the contents is
a calculation in the coefficient domain so | suppose (by iou) that it is easy.
Taking the gcd of the primitive parts is what | have just ceden finally multiply
the two sub-results together. Easy!

4.3.4 Euclidean, Primitive, Reduced, Subresultant, Trial d/ision

This section is not written out in detail here because Knatrecs it pretty well
— but the main messages are:

1. If you compute a PRS of even medium-degree polynomialsdb#icients
in the intermediate results can become huge, and workirtgtivém domi-
nates the computing time of the entire process. A simple G@Dquture is
not useful for serious applications.

2. The coefficient growth can be cured somewhat by takingipvienparts at
each step in the generation of the PRS. But then the cost ofeatidhbffi-
cient GCDs involved in working out the contents that are to ibedd by
becomes an embarrassment.

25

3. Some clever mathematics (not covered in this course) snakessible to
predict factors that can be divided out. These factors afacinjust certain
powers of the leading coefficients of polynomials that areadier in the
PRS. The effect is that at least almost always the bad growdbefficients
can be cured at quite modest cost.

4. Since the values divided out by tReduced andSub-resultant methods are
just powers of previous leading coefficients, an easierraeh® program
and understand just keeps a list of these previous coefficéard uses test
division to remove unwanted factors of them. The test dwigurns out to
be much cheaper than the gcds that were at first needed to kesgphing
primitive.

4.3.5 Eliminating main variable between two polys: Resultah

This is maybe an aside: if you have two equations each in tvkmawns you

may want to eliminate one of the variables between them. uflgok at the steps
that you take you will find that you are computing a PRS, andtti@aunivariate
equation you end up with is just the final polynomial in thaqsence. Moral:
PRSs arise in GCD calculations but have other uses too.

4.3.6 PRS as Gaussian elimination on a certain matrix

Imagine two polynomials andb with degrees:. andm and coefficients,; andb;.
Consider the matrix

ap Qp—1 Ap—2
0 Qp, Ap—1
0 0 an,
a; Qo 0
s a1 Qo
bm bm—l bm—l
0 bm bm72
by by O
by by by

26

If you imagine doing Gaussian Elimination on this matrix ywoul rapidly dis-
cover that the steps you take bear an uncanny resemblanicesi® that need to
be used when computing a PRS. The determinant of the abovix is&nown as
theresultant of the two polynomials: andb with respect to the variable. The
importance of resultants (here) is that they show a perhapgpected link be-
tween PRS calculation and simple linear algebra (ie. solsingiltaneous linear
equations and computing determinants). This link is at tioe¢ of the mathemat-
ics that led to the Reduced and Sub-resultant GCD algorithris. cburse does
not provide me with sufficient time to explore it further!

4.4 Evaluation/Interpolation methods

The PRS methods for computing GCDs work, but a serious problgmtlem is
that their worst case is when the GCD that is to be found is jubt that case the
remainder sequence will be of maximum length and despitatimpts to keep
them small intermediate coefficients still grow pretty edargly. But if you take
two polynomials at random their GCD is probably 1. It would heerto have a
method which behaved best in this especially common case.

4.4.1 Modular Probabilistic Checking

Consider first the univariate case. The only big cost in comgut PRS is because
the coefficients tend to get big. Tapproximate coefficient arithmetic to prevent
this. In particular, choose a primeand perform all arithmetic modula If p is
a single precision integer then this avoids all the painirbead of allowing for
multiple-precision intermediate results. But is the resolhputed by a modular
PRS any use at all? Yes! If the modular calculation indicated two primitive
polynomials are coprime then they really are. The only gadegiroblem is when
the modular calculation says there is a real non-trivial G§lbge then it could be
that the polynomials are really coprime and the apparent GG artefact of the
approximate arithmetic, and anyway the modular GCD doesnsbaitly allow
us to recover the real one.

For multivariate polynomials it can be useful to reduce ® tinivariate case
by substituting random (well, arbitrary, or pseudo-randomsomething) integer
values for all bar one indeterminant. If this is done mod can not lead to
over-large numbers. Then a modular PRS is computed for théiresunivariate
polynomials. This provides a cheap and in fact rather ridigdst that identified
most cases where the full GCD will be 1.

27

4.4.2 The Hensel Construction

Given the above cheap check it would be very nice if the true GQl)d be recon-
structed from a modular image in non-trivial cases. For nvaltiate polynomials
the way of doing this is known as the Hensel Construction, aadwil see it in
action again when we come to factorisation. The presemtagoe is at first going
to gloss over a few problem areas to try to give as clear arviexeras possible.
So imagine a bi-variate case where polynomials andy are being used. We are
computing the gcd of(z, y) andb(z, y). First viewa andb as power series if,
eg.

a(z,y) = ao(x) + ar(x)y + as(x)y* + ..
Of course this will only be a finite series, stopping at thehkgt degree term in
y present im. Now suppose that the required gcdaondb will be g(z,y), and
write h = a/g. This division of course goes exactly singebeing the gcd of:
andb, must divide neatly inta.

