
Comparative
Architectures

CST Part II, 16 lectures

Lent Term 2006

David Greaves

David.Greaves@cl.cam.ac.uk

Slides Lectures 1-13

(C) 2006 IAP + DJG

Course Outline

1. Comparing Implementations

• Developments fabrication technology

• Cost, power, performance, compatibility

• Benchmarking

2. Instruction Set Architecture (ISA)

• Classic CISC and RISC traits

• ISA evolution

3. Microarchitecture

• Pipelining

• Super-scalar

– static & out-of-order

• Multi-threading

• Effects of ISA on µarchitecture and vice versa

4. Memory System Architecture

• Memory Hierarchy

5. Multi-processor systems

• Cache coherent and message passing

Understanding design tradeoffs

2

Reading material

• OHP slides, articles

• Recommended Book:
John Hennessy & David Patterson,
Computer Architecture: a Quantitative Approach
(3rd ed.) 2002 Morgan Kaufmann

• MIT Open Courseware:
6.823 Computer System Architecture,
by Krste Asanovic

• The Web
http://bwrc.eecs.berkeley.edu/CIC/
http://www.chip-architect.com/
http://www.geek.com/procspec/procspec.htm
http://www.realworldtech.com/
http://www.anandtech.com/
http://www.arstechnica.com/
http://open.specbench.org/

• comp.arch News Group

3

Further Reading and
Reference

• M Johnson
Superscalar microprocessor design
1991 Prentice-Hall

• P Markstein
IA-64 and Elementary Functions
2000 Prentice-Hall

• A Tannenbaum,
Structured Computer Organization (2nd ed.)
1990 Prentice-Hall

• A Someren & C Atack,
The ARM RISC Chip,
1994 Addison-Wesley

• R Sites,
Alpha Architecture Reference Manual,
1992 Digital Press

• G Kane & J Heinrich,
MIPS RISC Architecture
1992 Prentice-Hall

• H Messmer,
The Indispensable Pentium Book,
1995 Addison-Wesley

• Gerry Kane and HP,
The PA-RISC 2.0 Architecture book,
Prentice Hall

4

Course Pre-requisites

• Computer Design (Ib)

– Some ARM/x86 Assembler

– Classic RISC pipeline model

– Load/branch delay slots

– Cache hierarchies

– Memory Systems

• Compilers (Ib/II)

– Code generation

– Linkage conventions

• Structured Hardware Design

– Critical paths

– Memories

• (Concurrent Systems)

5

A
n

E
x
a
m

p
le

M
ic
ro

p
ro

c
e
s
s
o
r

A
1
6

D
1
6

RBUS

ALUBUS

PROGRAM COUNTER

ARGBUS

LASTR

AHOLDINSL

+2

IMED8

0

A BUS OUT

DBUS

REG
FILE

BDEST

INDEX

PC

BYTE
REPLICATE

BYTE
SELECTORS

ALU

MIX PU17 MICROPROCESSOR A16 D16
INDEXED ADDRESSING
ADDER

6

P 1 pu17.v microprocessor djg

module PU17CORE(abus16, dbus16_in, dbus16_out, clk, reset, opreq, irq, rwbar, byteop, w$
aitb);

 output [15:0] abus16;
 input [15:0] dbus16_in;
 output [15:0] dbus16_out;
 output byteop;
 input clk, reset;
 output opreq, rwbar;
 input irq;

 input waitb; // Acts as a clock enable essentially
 // Wait should be changed to not gate internal cycles ?$

// Locals

 wire [15:0] pc, next_pc;
 wire [15:0] rbus, alubus, argbus;
 reg [15:0] ahold, lastr;
 wire branch_yes; // One if branch condition matches
 // Synchronise reset input
 reg sreset;
 always @(posedge clk) sreset <= reset;

 reg execute; // Execute cycle
 reg internal; // Internal cycle (when execute also needed)

 // Instruction decode wires
 reg update_flags;
 reg [3:0] branch_condition;
 reg regwen;
 reg [15:0] bdest; // Branch destination
 reg [2:0] regnum; // Register file read and write ports.

 reg write;
 reg byteop, byteopreq;
 reg imed8;
 reg argreq, argcycle;
 reg linkf; // Branch and link
 reg regind; // Register indirect
 reg idx7; // Even offsets to a base reg
 reg rlasave; // High to save PC as a return address
 reg exreq; // High to request an extension
 reg f0a,f0b,f0c, f1; // Fetch0 and fetch 1 parts of inst
 reg last_cycle; // End cycle of current instruction
 reg f1req; // Request for second inst word
 reg branch;
 reg [3:0] fc; // ALU function code
 reg argislast; // Used for reg to reg operations on single ported file$

 reg multiple; // USed for LDM/STM
 reg internal_req;
 reg [3:0] multiple_reg; // current register to transfer in STM/LDM

 // Form a transparent latch for the old instruction.
 reg[15:0] ins_l; // Latched instruction opcode (use in f1 onwards to re$
duce combinatorial loops in net list).
 wire [15:0] ins = (f0a) ? dbus16_in: ins_l; // Always valid.
 always @(posedge clk) if (f0a) ins_l <= dbus16_in;

 wire advance = f0a | f1;
 PCM pcm(pc, next_pc, advance, clk, waitb, reset, branch, bdest);
 RFILE rfile(.rfile_in(alubus), .rfile_out(rbus), .regnum(regnum),
 .cen(waitb), .clk(clk), .regwen(regwen));

 assign dbus16_out = (rlasave) ? pc: (byteop) ? { rbus[7:0], rbus[7:0]} :rbus;