The key step is then to observe the (obvious) identity gh but to write it out
in power series form. Looking at the various powerg of this gives a series of
identities (I have written jusi; instead ofa; () etc. here to keep things concise,
but everything mentioned will be dependentgn

ap = goho
ar = goh1 + hoga
—(g1h1) +a2 = goha + hogo
—(g1ha + g2g1) + a3 = gohs + hogs

I have collected terms on the two sides of the equals signliglatly curious way,
but otherwise the equations are pretty straightforwardt Mensiderged (ag, bo).

If we arelucky?® this will be exactlyg,, the leading term in the power series repre-
sentation of the required gcd. Then we can compygtasa,/go. The first of our
equations has just been satisfied. Now suppose we can selnexhequation to
find ¢g; andh,, then all the subsequent equations would be of the same ferm,

goh,- + hogi = <Something>

and thus it will be possible to compute as many of the coeffisig; as are re-
quired. The largest one that can possibly be nonzero is taeomesponding to

5The term “lucky” is treated as a technical term here!

28

the highest power af present in the gcd, and this is bounded by the degreeyin
of a andb.

To show how to solve the odd equations we have come up with d tee
impose two technical constraints. The first is thatand 1, must be co-prime.
For now let me just observe that this can only possible fdiléso if the original
polynomialsa and b had repeated factors, and that it is possible to reduce the
general problem one where no repeated factors are predensetond condition
is that all the polynomials that we are working with have tlceefficients reduced
modulo a suitableprimep. The reason for this is that when working mpdt is
possible to divide any coefficient by another, while when kirmy with integer
coefficients some such divisions may not go exactly.

Now before showing how to solve the given equation gotynomials let’s
look at the analogous one for integers, and for giveandv try to find o and 8
such thatvwu + Sv = 1. This can be achieved by looking at a remainder sequence
that computes the gcd afandb. Start by writinge = 1a+0b andb = Oa+1b, and
note that if = |a/b] then remaind€r, b) = a — qb, or otherwisela + (—q)b.
Following through each value in the remainder sequence eaxpressed as a
combination of the two previous ones, and hence as a lingabication of the
original valuesa andb. Eventually ifged(a,b) = 1 this will lead to the final 1
in the remainder sequence being expressible in the farm 5b as required. By
multiplying these values and by any value: that valuec can be expressed as a
linear combination ofi andb. The same basic process can be used on coefficients
(with modular coefficients), and hence completes the mefiioextending a uni-
variate gcd to a bivariate one. It can clearly be used to cagrepolynomials in
any number of variables.

4.4.3 Hensel and integer coefficients

The Hensel construction as sketched above makes it possitdeonstruct a mul-
tivariate gcd, but only with coefficients reduced mad To get back to integer
coefficients a little more is needed. In fact this is remalkalasy and similar to
the ideas we have already seen. Observe that if we writedrgdg radixp an
integern can be written out as a combination of di§its

n:n0+n1p+n2p2+...

"The rules about what counts as “suitable” are not espedalyplicated but are not discussed
in depth here.

8Negative numbers might need a little more effort, but thatdsa real difficulty and will be
glossed over here.

29

where each digits is restricted to the range 9 to 1. This looks sufficiently like
a power series that the previous presentation of the Hewseltrtiction can be
applied to it. The methods even work cheerfully if insteadust numbers we
work with polynomials written out as

a(z,y) = ao(z,y) + ar(z,y)p + as(z, y)p* + . ..

where now the correct normalisation constraint is thathedl¢oefficients in each
a;(x,y) must be bounded by. Use of the Hensel construction in this way makes
it easy to extend a gcd that has been computed correctly mpdol one that is
correct modul@?, p?, and so on until a value has been produced correct modulo
some power op that is larger than any possible integer coefficient in the tr
answer. At this stage the computed result must in fact bertieegicd.

4.4.4 Unluckiness

Sometimes the modular-number based gcd processes witldeduse the prime
used interacts badly with the particular polynomials us€dr instance if one
worked modulo 3 and while trying to computed(x + 1, = +4) something would

be bound to go wrong because modulo 3 the two inputs aliaghtegeA com-
plete program has to cope with this by being prepared to atchapthe Hensel
extension process may fail to converge. In that case tryihgrgprimes and and
other small adjustmeritsnake it possible to proceed. Fortunately it can be shown
in this case that almost all primes will be “lucky”.

4.5 Factorisation and algebraic number arithmetic

Factorising polynomials follows on from gcd calculatiortlas next major algorithm-
cluster. One first restricts attention to primitive polyriate. Then removes the
frivolous complication of repeated factors.

4.5.1 Square-free decomposition

If a polynomialu(z) has a repeated factor theed (u, du/dz) will be non-trivial.
By following up on this observation it is possible to do a numtifegcd operations
that will express: unambiguously in the form

u = Kujusus . . .

Swhich will be mentioned briefly in the lectures.

30

where each; is now free of repeated factors.

4.5.2 Kroneker’s algorithm

A classical way of finding factors of a polynomial can be ithased by looking
for possible quadratic factors af(x). Find all integer factors of each af(0),
u(1) andu(2). For each possible combination of one factor froffi), one from
u(1) and one fromu(2) it is possible to interpolate a quadratic. If this quadratic
has integer coefficients and divides exactly intthen we have found a factor as
desired. If there is any quadratic factor we will come acibissthis search.

This method can clearly be used to see factors of any desagred, but in be-
comes grotesquely expensive for non-trivial cases andtisimaously adaptable
to the needs of multivariate cases.

4.5.3 Berlekamp/Hensel

A better way to factorise polynomials will start by reducengarbitrary input to a
univariate polynomial modulo a prime If this can be factorised then the Hensel
construction will make it possible to reconstruct the nvaltiate factors over the
integers.

Berlekamp’s algorithm factorises a univariate polynomialkdumlo some given
prime. The inputs are:

A polynomial u(x), which should be primitive and squareefre
A prime p.

We will imagine that the (irreducible) factors ofx) are w;(z), ws(x),...,
w;(x). All arithmetic mentioned here will be done modulo the stddgrimep,
and so all coefficients will be in the range Opte- 1.

The factorisation process works by considering the clag®lyinomialsv(z)
that have the properties:

degreév) < degre¢u)
u divides exactly intdv — 0)(v — 1)(v — 2)...(v — [p — 1]).

It will turn out that these polynomials can be found quite easily, and that from
them it is possible to derive the factoxs that will be our final results. | will
demonstrate the first of these facts first.

31

Finding thev polynomials: Because we are working modulo a prime p the
formula

(0= 0)(w—1)(v — [p— 1])

can be simplified ta(x)? — v(z). A further result relating to polynomials with
modular coefficients asserts that this in turn is equal(t¥) — v(z). The justifi-
cation of these two steps is not included in this note, butéiselts are standard
mathematical ones. The condition thét) dividesv(z?) —v(z) can be expressed
as

v(zP) —v(z) =0 (mod u(z)).

A polynomialwv can be characterised by a vector giving its coefficiepts, ...,
v,_1 (Wwe know that the degree ofis to be less than that af and so can establish
the number of coefficients to be considered). The equatioaesolving now
turns into

vo(2° — 2° mod u) + vy (2P — ' mod u) +

2 — 22 mod u) + vy_y (z" VP — 2" P mod u) = 0

UQ(ZL‘
where all the polynomials involved now have degrees lesstieat ofu(x). Each
of the polynomialsz*? — x* can be written out as a row of coefficients, and the
rows (one for each value d@f) stacked to form a matrix, generally known @s
The equation that was to be solved now takes the form of axmaultiplication:

(UQ,Ul, ..)Q =0.

Solving such a set of equations is a standard piece of lingabea. The com-
plete set of solutions for form a vector space and a set of independent vectors
spanning this space is known as a null space basis for thexmatifo save space
I will not fill in the full details here, but finding a null spatasis proceeds by go-
ing through the steps of Gaussian elimination as if the matviolved contained
coefficients for a set of linear equations. For equatiorsunusual and generally
an error for the matrix to be found to be singular: for a npkse finding algo-
rithm this is just what is expected and the null vectors amaaimothing more
than a record of how and when singularity was found.

If a basic set ofj independent null vectors are found then all solutions to our
original equation can be expressed as linear combinatibtiese. Since we are
working (mod p) these linear combinations can only have numbers in the range
0top — 1 as coefficients, and so a grand totapofolutions foru(x) exist.

32

Deriving factors: Ifu(z) divides exactly intdv —0)(v—1)...(v — [p—1]) then
necessarily all the factors;(z) also divide into it. But except for the dull case
thatv is a constant,u — 0), (v — 1) and so on are all pairwise coprime, and so this
means that eachr; must divide exactly into some particular one of the— s).
This leads to the observation that given some particuldofag (say) and one of
our v polynomials, there is a constansuch that:

w, divides exactly inta:(x) [of course it does!],
w; divides exactly intqv(z) — s).

Sincew was a proper factor af(x) its degree is greater than zero, and since
it divides intov(z) — s its degree is at most the same as that,afhich is in turn
strictly less than that af. Sou(x) andv(z) — s have aw as a common factor. We
computeg as their greatest common divisor. The polynongialill be either the
factorw;, itself or some multiple of it, but since the degreegya$ less than that of

u the identity
u(z) = g(z)(u(z)/g(x))

has exhibited a non-trivial split af(z). There is no way of telling what value
will work in the above, but provided the primeis fairly small it is quite cheap
enough to try all the possible values 0, 1, .[p.s- 1] until one is found to lead to
a factorisation of(z).

In fact the number of independent null vectors that are faarexactly equal
to the number of irreducible factor thatz) will have, and by performing gcd
operations between(x) and terms of the fornfv — s) letting v range over the
null space basis andover the numbers from 0 tip — 1] it is always possible to
complete the factorisation af(z).

Example: Factorise(z) = 27 + 2° + 2 + 2? + 1 modulo the prime 2.

Start by writing down

22" = 0

2> —2' = 24+ (modu(z)), (mod 2)
vt —2* = 2t 4 2P

2% — 2% = 2%+ 27

-2t = 2842

20— = 2t

2 — 2% = 2"+t + 1.

33

The right hand sides are just the remainders left when thehbeid sides are
divided byu(x), and so in the first 4 cases where the degree of the left haad sid
is less than that af(x) all that has happened is that mod 2 arithmetic has allowed
us to write+ instead of—.