 // The ALU defaults to straight through on the b input, needing fc=12
 PUALU pualu(.y(alubus), .a(rbus), .b(argbus), .fc(fc), .clk(clk), .cen(waitb),
 .update_flags(update_flags), .branch_condition(branch_condition),
 .branch_yes(branch_yes));

 always @(posedge clk) if (sreset) begin
 f0a <= 0;
 f0b <= 0;
 f0c <= 0;
 f1 <= 0;
 argcycle <= 0;
 execute <= 0;
 internal <= 0;
 lastr <= 0;
 ahold <= 0;
 end

 else if (waitb) begin

 if (~execute & ~f0a & ~f1)
 begin
 f0a <= 1; // start of day event.
 f0b <= 1; // start of day event.
 f0c <= 1; // start of day event.
 end
 else begin
 f0a <= last_cycle;
 f0b <= last_cycle;
 f0c <= last_cycle;
 end

 f1 <= f1req;
 argcycle <= argreq;
 byteop <= byteopreq;
 execute <= exreq;
 if (f0a | f1) ahold <= dbus16_in;

 internal <= internal_req;

 // lastr is simply the register read the cycle before.
 if (!multiple) lastr <= rbus;
 end

 initial begin
 multiple = 0;
 update_flags = 0;
 branch_condition = 0;
 last_cycle = 0;
 update_flags = 0;

7

P 2 pu17.v microprocessor djg

 rlasave = 0;

 imed8 = 0;
 write = 0;
 byteopreq = 0;
 regnum = 0;
 regwen = 0;
 argreq = 0;
 argcycle = 0;
 f1req = 0;
 fc = 4’d12; // ALU default to load mode
 argislast = 0;
 multiple = 0;
 end

 // Instruction decoder.
 always @(ins or ins_l or f1 or f0a or f0b or f0c or execute or alubus or branch_cond$
ition or lastr
 or multiple_reg or internal or pc or branch_yes or dbus16_in or fc) begin
 last_cycle = 0;
 fc = 4’d12; // ALU default to load mode
 rlasave = 0;
 update_flags = 0;
 update_flags = 0;

 imed8 = 0;
 write = 0;
 regnum = 0;
 regwen = 0;
 argreq = 0;
 byteopreq = 0;
 f1req = 0;
 linkf = 0;
 idx7 = 0;
 regind = 0;
 internal_req = 0; // not used ?
 exreq = 0;
 argislast = 0;
 branch = 0;
 bdest = 0;
 branch_condition = ins[5:2];
 multiple = 0;

 case(ins[15:12])

 4’h0, 4’h1, 4’h2, 4’h3, 4’h4, 4’h5, 4’h6, 4’h7:
 // Arith/alu immed 8 bits, one cycle.
 // If a shift, the immed arg is ignored and a shift of one is always done.
 if (f0c) begin
 last_cycle = 1;
 fc = ins[6:3];
 regnum = ins[9:7];
 regwen = (fc!=5 && fc!=13); // Not cmp or tst ;
 update_flags = 1;
 imed8 = 1;
 end

 4’hA,
 4’h8: // Load from memory with index
 begin
 if (f0c) begin

 regnum = (ins[11:10]==3) ? 7: {1’b0, ins[11:10]}; // Read ind$
ex reg to lastr in an internal cycle
 exreq = 1;
 byteopreq = ins[13];
 argreq = 1;
 end
 if (execute) begin
 regnum = ins_l[9:7];
 last_cycle = 1;
 regwen = 1; // Indexed load with 6 bit offset
 idx7 = 1;
 end
 end

 4’hB,
 4’h9: // Store to memory with index
 begin
 if (f0c) begin
 regnum = (ins[11:10]==3) ? 7: {1’b0, ins[11:10]}; // Read inde$
x reg to lastr in an internal cycle
 exreq = 1;
 byteopreq = ins[13];
 argreq = 1;
 end
 if (execute) begin
 regnum = ins_l[9:7];
 last_cycle = 1;
 write = 1;
 idx7 = 1;
 end

 end

 4’hC: // C is relative branch (BSR not supported)
 begin
 branch_condition = ins[11:8];
 branch = branch_yes;
 bdest = pc + { 7 { ins[7] }, ins[7:0], 1’b0 };
 last_cycle = 1;
 end

 4’hD:
 if (ins[11:10] == 2’b00) begin // D0 is arith reg, reg
 fc = ins[6:3];
 if (f0c) begin
 exreq = 1; // Read reg on first cycle
 regnum = ins[2:0];
 end
 if (execute) begin
 regnum = ins_l[9:7];
 argislast = 1;
 last_cycle = 1;
 regwen = (fc!=5 && fc!=13); // Not cmp or tst
 update_flags = 1;
 end
 end

 else if (ins[11:10] == 2’b01) begin // Load/store from memory abs 16
 regnum = ins[9:7];
 byteopreq = ins_l[6];
 if (ins[5]==0) begin // Load from an abs 16 bit address
 if (f0b) begin

8

P 3 pu17.v microprocessor djg

 f1req = 1;
 end
 if (f1) begin
 exreq = 1;
 argreq = 1;
 end
 if (execute) begin
 regwen = 1;
 last_cycle = 1;
 end
 end

 else// Store to memory abs 16
 begin
 regnum = ins[9:7];
 if (f0b) begin
 f1req = 1;
 end
 if (f1) begin
 exreq = 1;

 argreq = 1;
 end
 if (execute) begin
 write = 1;
 last_cycle = 1;
 end
 end
 end

 else if (ins[11:10] == 2’b10) begin // D8, abs cond jump or link
 if (f0c) f1req = 1;
 if (f1) begin
 if (branch_condition == 15) begin // Branch with save o$
f PC in r6
 regnum = 6;

 regwen = 1;
 linkf = 1;
 branch = 1;
 end
 else branch = branch_yes;
 bdest = dbus16_in;
 last_cycle = 1;
 end
 end

 else if (ins[11:10] == 2’b11) begin // LDM/STM
 if (ins[1]) begin// store
 if (f0c) begin
 f1req = 1;
 regnum = 7;
 end
 if (f1) begin
 f1req = multiple_reg != 8;
 multiple = 1;
 last_cycle = multiple_reg == 8;
 write = 1;
 regnum = multiple_reg;
 end
 end