This makes th&) matrix:

e © o 0o o o o
o X X o o o o
e ¢ X o X o o
o o o X o o X
e X ¢ X o o X
o X o o X o o
X @« X o @ X o

and | can exhibit two independent null vectors:

[1, 0, 0, 0, O, O, Q]
and [0, 1, 1, O, O, 1, O]

You can check that if you multiply either of these row vectbysthe matrix
(mod 2) you get zero. Once again | am not going to go into thedetails of the
(simple) calculation that leads to this null space basis Hlljust go on from the
fact that | have v-polynomials, = 1 andv, = 2° + 2% + x to work from. The
fact that there are two independent null vectors indicdtasrhy polynomial will
have 2 factors. | now compute

ged(u, vy — 0), ged(u, v — 1), ged(u, ve — 0), ged(u, vy — 1)

and expect one of these to be non-trivial. In this case itstout thatyed(u, v2 —
0) = 2 + = + 1, and so this is one of the factors @f The other is easily found
(by dividing the known one inta(z)) to bex?® + x + 1, and since we knew that
u(z) had just two factors we are finished.

Observations: For large primesthis algorithm becomes costly because of
the need to try all possible values @f It is therefore usual to use it with primes
in the range (say) up to 100. The case- 2 can be handled particularly neatly
using bit-vectors to represent all of the polynomials andwesive-OR and shift
instructions for some of the operations on them. For largags (e.g. about the
size of a machine word) there are slightly more elaboratiants on the algorithm
- see Knuth vol. 2 for some pointers. A coded version of themete algorithm
is no more than a couple of pages long.

34

4.5.4 Algebraic number arithmetic

The natural technical follow-on to gcd and factorisatiogogithms involveal ge-
braic numbers. These are values that arise as the roots of polynomial ieqsat
Thus values such ag2 and+/5 are covered, as will be the imaginarand the
roots of any higher degree equation suclhvas- o + 1 = 0.

Three main approaches are taken, and these correspondetewiifinterpre-
tations of what a symbol such && really stands for:

1. Root isolation: Given a polynomiak(x) set up a sequence of polynomials
s; with sg = u, sy = v’ ands;,, = —remaindefs;, s;.1). Note that apart
from the negative signs this is just a PRS. Now look at the asrfanction
S(z) which counts the number of sign changes in the sequeyieg si(z),

For any rational number with u(z) # 0 it is clearly possible (if
perhaps expensive) to compute the integer) quite unambiguously. Now,
as | hope | will be able to make slightly plausible by drawingtyres on
the blackboard|S(z1) — S(z2)| gives the number of real rootsz) has
betweenz; andz,! Given this tool (A Sturm Sequence, but note it is just
another sort of PRS)) the roots ofcan be counted and isolated to utterly
arbitrary accuracy.

2. Minimal Polynomial Arithmetic: Represent any algebraic number by a
symbol and a polynomial equation that it satisfies. Thus,/f@mwrite (w :
w? —2 =0) and forv/5 use(n : n* — 5 = 0). Note that this representation
simultaneously allows for both the2 that is about 1.414 and the one that
is -1.414, ie. what is being represented is really’2.

To combine values that are represented this way is actuatier straight-
forward. Consider the addition of the the values mentionexvab Write
out a set of equations:

wr—2 =
N =5 =
v—(w+n = 0
where the first two equations are the definitionsy@nd» and the final one
expresses the arithmetic operation being performed. Netwgliminatew

andn from these equations to leave one in jusind a representation for
the algebraic number sum has been derived as required. Hahh&ing

35

variables between polynomial equations was what ressltalte about,
and again we are really using a method based on the PRS.

3. Reduction rewrites: Set up rewrite rules lik¢\/2)> — 2 andi®> — —1.
Apply these throughout your calculations whenever possiblope or ex-
pect that this will lead to consistent and well-simplifiedults. A major
problem that can arise with the use of rewrites is that somestisome com-
plicated rewrites can interfere with each other so that tiierin which
reductions are performed influences the final result pradiuEer polyno-
mial rewrites it is possible to extend any initial set of ilato a so-called
Groebner base which has the good property that whatever strategy is used
for selecting rewrites to apply the same end result will gsvae obtained.
Algorithms for the construction of Groebner bases have laesgntral part
of research into Computer Algebra over the last about 15 yea you
should inspect the specialist literature if you want to knmoare about them
or about more of their applications.

4.6 Exercises
4.6.1

Find an example that illustrates that when the Surtb) + (¢/d) is evaluated as
(a(d/g)+c(b/g))/(b(d/g)) [whereg = ged(b, d)] the final quotient can still need
a common factor removed from the numerator and denominator.

4.6.2

Show how to form the product and quotient(af/b) and(c¢/d) using sequences
of small gcd calculations rather than a single large one.eNwdt it is possible
to exploit the fact that the incoming expressions shouleealy be in their lowest
terms and so gcd(b)=gcd(,d)=1 can be assumed.