 else begin // load
 if (f0c) begin
 f1req = 1;
 regnum = 7;
 end
 if (f1) begin
 f1req = multiple_reg != 8;
 multiple = 1;
 last_cycle = multiple_reg == 8;
 regwen = 1;
 regnum = multiple_reg;
 end
 end

 end

 4’hF:

 if (ins[11:10] == 0) begin
 // F0 is register jump (used for ret) and bxl which is indirect branch $
and link
 if (ins[0]) begin // with link is two cycles
 if (f0c) begin
 exreq = 1;
 regnum = ins[9:7];
 end

 if (execute) begin
 last_cycle = 1;
 bdest = lastr;
 regnum = 6;
 linkf = 1;
 regwen = 1;
 branch = 1;
 end
 end

 else begin // without link
 if (f0c) begin
 regnum = ins[9:7];
 last_cycle = 1;
 bdest = alubus;
 branch = 1;
 fc = 0; // function code 0 for $
reg unmodified
 end
 end
 end

 else if (ins[11:10] == 1) begin // F4 is load immediate 16 bit
 regnum = ins[9:7];
 if (f0c) begin
 f1req = 1;
 end
 if (f1) begin
 regwen = 1;
 last_cycle = 1;
 end
 end

9

P 4 pu17.v microprocessor djg

 endcase
 end

 assign rwbar = ~write;
 assign opreq = argcycle | f0a | f1;
 assign abus16 =
 (f0a|f1) ? pc: // Instruction fetch
 (multiple) ? lastr + { multiple_reg, 1’b0 }: // LDM STM
 (idx7) ? lastr + { 8 {ins_l[5]}, ins_l[6:0], 1’b0 }: // 7 bit indexe$
d addressing
 (regind) ? lastr: // Register indirect
 ahold; // General absolute addresses

 //wire [15:0] testt = { 10’b0+ins[5:0]};

 assign argbus =
 (imed8) ? { 8’b0, ins[14:10], ins[2:0] }:
 (argislast) ? lastr:
 (linkf) ? next_pc:
 (byteop & ~abus16[0]) ? { 8’h00, dbus16_in[7:0] }: // Little endian
 (byteop & abus16[0]) ? { 8’h00, dbus16_in[15:8] }:
 dbus16_in;

 // LDM STM next register logic
 reg old_multiple;
 always @(posedge clk) begin
 old_multiple <= multiple;
 if (~old_multiple) begin
 multiple_reg <= (ins[2]) ? 0:
 (ins[3]) ? 1:
 (ins[4]) ? 2:
 (ins[5]) ? 3:
 (ins[6]) ? 4:
 (ins[7]) ? 5:
 (ins[8]) ? 6:
 (ins[9]) ? 7: 8;
 end
 else case (multiple_reg)
 0: multiple_reg <= (ins[3]) ? 1:
 (ins[4]) ? 2:
 (ins[5]) ? 3:
 (ins[6]) ? 4:
 (ins[7]) ? 5:
 (ins[8]) ? 6:
 (ins[9]) ? 7: 8;
 1: multiple_reg <= (ins[4]) ? 2:
 (ins[5]) ? 3:
 (ins[6]) ? 4:
 (ins[7]) ? 5:
 (ins[8]) ? 6:
 (ins[9]) ? 7: 8;
 2: multiple_reg <= (ins[5]) ? 3:
 (ins[6]) ? 4:
 (ins[7]) ? 5:
 (ins[8]) ? 6:
 (ins[9]) ? 7: 8;
 3: multiple_reg <= (ins[6]) ? 4:
 (ins[7]) ? 5:
 (ins[8]) ? 6:
 (ins[9]) ? 7: 8;

 4: multiple_reg <= (ins[7]) ? 5:
 (ins[8]) ? 6:
 (ins[9]) ? 7: 8;

 5: multiple_reg <= (ins[8]) ? 6:
 (ins[9]) ? 7: 8;

 6: multiple_reg <= (ins[9]) ? 7: 8;

 7: multiple_reg <= 8;

 endcase

 end

endmodule
//
//
//
//
// ALU AND FLAGS
//
module PUALU(y, a, b, fc, clk, cen, update_flags, branch_condition, branch_yes);

 input [3:0] fc; // Function code
 input [15:0] a, b;
 input clk, cen, update_flags;
 input [3:0] branch_condition;
 output branch_yes;

 reg carry, zero, negative, overflow;

 output [15:0] y;
 reg [15:0] y;
 wire [15:0] addsub;

 always @(a or b or fc or addsub) case (fc)
 0: y = a; // straight through of register bus, used for store.
 1: y = addsub;
 2: y = addsub;
 3: y = addsub;
 4: y = addsub;
 5: y = addsub; // CMP
 6: y = a | b;
 7: y = a & b;
 8: y = a ^ b;
 9: y = a << 1; // ASL/LSL
 10: y = { a[15], a[15:1] }; // ASR
 11: y = a >> 1; // LSR
 12: y = b; // Used for mov/load
 13: y = a & b; // TST
 default : y = addsub; // y = 16’bx;
 endcase

 wire n_carry;
 wire n_overflow;
 ADDSUB addsub(addsub, a, b, n_carry, carry, n_overflow, fc);

 always @(posedge clk) if (update_flags & cen) begin

1
0

P 5 pu17 microprocessor djg

 carry <= (fc==9)?a[15]: (fc==10)?a[0]: (fc==11)?a[0]: n_carry;
 zero <= (y==16’h0);
 negative <= y[15];
 overflow <= 0;
 end

 // These conditions follow exactly the 6800 processor.
 reg branch_yes;
 always @(branch_condition or carry or overflow or zero or negative)
 case (branch_condition)
 0: branch_yes = zero; // EQ
 1: branch_yes = ~zero; // NE
 2: branch_yes = (negative ^ overflow); // LT
 3: branch_yes = ~(negative ^ overflow) | zero; // GE
 4: branch_yes = ~(negative ^ overflow) & ~zero; // GT
 5: branch_yes = (negative ^ overflow) | zero; // LE
 6: branch_yes = carry;
 7: branch_yes = ~carry;
 8: branch_yes = overflow;
 9: branch_yes = ~overflow;
 10: branch_yes = 1; // unconditional
 11: branch_yes = ~carry & ~zero; // HI
 12: branch_yes = carry | zero; // LS
 13: branch_yes = negative; // MI
 14: branch_yes = ~negative; // PL
 default: branch_yes = 1; // Used for link
 endcase

endmodule
//
//
//
//
module ADDSUB(addsub, a, b, n_carry, carry, n_overflow, fc);

 input [3:0] fc; // Function code
 input [15:0] a, b;
 input carry;
 output [15:0] addsub;
 output n_overflow, n_carry;

// 1: y = a + b;
// 2: y = a - b;
// 3: y = a + b + carry;
// 4: y = a - b - carry;
//
//
 reg c;
 reg [15:0] bb;

 always @(fc or b or carry) case (fc)
 1: begin bb = b; c = 0; end

 default: begin bb = ~b; c = 1; end // Subtract, compare and test.

 3: begin bb = b; c = carry; end

 4: begin bb = ~b; c = carry; end
 endcase

 wire [25:0] q, neta, netb;

 assign neta = { 8’b0, 1’b0, a, c };
 assign netb = { 8’b0, 1’b0, bb, c };
 ADDER26 adder26(q, neta, netb);
 assign n_carry = q[17]; // carry is in bit 18 if we had 1 in bit17 of netb
 assign addsub = q[16:1];

 wire msb_a = a[15];
 wire msb_bb = bb[15];

 assign n_overflow = (msb_a == msb_bb) && (n_carry ^ q[16]);

endmodule
//
//
//
//
//
//
//
module RFILE(rfile_in, rfile_out, regnum, clk, cen, regwen);

 input [15:0] rfile_in;
 output [15:0] rfile_out;
 input [2:0] regnum;
 input clk, cen;

 wire [15:0] y;

 input regwen;
 wire wen = cen & regwen;

 // Write new data
 wire [15:0] nd = rfile_in;

 // Write adderess
 wire [3:0] wa = { 1’b0, regnum };

‘ifndef SYNTHESIS
 // Put this in for ease of tracing during behev simulation.
 reg [15:0] r0, r1, r2, r3, r4, r5, r6, r7;

 always @(posedge clk) begin
 if (wen && wa == 0) r0 <= nd;
 if (wen && wa == 1) r1 <= nd;
 if (wen && wa == 2) r2 <= nd;
 if (wen && wa == 3) r3 <= nd;
 if (wen && wa == 4) r4 <= nd;
 if (wen && wa == 5) r5 <= nd;
 if (wen && wa == 6) r6 <= nd;
 if (wen && wa == 7) r7 <= nd;
 end
 assign rfile_out =
 (regnum == 0) ? r0:
 (regnum == 1) ? r1:
 (regnum == 2) ? r2:
 (regnum == 3) ? r3:
 (regnum == 4) ? r4:
 (regnum == 5) ? r5:
 (regnum == 6) ? r6:
 r7;
‘else

1
1

P 6 pu17 microprocessor djg

 assign rfile_out = y;

 // 16 words of RAM here, but use only first few for R0-7
 RAMS16x16 register_ram(y, nd, wen, clk, wa);

‘endif

endmodule

module PCM (pc, next_pc, advance, clk, cen, sreset, branch, bdest);

 input branch;
 input [15:0] bdest;
 output [15:0] pc, next_pc;
 input clk, cen, sreset, advance;

 reg [15:0] pc;

 always @(posedge clk) if (sreset) pc <= 0; else if (cen & branch) pc <= bdest;
 else if (cen & advance) pc <= next_pc;

 assign next_pc = pc+2;
endmodule

1
2

P
U
1
7

O
P
C
O

D
E

M
A
P

P 1 pu17-opcode-map djg

0-7 0xxx. R3DEST, ALU4, IMMED8 : Imm 8 bit
 7, 3, 14-10, 2-0

8-B 10xx. BYTEF, STOREF, IDXR2, REG3, IDX7, : Indexed load/stores/add/sub
 13, 12, 10, 7, 0 :

C 1100. COND4, OFFSET8 : Relative branches + bsr
 8 0

D0 1101.00 R3DEST, ALU4, R3SRC : ALU reg,reg ops
 7 3 0

D4 1101.01 REG3, BYTEF1, STOREF, ABS16 : Abs16 load/store
 7 6 5, next

D8 1101.10 COND4, ABS16 : Absolute jmp jsr
 2,

DC 1101.11 RLIST8 STOREF : Load/store multiple
 2, 1 : Upwards from R7, r7 not chang$
ed

F0 1111.00 REG3 LinkF : Branch indirect
 7, 0 : bx, bxl

F4 1111.01 REG3, Immed16 : Load immediate (mov special c$
ase)