4.6.3

Use Berlekamp’s algorithm to find a polynomial of the foe§ + 2™ + 1 which

is irreducible mod 2. Clearly. will be in the range 1 to 15, and an argument
of symmetry shows that it is only necessary to considénom 1 to 7. A value
of n that gives an irreducible polynomial corresponds to thetjposof a tap in

a feedback shift-register (as shown below) that will cyciéhvlargest possible

36

period: such shift registers can be used to generate chesksupseudo-random
bitstreams.
stage n-1

l

0 1 2 14 15

stage 15

Each stage in the shift-register is a D type flip-flop (all drby a common clock
signal), with the shift register’s input being derived byrfong the exclusive OR
of the output from the final and some intermediate stage. iBlesengths of
cycles in the bit patterns generated by this arrangementetated to the factor
structure (mod 2) of a polynomial that has 1 coefficients atglaces where taps
are taken from the shift register. Textbooks on error coimgaodes (e.g. Peter-
son, 19xx) provide further explanation and background:ais for the analysis of
this sort of circuit that Berlekamp’s algorithm was first oduced.

5 Transcendental Functions

5.1 Introduction

Consistent algebraic calculation with formula involvingriscendental functions
is difficult. In particular, for many of the classes of algairformulae that seem
natural it is known to be impossible to produce a systemadig @ determining if
an expression is zero or not. Af is an expressions which might possibly be zero,
but there again might not be, the simplification of formulaelsasA £+ B can not
proceed. Other questions become hard to answer: the ekpreg®zp(z?) +
has an integral in closed (elementary) form if and onlyfbf= 0, and so the
inability to decide if an expression vanishes means thatirhpossible to exhibit
a reliable and complete integration algorithm.

A frustrating aspect of the main undecidability result flgedoraic simplifica-
tion is that key technical aspects of the proof suggest glyahat current under-
standing in the area is incomplete, and that the pessimigmessed above may
not be entirely justified. To explain this, a sketch of a pr(@hfe to Richardson)

37

that identifying real-valued functions that are in factaevill be given. Many
details of the proof will be omitted or glossed over, but tine lof argument given
can be made watertight. The purpose of showing this proaf ikat a certain key
oddity in it can be exposed and not with the intent that theopas a whole be
followed in detail.

Richardson’s result shows that there is no algorithm thdtneilably deter-
mine if a real function of a single real variable is in factntieally zero. The
class of functions it allows are built up from the variablethe constantr and
the integers, using the four normal arithmetic operatitogether with uses of the
normal elementary functionsin, cos, exp, log and sqgrt. It is supposed that any
expression that can be shown to have a constant value castbd te see if it is
zero. If this were not true then deciding if expressions veemr® would certainly
be undecidable! Richardson restricts his analysis to rédaésaSince théog and
sqrt functions are (in this context) undefined for negatirguments, a function
from the class considered may be partial. The result provédow that it is
impossible to tell if the function is zero at such places ds# a value, thereby
allowing for formulae such a§x/x) — 1) which are certainly zero everywhere
except atr = 0, but are undefined there.

The proof proceeds by assuming that there was an algoritliedide if func-
tions from the given class were zero, and shows how this wioybtly an algorith-
mic solution to a different problem that has already beenvsho be algorithmi-
cally undecidable. The known undecidable problem is thabbfing Diophantine
equations: that is finding sets of integer values that resuliven multivariate
polynomials (with integer coefficients) vanishing. Of ceeigiven any particular
Diophantine equation it may be possible to find the solutitims thing which can
not be done is to produce a single algorithmic method thataguees to solve any
such equation in a finite amount of time. (In this context s@\also includes the
case of deciding that an equation does not have any soluticlesms of whole
numbers).

Richardson shows how, for any given Diophantine equatiois, possible to
derive an analytic function of one variable such that thatfion being identically
zero corresponds means that the Diophantine equation hsslutions. Thus if
it were possible to test the function for zero it would be [assto tell that the
Diophantine equation could not be solved, and that is knaetimpossible.

The first step in the derivation of this result looks like thestficheat! Con-
sider a polynomial equation P(x,y,z)=0 where we are onlgredted interested in
solutions where X, y and z take integer values. Then for aoh solution it is

38

certainly true that
P(z,y, 2)* + sin(rx)? 4 sin(ry)? + sin(72)* = 0

and indeed a similar statement can be made however manyhleariaere present

in the original formula. Furthermore if we restrict our atien to real values
the new function can only possibly be zero at places thatrdegér solutions to

P = 0 even ifz, y andz are now thought of as variables that can range over all
possible real values.

The next step shows that from any multivariate function {fietance the one
just written down) it is possible to derive a function of oreiable which takes
the value zero at places related to the zeros of the origimation. The essence of
this is the construction of packing functiops, p,. .. (details are not given here)
and the replacement of

f(x7 y7 Z)

by
f(&) = f(pi(t), p2(t), p3(t))

where ag varies the functiong, p,, ...arrange that all possible integer values
of z, y andz are visited eventually. Despite the fact that this may seeaulgar,
this sort of packing transformation is a standard tool indhalysis of what is
computable and what is not.

The univariate functiorf (¢) is now multiplied by a large positive value so that
any nonzero minima of (¢) are scaled to have value greater than 1. Inventing
a scale value (which will in fact be a function oderived from the expression
that represented(¢)) is not a particularly obvious step, but can be done. If the
scaled univariate function i8'(¢), then we now have”(t) > 1 except in the
immediate vicinity of a place wherg'(¢) = 0, and these places correspond to
integer solutions of the Diophantine equation we startechfr

Finally, Richardson shows how to switch from consideratibrwbether a
function takes the value zero anywhere to a test on whethekés a non-zero
value anywhere. He observes that since we are working imrgabers, he can
express a version of the absolute value function as, foamtst abgr) = (/).