1
3

P 1 pu17-assembly-example djg

 781 ; int iread(len)
 782 ;
 783 ; {
 784 ;
 785 ; int r = 0;
 786 ;
 787 ; int i;
 788 ;
 789 ; for (i=0; i < len; i++)
 790 ;
 791 02D4 6000 lod R0,#0 ; lti
 792 02D6 7D9C str R0,[R7,#-6] ; assign
 793 dy29 ; anon
 794 02D8 7D8C lod R0,[R7,#-6] ; risf
 795 02DA 818C lod R1,[R7,#2] ; risf
 796 02DC 29D0 cmp R0,R1 ; alu-l
 797 02DE 0CD84C03 bge dy30 ; fjump F ; cfj
 798 ; {
 799 ;
 800 ; local c [R7,#-8]
 801 ; s
 802 02E2 80D410DF lod R1,_inpoi ; ris
 803 02E6 61D0 mov R0,R1 ; qasp1
 804 02E8 0900 add R0,#1 ; qasp
 805 02EA 20D410DF str R0,_inpoi ; qasp
 806 02EE 00A4 lodb R0,[R1] ; risf
 807 ; force VR0 to 0 ; call
 808 02F0 67D1 mov r2,r7 ; call
 809 02F2 1405 sub r2,#12 ; call
 810 02F4 3CD88E21 jsr _toupper ; call
 811 ; force VR0 to 0 ; res
 812 02F8 7CBC strb R0,[R7,#-8] ; assign
 813 ; char c = toupper(*inpoi++);
 814 ;
 815 ; while (c == ’ ’) c = toupper(*inpoi$
++);
 816 ;
 817 dy31 ; anon
 818 02FA 7CAC lodb R0,[R7,#-8] ; risf
 819 02FC 2810 cmp R0,#32 ; alu_i
 820 02FE 04D81C03 bne dy32 ; fjump F ; cfj
 821 0302 80D410DF lod R1,_inpoi ; ris
 822 0306 61D0 mov R0,R1 ; qasp1
 823 0308 0900 add R0,#1 ; qasp
 824 030A 20D410DF str R0,_inpoi ; qasp
 825 030E 00A4 lodb R0,[R1] ; risf
 826 ; force VR0 to 0 ; call
 827 0310 67D1 mov r2,r7 ; call
 828 0312 1605 sub r2,#14 ; call
 829 0314 3CD88E21 jsr _toupper ; call
 830 ; force VR0 to 0 ; res
 831 0318 7CBC strb R0,[R7,#-8] ; assign
 832 031A F0CA bra dy31 ; anon
 833 dy32 ; anon
 834 ; c = (c <= ’9’) ? c-’0’: c-(’0’+7);
 835 ;
 836 031C 7CAC lodb R0,[R7,#-8] ; risf
 837 031E 291C cmp R0,#57 ; alu_i
 838 0320 10D82C03 bgt dy33 ; fjump F ; cfj
 839 0324 7CAC lodb R0,[R7,#-8] ; risf
 840 0326 1018 sub R0,#48 ; alu_i
 841 0328 28D83203 bra dy34 ; anon

 842 dy33 ; anon
 843 032C FCAC lodb R1,[R7,#-8] ; risf
 844 032E 9718 sub R1,#55 ; alu_i
 845 0330 61D0 mov R0,R1 ; ltmv
 846 dy34 ; anon
 847 0332 7CBC strb R0,[R7,#-8] ; assign
 848 ; r = (r<<4) + c;
 849 ;
 850 0334 7E8C lod R0,[R7,#-4] ; risf
 851 0336 4900 asl R0,#1 ; fshif
 852 0338 4900 asl R0,#1 ; fshif
 853 033A 4900 asl R0,#1 ; fshif
 854 033C 4900 asl R0,#1 ; fshif
 855 033E FCAC lodb R1,[R7,#-8] ; risf
 856 0340 09D0 add R0,R1 ; alu-l
 857 0342 7E9C str R0,[R7,#-4] ; assign
 858 0344 7D8C lod R0,[R7,#-6] ; risf
 859 0346 0900 add R0,#1 ; qas
 860 0348 7D9C str R0,[R7,#-6] ; qasmi
 861 034A C7CA bra dy29 ; anon
 862 dy30 ; anon
 863 ; }
 864 ;
 865 ; return r;
 866 ;
 867 034C 7EAC lodb R0,[R7,#-4] ; risf
 868 ; force VR0 to 0 ; loadtod0
 869 034E 7F8F lod R6,[R7,#-2] ; cr
 870 0350 808F lod r7,[r7] ; cr
 871 0352 00F3 ret ; cr
 872
 873
 874 ; Routine mymon_dispatch
 875 ; forced litpool here
 876 .align 2
 877 _mymon_dispatch .global
 878 0354 809B str r7,[r2]
 879 0356 E2D3 mov r7,r2
 880 0358 7F9F str R6,[R7,#-2]
 881 035A 019C str R0,[R7,#2]
 882 ; ---------------------------------------$

 883 ; local argv [R7,#2]
 884 ; s
 885 ; }
 886 ;
 887 ;
 888 ;
 889 ; int mymon_dispatch(char **argv)
 890 ;
 891 ; {
 892 ;
 893 ;
 894 ;
 895 ; if (*argv == 0 || strlen(*argv)==0) r$
eturn;
 896 ;
 897 035C 018C lod R0,[R7,#2] ; risf
 898 035E 8080 lod R1,[R0] ; risf
 899 0360 A800 cmp R1,#0 ; gfv
 900 0362 00D87803 beq dy35 ; ctj
 901 0366 818C lod R1,[R7,#2] ; risf

1
4

The Microprocessor
Revolution

• Mainframe / Scalar Supercomputer

– CPU consists of multiple components

– performance improving at 20-35% p.a.

– often ECL or other exotic technology

– huge I/O and memory bandwidth

• Microprocessors

– usually a single CMOS part

– performance improving at 35-50% p.a.

– enabled through improvements in fabrication
technology

– huge investment

– physical advantages of smaller size

– General Purpose Processors

∗ desktop / server

∗ SMP / Parallel supercomputers

– Embedded controllers / SoCs

– DSPs / Graphics Processors

15

Developments in CMOS

• Fabrication line size reduction

– 0.8µ, 0.5, 0.35, 0.25, 0.18, 0.15, 0.13, 0.09

– 10-20% reduction p.a.

– switching delay reduces with line size

→ increases in clock speed

∗ Pentium 66Mhz @ 0.8µ, 150Mhz @ 0.6µ,
233MHz @ 0.35µ

– density increases at square of 1/line size

• Die size increases at 10-29% p.a.

⇒ Transistor count increase at 55% p.a.

– enables architectural jumps

– 8, 16, 32, 64, 128 bit ALUs

– large caches

∗ PA-8500: 1.5MB on-chip

– new functional units (e.g. multiplier)

– duplicated functional units (multi-issue)

– whole System On a Chip (SoC)

16

Developments in DRAM
Technology

• DRAM density

– increases at 40-60% p.a.

– equivalent to 0.5-1 address bits p.a.

– cost dropping at same rate

∗ 16M, 64M, 256M, 1G

• Consequences for processor architectures:

→ May not be able to address whole of memory from
a single pointer

– segmentation

→ May run out of physical address bits

– banked (windowed) memory

• DRAM performance

– just 35% latency improvement in 10 years!

– new bus interfaces make more sequential b/w
available

∗ SDRAM, RAMBUS, DDR, DDR2

17

µprocessor Development
Cycle

• Fabrication technology has huge influence on
power and performance

→ must use the latest fabrication process

• Full custom design vs. semi custom

• Keep development cycle short (3-4 years)

– Non CMOS technology leads to complications

• Advance teams to research:

– process characteristics

– key circuit elements

– packaging

– floor plan

– required performance

– microarchitecture

– investigate key problems

• Hope ISA features don’t prove to be a handicap

• Keep up or die!

• Alpha architects planned for 1000x performance
improvement over 25 years

18

Power Consumption

• Important for laptops, PDAs, mobile phones,
set-top boxes, etc.

• 155W for Digital Alpha 21364 @ 1150MHz

• 130W for Itanium-2 @ 1500MHz

• 90W for AMD Opteron 148 @ 2GHz

• 81W for Pentium-IV @ 3GHz

• 12W for Intel Mobile Pentium M @ 1100Hz

• 420mW for Digital StrongArm @ 233MHz, 2.0V

• 130mW for Digital StrongArm @ 100MHz, 1.65V

• Smaller line size results in lower power

– lower core voltage, reduced capacitance

– greater integration avoids inter-chip signalling

• Reduce clock speed to scale power

– P = CV 2f

– may allow lower voltage

∗ potential for cubic scaling

∗ better than periodic HALTing

Performance per Watt
19

Cost and Price

• E.g.:

– $0.50: 8bit micro controller

– $3: XScale (ARM)
(400MHz, 0.18µm, 20mm2, 2.1M[1M])

– $500: Pentium IV Celeron
(1.2GHz, 0.13µm, 131mm2, 28M[4M])

– $150: Pentium IV
(3.2GHz, 0.09µm, 180mm2, 42M[7M])

– $2200: Itanium2
(1Ghz, 0.18µm, 421mm2, 221M[15M])

• Costs influenced by die size, packaging, testing

• Large influence by manufacturing volume

• Costs reduce over product life (e.g. 40% p.a.)

– Yield improves

– Speed grade binning

– Fab ‘shrinks’ and ‘steppings’

20

Compatibility

• ’Pin’ Compatibility (second sourcing)

• Backwards Binary Compatibility

– 8086, 80286, 80386, 80486, Pentium,
Pentium Pro, Pentium II/III/IV, Itanium

– NexGen, Cyrix, AMD, Transmeta

– typically need to re-optimize

• Typically hard to change architecture

– Users have huge investment in s/w

– Binary translators e.g. FX!32, WABI

∗ typically interface to native OS

– Need co-operation from s/w vendors

∗ multi-platform support costs $’s

– Most computer sales are upgrades

• Platform independence initiatives

– Source, p-Code, JAVA bytecode, .NET

Compatibility is very important

21

Performance Measurement

• Try before you buy! (often not possible)

• System may not even exist yet

– use cycle-level simulation

• Real workloads often hard to characterize and
measure improvements

– especially interactive

• Marketing hype

– MHz, MIPS, MFLOPS

• Algorithm kernels

– Livermore Loops, Linpack

• Synthetic benchmarks

– Dhrystones, Whetstones, iCOMP

• Benchmark suites

– SPEC-INT, SPEC-FP, SPEC-HPC, NAS

• Application Benchmarks

– TPC-C/H/R, SPECNFS, SPECWeb, Quake

Performance is application
dependent

22

Standard Performance
Evaluation Corporation

• SPEC is most widely used benchmark

– processor manufactures

– workstation vendors

• CPU INT / FP 89, 92, 95, 2000, (2004)

• Suite updated to reflect current workloads

• CINT95/2K: 8/12 integer C programs

• CFP95/2K: 10/14 floating point in C&Fortran

• measures:

– processor

– memory system

– compiler

– NOT OS, libc, disk, graphics, network

23

Choosing programs for
SPEC2000

• More programs than SPEC95

• Bigger programs than SPEC95

– Don’t fit in on-chip caches

• Reflect some real workloads

• Run for several minutes

– Amortize startup overhead & timing
inaccuracies

• Not susceptible to trick transformations

– Vendors invest huge s/w effort

• Fit in 256MB (95 was 64MB)

• Moving target...

• SPEC92, 95, 2K results not translatable

24

CINT95 suite (C)

099.go An AI go-playing program
124.m88ksim A chip simulator for the Motorola 88100
126.gcc Based on the GNU C compiler version 2.5.3
129.compress An in-memory version of the utility
130.li Xlisp interpreter
132.ijpeg De/compression on in-memory images
134.perl An interpreter for the Perl language
147.vortex An object oriented database

CFP95 suite (Fortran)

101.tomcatv Vectorized mesh generation
102.swim Shallow water equations
103.su2cor Monte-Carlo method
104.hydro2d Navier Stokes equations
107.mgrid 3d potential field
110.applu Partial differential equations
125.turb3d Turbulence modelling
141.apsi Weather prediction
145.fpppp Quantum chemistry
146.wave5 Maxwell’s equations

25

SPEC reporting

• Time each program to run

• Reproduceability is paramount

– Take mean of ≥ 3 runs

– Full disclosure

• Baseline measurements

– SPECint base95

– Same compiler optimizations for whole suite

• Peak measurements

– SPECint95

– Each benchmark individually tweaked

– Unsafe optimizations can be enabled!