If the use of a square root is objected to he can achieve the séfiect using
exponentials and logarithms. He then defihés) = (abgz — 1) — (z — 1)) /2
and a quick sketch of the graph bfz) shows that if its argument is less than 1
it is nonzero, while ifz > 1 thenh(z) vanishes. This is enough to show that
h(F(t)) can only have nonzero values/ift) takes values less than 1 somewhere,

39

and hence iff (t) has roots. So any procedure that can find ou{ i (¢)) is ever
nonzero can be used to solve arbitrary Diophantine equstion

In the above proof the most objectionable step is the syigtloéshe absolute
value function ag+/z)?, which amounts to the synthesis of a non-analytic func-
tion out of several analytic ones, but it has been found amghzdifficult to find
any general way of prohibiting that while still allowing foalculations with an in-
terestingly rich collection of functions. One obvious pbggy would be to work
with complex numbers rather than reals. Doing so revealsttigaoddity relat-
ing to the absolute value function is just the tip of a hugdérg of oddities and
problems that arise when complex-valued functions can havéple branches.
For instance when working with algebraic formulae over clemmumbers it is
not obvious that/x = /x orlog(x) = 2im + log(z) until somebody has decided
if the characters we use to stand for a function should reptemne branch or all
possible ones, or what!

5.2 Reducing the number of distinct functions

A good pragmatic approach to calculating with higher fumasiis to try to avoid
it, or at least reduce the number of potentially interactimgctions that are present
in the formulae to be worked with.

5.3 Algebraic independence

If we have a formula that involves, log(x) andsin(1/x) it might make sense
to try replacing the two nasty functions by new symbglsnd > say. That will
reduce the formula to just a rational function which we alyelanow how to cope
with. The only extra effort needed will be to remember thaind > need special
treatment when differentiated, for examplg/dx = 1/x. The case above will
in fact survive this re-interpretation, but if the origirfarmula included various
closely related functions (egxp(z) andexp(2z + 1) or log(x) andlog(5x?), or
even justy/z2) the rational function version of the formula would fail tapture
important aspects of the original.

5.4 Structure Theorems and their uses

A Sructure Theorem is a procedure for testing if a collection of exponentials
and logarithms (or whatever) are sufficiently independeat tenaming them into
rational function variables is safe. The lectures will skethe process applied in

40

either the exponential or logarithmic case. If the functigmesent in an original
formula do not pass the test of a structure theorem the téatm@rovides no
guidance about what can or should be done — the idea is jusrtibycvarious

good cases where reliable calculations can be performediaaliow the sorts of
things that allowed Richardson’s pessimistic result to loeel.

5.4.1 Risch’s Integration algorithm

The main technical triumph built on top of the idea of struettheorems is algo-
rithmic indefinite integration. The idea behind this is timvell behaved cases it
is possible to predict the form that an integral will haveofife exists). A general
expression (with a load of undetermined coefficients in ftjhat form is then
written down and identified with the original integral. Aftdifferentiating both
sides the use of a structure theorem makes it valid to considgything as ra-
tional function calculation. In particular it is permiskglio compare coefficients,
and doing so leads to a bunch of linear equations that canlbedsio find values
for the unknown coefficients that had been introduced. Hitiesar equations can
be solved an integral has been found, otherwise the lack ofudi@n amounts
to a proof that no integral in closed form exists. There aexig (and extreme)
complications that arise when integrands start off withasguor higher roots, or
when higher transcendental functions (error function} a&te to be handled, and
not all combinations can be coped with, but the vast majaiftghe integrals re-
quired in engineering applications can now be done by coenpuatich faster and
more reliably than either hand work or inspection of booktabfes allows.

6 REDUCE keywords and switches

Note that Reducdé is an evolving system — new releases come out every couple
of years and these always add a number of new operators aabili#gs. In
some cases awkward old syntax is replaced by a neater waypmssing things.
The list will therefor not always contain a complete list bétfunctions that are
available, but it does include the ones most important fgrexamples you might
want to try for this course.

ABS Computes the absolute value of an expression

10And of course all the other major algebra systems.

41

ACOS
ACOSH
ADD

ALGEBRAIC
ALLBRANCH

ALLFAC

AND

Arc-cosine
Arc-cosh
Alternative for+

Used when switching between algebraic and symbolic modes.

Switch. Used with SOLVE. (on)

Switch. If on, expressions are displayed with common
factors first. (on)

Logical operator

ANTISYMMETRIC Declares operators to be antisymmetric in their arguments.

ARGLENGTH

ARRAY
ASIN
ASINH
ATAN
ATANH

BEGIN END

BYE
CARDNO#
CLEAR
COEFF

COMMENT

COMP
CONS
CONT

CONVERT

COS
COSH
COoT
CREF
DEFINE
DEFN
DEG
DEMO

DEN
DEPEND
DET

Number of arguments of top level operator in expression.
For declaring arrays.

Arc-sine

Arc-sinh

Arc-tan

Arc-tanh

Compound statement.

Finishes Reduce job, clears it from memory.

Fortran output option.

For removing assignments and substitutions.
partitions polynomial expression into coefficients
Text betweerCOMMENENd ; or $ is ignored.