• Rate measurements for multiprocessors

– SPECint rate95, SPECfp rate95

– time for N copies to complete x N

26

Totalling Results

• How to present results?

– Present individual results?

– Arithmetic mean?

– Weighted harmonic mean?

– SPEC uses Geometric mean, normalised
against a reference platform

∗ allows normalization before or after mean

∗ performance ratio can be predicted by
dividing means

• SPEC95 uses Sun SS10/40 as reference platform

27

spec SPEC CINT95 Results
Copyright 1995, Standard Performance Evaluation Corporation

34 Volume: 7 Issue: 4

SPECint95
SPECint_base95

8.09
8.09

=
=

Intel Corporation
Alder System (200MHz, 256KB L2)

SPEC license # 14 Tested By: Intel Test Date: Oct-95 Hardware Avail: May-96 Software Avail: Feb-96

Contact:
Information
For More

Manassas, VA 22110
10754 Ambassador Drive, Suite 201

SPEC

http://www.specbench.org
info@specbench.org

(703) 331-0180

SP
EC

ra
tio

0
1
2
3
4
5
6
7
8
9

10

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

Alder System (200MHz, 256KB L2)
Hardware/Software Configuration for:

Hardware
AlderModel Name:
200MHz Pentium Pro ProcessorCPU:
IntegratedFPU:
1Number of CPU(s):
8KBI+8KBDPrimary Cache:
256KB(I+D)Secondary Cache:
NoneOther Cache:
128MB (60ns fast page)Memory:
2GB ST32550WDisk Subsystem:
AHA-2940W ControllerOther Hardware:

Software
UnixWare 2.0, SDKOperating System:
Intel C Reference Compiler 2.2 BetaCompiler:
ufs, vxfs (/tmp as 8MB /tmpfs)File System:
Single user (root + killall)System State:

Benchmark
and Name

Reference
Time

Base
Run Time

Base
SPEC Ratio Run Time SPEC Ratio

SPECint95 (G. Mean) 8.09

SPECint_base95 (G. Mean) 8.09

4600 567567 8.118.11099.go

1900 243243 7.817.81124.m88ksim

1700 222222 7.657.65126.gcc

1800 258258 6.996.99129.compress

1900 220220 8.628.62130.li

2400 285285 8.438.43132.ijpeg

1900 232232 8.218.21134.perl

2700 295295 9.149.14147.vortex

Notes/Tuning Information
Base and non-base flags are the same and use Feedback Directed Optimization
Pass1: -tp p6 -ipo -xi -prof_gen -ircdb_dir /tmp/IRCDB
Pass2: -tp p6 -ipo -xi -prof_use -ircdb_dir /tmp/IRCDB
-ircdb_dir is a location flag and not an optimization flag
Portability: 124: -DSYSV -DLEHOST 130, 134, 147: -lm 132: -DSYSV 126: -lm -lc -L/usr/ucblib -lucb -lmalloc
Memory subsystem is four-way interleaved.

SPEC CINT95 Results
Copyright 1995, Standards Performance Evaluation Corporation

-- Prepared By: --

SPECint95
SPECint_base95

--
6.37

=
=

Intel 440LX motherboard
Pentium Pro 200

SPEC license # 1178 Tested By: Ian Pratt, CUCL Test Date: Date Hardware Avail: Date Software Avail: Date

contact
Information
For More

Fairfax, VA 22031
2722 Merrilee Drive, Suite 200

SPEC c/o NCGA
spec-ncga@cup.portal.com

(703) 698-9604 ext 318

SP
EC

ra
tio

0
1
2
3
4
5
6
7
8

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

Pentium Pro 200
Hardware/Software Configuration for:

Hardware
Intel 440LXModel Name:
Pentium Pro 200 CPU:

FPU:
1Number of CPU(s):
8KB+8KBPrimary Cache:
256KBSecondary Cache:

Other Cache:
128MBMemory:
4GBDisk Subsystem:

Other Hardware:

Software
Linux 20.0.30Operating System:
gcc 2.7.2p Compiler:
ext2File System:
multiuserSystem State:

Benchmark
and Name

Reference
Time

Base
Run Time

Base
SPEC Ratio Run Time SPEC Ratio

SPECint95 (G. Mean) --

SPECint_base95 (G. Mean) 6.37

4600 --595 --7.73099.go

1900 --310 --6.12124.m88ksim

1700 --276 --6.16126.gcc

1800 --357 --5.04129.compress

1900 --277 --6.85130.li

2400 --384 --6.26132.ijpeg

1900 --279 --6.81134.perl

2700 --427 --6.32147.vortex

Notes/Tuning Information
Portability flags were:
Baseline flags were: -O2 -fomit-frame-pointer
Nonbase flags were:

Standard Performance Evaluation Corporation
info@spec.org

http://www.spec.org

spec
CINT2000 Result

Copyright 1999-2000, Standard Performance Evaluation Corporation

Compaq Computer Corporation
AlphaServer ES40 Model 6/833

SPECint2000 =
SPECint_base2000 =

544
518

SPEC license #: 2 Tested by: Compaq NH Test date: Oct-2000 Hardware Avail: Jan-2001 Software Avail: Nov-2000

Benchmark
Reference

Time
Base

Runtime
Base
Ratio Runtime Ratio 200 400 600 800

164.gzip 1400 358 392 357 393
175.vpr 1400 309 452 307 456
176.gcc 1100 178 617 160 687
181.mcf 1800 408 441 340 529
186.crafty 1000 144 694 157 637
197.parser 1800 500 360 409 440
252.eon 1300 202 645 202 644
253.perlbmk 1800 342 526 332 543
254.gap 1100 301 365 303 363
255.vortex 1900 282 673 249 763
256.bzip2 1500 268 560 264 568
300.twolf 3000 456 658 451 666