Switch. Used to invoke Lisp compiler. (off)
Alternative for dot operator (more usual to use

Used to continue file input which has beRAUSH.
Switch. If on, integral real coefficients are replaced
by integers (on)

Cosine

Hyperbolic cosine

Cotangent

Switch. If on, does a cross-reference analysis. (off)
To define synonyms for Reduce keywords and indentifiers.
Used in symbolic mode.

Leading degree of polynomial in given variable.
Switch. If on, press return to execute next command
from file input. (off)

Denominator of a rational expression.

Sets up dependencies between variables/kernels.
Determinant of matrix.

42

DF
DIFFERENCE
DILOG
DISPLAY

DIV

DO

E
ECHO
EDITDEF
ED
END
EPS
EQ
EQUAL
ERF
EXP
EXP
EXPINT
EXPR
EXPT
EZGCD

FACTOR
FACTOR
FACTORIZE
FAILHARD
FIXP

FLOAT

FOR

FORALL LET
FOREACH
FORT
FORTWIDTH#*
FREEOF

G

GCD

GCD

Partial differentiation of expression.

Take difference between two arguments (more usual te use
dilogarithm.

For displaying previous inputs.

Switch. If on, displays have rational fractions,

negative powers. (off)

Used inFORIoops and withWHILE

The base of natural logarithms (2.71828...).

Switch. If on, file input is echoed in display. (on)

Allows interactive editing of user defined procedure.
Allows interactive editing of any previous command.
Terminates 8EGIN ENDblock or afile.

High energy physics: antisymmetric tensor of order 4.
Used in symbolic mode

Alternative to=

Error function.

Exponential function.

Switch. If on, expressions are expanded during evaluawm).
exponential integral.

Used in symbolic mode.

Alternative for++ or” (raising to a power).

Switch. If on, withGCDon, uses EZ-GCD algorithm to
compute gcds. (off)

Switch. If on, expressions are displayed in factored forif) (
Declares expressions as factors for displays.

Factorizes polynomial expression.

Switch. If on, impossible integration returns error. (off)
Returns true if expression is integer, else false.

Switch. If on, allows use of floating point numbers. (off)
Start of program loop.

Declares new substitution rule(s).

Used in symbolic mode.

Switch. If on, display is in a Fortran notation. (off)

Fortran output option.

True if first argument does not contain second argument.
High energy physics: a Dirac gamma matrix expression.
Switch. If on, greatest common divisors are cancelled) (off
Returns the greatest common divisor of two polynomials.

43

GEQ Alternative for>=
GO (TO) For use with a labelled statement witiBEGIN END
GREATERP Alternative for>
HIPOW! Set to highest non-zero power wh€®EFHSs used.
I Square root (-1).
IF THEN ELSE Conditional statement.
IN Takes input from external Reduce file(s).
INDEX High energy physics
INFIX Declares new infix operators.
INPUT Used to reference previous inputs in new computations.
INT Switch. Controls whether file input is batch or not.
(default depends on implementation)
INT Integration
INTEGER Declares local integer variablesBEGIN ENDblock.
KORDER Declares internal ordering for variables.
LAMBDA Used in symbolic mode.
LCM Switch. If on, least common multiple of denominators
is used. (on)
LCOF Leading coefficient of polynomial.
LEQ Alternative for<=
LESSP Alternative for<
LET Declares substitutions.
LINEAR Declares operators to be linear in their arguments.
LINELENGTH For setting output linelength - see Manual.
LISP Synonym forSYMBOLIC
LIST Switch. If on expressions are displayed one term to a linf). (o
LOAD Used in symbolic mode.
LOG Natural logarithm
LOWPOW! Set to lowest non-zero power wh@OEFHSs used.
LTERM Leading term of expression.
MACRO Used in symbolic mode.
MAINVAR Main variable of polynomial.
MASS High energy physics: assign masses to vectors.
MAT Used to assign values to matrices.
MATCH Declares substitutions (less flexible thaaT)
MATRIX Declares matrix variables.
MAX Returns maximum of any number of numerical expressions.
MCD Switch. If on, makes common denominators when adding

44

MEMBER
MEMQ
MIN
MINUS
MODULAR
MSG
MSHELL
MULT
NAT

NEQ

NERO

NIL
NODEPEND
NOLNR

NONCOM
NOSPUR
NOT

NUM
NUMBERP
NUMVAL
OFF

ON
OPERATOR
OR

ORDER
ORDP

ouT
OUTPUT
OVERVIEW
PART
PAUSE
PERIOD

PFACTORIZE

PGWD

expressions. (on)

Used in symbolic mode.

Used in symbolic mode.

Returns minimum of any number of numerical expressions.
Alternative for-

Switch. If on, does arithmetic modulETMOD(off)

Switch. If off, warning messages are not displayed. (on)
High energy physics: puts variables “on the mass shell”.
Alternative forx

Switch. If off, display is in form that could be used

for input. (on)

Not equal to.

Switch. If on, zero assignments are not displayed. (off)
Synonym for zero.

Removes dependencies createdBPEND

Switch. Integration: may be useful if no closed form
solution. (off)

Declares operators to be non-commutative for multiplarati
High energy physics: (traces and Dirac matrix calculafions
Logical operator.

Numerator of a rational expression.

True if argument is a number, else false.

Switch. If on, expressions are evaluated numerically.) (off
Turns off the named mode switches.

Turns on the named mode switches.

Declares new prefix operators.

Logical operator.

Declares an ordering for variables in displays.

True if first argument is ordered ahead of second argument.
Directs output to named file or to termin®@UT T;).

Switch. If off, there is no printing at the top level. (on)
Switch. Factorization: connected willRFAC (off)
Extracting parts of expressions

In file input, offers option of continuing from terminal.
Switch. Fortran output option (re inclusion of decimal
points). (on)

Factorizes univariate polynomial, modulo given prime.
Switch. Used in symbolic mode. (off)

45

Pl Circular constant.

PLAP Switch. Used in symbolic mode. (off)

PLUS Alternative for+

PRECEDENCE Sets precedence of new operators declareldNByX .
PRECISION Sets precision for real arithmetic, used wi?iN ROUNDED
PRET Used in symbolic mode. (off)

PRI Switch. If off, all output declarations and switches are

ignored. (on)
PROCEDURE Names statement(s).

PRODUCT Used withFORto find products.

PUT To define synonyms foALGEBRAICor SYMBOLIC

PWRDS Switch. Used in symbolic mode. (on)

QUIT Exit from Reduce.

QUOTIENT Take ratio of two arguments (more usual to use /).

RAISE Switch. If on case of letters is ignored in keywords,
expressions. (on)

RAT Switch. Used wittFACTORor displaying expressions. (off)

RATIONAL Switch. If on, polynomials use rational numbers. (off)

REAL Declares local real variables BEGIN ENDblock.

RECIP Take reciprocal of argument (more usual to use 1/argument).

REDERR Print error message.

REDUCT Reductum of expression with respect to variable.

REMAINDER Remainder when first polynomial is divided by second.

REMFAC Clears the effect dFACTOR

REMIND High energy physics: removes the effeciiNDEX.

REPEAT UNTIL Provides repetition

RESUBS Switch. If off, no resubstitutions are made after the
first. (on)

RESULTANT Resultant of two polynomials with respect to given variable.

RETRY Tries to do the command in which the last error occurred.

RETURN For transfer out oBBEGIN END

ROUNDED Switch. If on, gives real number evaluation
(seePRECISION). (off)

SAVEAS Alternative forx:=ws$

SAVESTRUCTR Switch. If on, causeSTRUCTRo store results. (off)

SCALAR Declares local variables BEGIN ENDblock.

SETQ Alternative to:=

SETMOD Sets modular base, used with mode swMBDULAR

46

SHARE
SHOWTIME
SHUT

SIN

SINH
SMACRO
SOLVE

Used in symbolic mode.

Displays the elapsed time since I&1OWTIME
Closes output file(s).

Sine

Hyperbolic sine

Used in symbolic mode.

Solves one or more simultaneous equations.

SOLVEINTERVAL Switch. If on, inexact roots are represented by

intervals. (off)

SOLVESINGULARSwitch. If on, solutions may include arbitrary

SOLVEWRITE
SPUR
SQRT

STEP UNTIL
STRUCTR
SUB

SUCH THAT
SUM
SYMBOLIC
SYMMETRIC
]

TAN

TANH
TERMS
TIME

TIMES
TIMINGS
TP
TRACE
TRFAC

TRINT
UNTIL

VARNAME
VECDIM

constants. (on)

Switch. If on, solutions are displayed. (on)

High energy physics: traces in Dirac matrix calculations.
square root

Used inFORIoops

Displays the structure of an expression.

Replace variable by expression in an expression.

Used inFORALL LET

Used withFORto find sums

Used when switching between algebraic and symbolic modes.
Declares operators to be symmetric in their arguments.
Cannot be formal parameter or local variable in procedure.
Tangent

Hyperbolic tangent

Number of top level terms in numerator of argument.
Switch. If on, cpu time used by each command is
displayed. (off)

Alternative for=*

Factorization: connected withRFAC (off)

Transposes a matrix.

Trace of a matrix.

Switch. Factorization: if on, traces operation of

the algorithm. (off)

Switch. Integration: if on, traces operation of the
algorithm. (off)

Used withFORandWHILE

Fortran output option, for naming expressions.

High energy physics: setting dimensions

47

VECTOR
WEIGHT
WHILE DO
WRITE

WS
WTLEVEL
I« MODE

%
!

{}

High energy physics: declaring vectors.

Asymptotic commnad for assigning weights.

Provides repetition

Displays expressions, strings.

Used to reference previous outputs for new computations.
Asymptotic command to reset weight level (default 2).
Displays the current mode (algebraic or symbolic).
Terminator for a command, result is displayed.
Terminator for a command, result is not displayed.
Assignment symbol

Dot operator, and decimal point.

Indicates a group statement.

Simple brackets.

May replaceSTEP 1 UNTIL in FORIloops, also use with labels.

Used as separator in lists.

Delimits text iInWRITEstatement.

Text between % and end of line is ignored.

Is an escape character for special symbols in an identifier.
Used in symbolic mode.

Used to write lists.

The following arithmetic operators have their usual megmin algebraic ex-
pressions# and” are synonyms):

=+

A

* *k

The following relational operators have their usual megrfor comparing

numbers:

48