Hardware
CPU: Alpha 21264B
CPU MHz: 833
FPU: Integrated
CPU(s) enabled: 1
CPU(s) orderable: 1 to 4
Parallel: No
Primary Cache: 64KB(I)+64KB(D) on chip
Secondary Cache: 8MB off chip
L3 Cache: None
Other Cache: None
Memory: 16GB
Disk Subsystem: 1x8GB BD0096349A
Other Hardware: Ethernet

Software
Operating System: Tru64 UNIX V5.1 + Patch Kit 1 libc
Compiler: Compaq C V6.3-129-44A8I

Compaq C++ V6.2-033-4298H
File System: AdvFS
System State: Multi-user

Notes/Tuning Information
 Baseline C : cc -arch ev6 -fast GEMFB ONESTEP
 C++: cxx -arch ev6 -O2 ONESTEP

 GEMFB: fdo_pre0 = mkdir /tmp/pb; rm -f /tmp/pb/${baseexe}*
 PASS1_CFLAGS = -prof_gen_noopt -prof_dir /tmp/pb
 PASS2_CFLAGS = -prof_use_feedback -prof_dir /tmp/pb
 (base uses directory /tmp/pb; peak uses /tmp/pp)

 SPIKEFB: fdo_post2 = spike -feedback ${baseexe} -o tmp ${baseexe};
 mv tmp ${baseexe}
 Peak: cc [except eon: cxx] -arch ev6 ONESTEP plus:
 164.gzip: -g3 -fast -O4 +GEMFB
 175.vpr: -g3 -fast -O4 +GEMFB
 176.gcc: -g3 -fast -O4 -xtaso_short +GEMFB
 181.mcf: -g3 -fast -xtaso_short +GEMFB
 186.crafty: -g3 -fast -O4 -inline speed
 197.parser: -g3 -fast -O4 -xtaso_short +GEMFB
 252.eon: -O2
 253.perlbmk: -g3 -fast +GEMFB +SPIKEFB
 254.gap: -g3 -fast -O4 +GEMFB

spec SPEC CINT95rate Results
Copyright 1995, Standard Performance Evaluation Corporation

94 Volume: 7 Issue: 4

SPECint_rate95

SPECint_rate_base95

642

642

=

=
Digital Equipment Corp.
AlphaServer 8400 5/300

SPEC license # 2 Tested By: Digital PKO Test Date: Oct-95 Hardware Avail: Apr-95 Software Avail: Aug-95

Contact:
Information
For More

Manassas, VA 22110
10754 Ambassador Drive, Suite 201

SPEC

http://www.specbench.org
info@specbench.org

(703) 331-0180

SPECrate
0 100 200 300 400 500 600 700 800 900

099.go
124.m88ksim

126.gcc
129.compress

130.li
132.ijpeg
134.perl

147.vortex

AlphaServer 8400 5/300
Hardware/Software Configuration for:

Hardware
AlphaServer 8400 5/300Model Name:
300 MHz 21164CPU:
IntegratedFPU:
10Number of CPU(s):
8KBI+8KBD on chipPrimary Cache:
4MBSecondary Cache:
noneOther Cache:
1GB Memory:
1 x 2GBDisk Subsystem:
1 x 2GB
EthernetOther Hardware:

Software
Digital UNIX V3.2C (Rev 148)Operating System:
DEC C V5.0-106Compiler:
UFSFile System:
Multi UserSystem State:

Benchmark
and Name

Base
Copies

Base
Run Time

Base
SPEC Ratio Copies Run Time SPEC Ratio

SPECint_rate95 (G. Mean) 642

SPECint_rate_base95 (G. Mean) 642

1010 464464 891891099.go

1010 271271 631631124.m88ksim

1010 291291 526526126.gcc

1010 270270 601601129.compress

1010 280280 611611130.li

1010 350350 617617132.ijpeg

1010 257257 666666134.perl

1010 377377 645645147.vortex

Notes/Tuning Information
Baseline Optimizations: -O5 -ifo -non_shared -om
Portibility Flags: 124.m88ksim: -DLEHOST 134.perl: -DI_TIME
147.vortex: -D__RISC_64__

Compiler invokation: cc -migrate -std1 (DEC C with -std1 for strict ANSI)

Top SPEC2000 Results for each ISA
machine processor cpu MHz cache sizes int fp

Intel D925 Pentium IV-X 3466 12*/8+512+2M 1772 1724
AMD/ASUS Opteron150 2400 64/64+1M 1663 1849
Intel D925 Pentium IV 3600 12*/8+1M 1575 1630
HP rx4640 Itanium2 1600 16/16+256+6M 1590 2612
IBM p570 Power5+ 1900 64/32+2M+(36M) 1453 2733

HP Alpha GS1280 21364 1300 64/64+(2M) 994 1684
Fujitsu SPARC64-V 1350 128+128/2M 905 1340
Apple PPC970 (G5) 2000 64/32+512 800 840
HP Pentium-M 1000 32/32+1024 687 552

HP c3750 PA-8700 875 768/1.5M 678 674
SGI Orgin 3200 R14000 600 32/32+(8M) 500 529

HP rx4610 Itanium 800 16/16+96+(4M) 379 701

2
8

Selected SPEC95 Results
machine processor cpu MHz cache sizes int base fp base

Sun SS10/40 SuprSP 40 20/16 1.00 1.00
Intel 440BX Pentium II 300 16/16+(512) 12.2 8.4
Intel 440EX Celeron A 300 16/16+128 11.3 8.3
Intel 440EX Celeron 300 16/16 8.3 5.8

Compaq PC164LX 21164 533 8/8+96+(4M) 16.8 20.7
Compaq PC164SX 21164PC 533 16/16+(1M) 12.2 14.1

Intel 440BX Pentium II 450 16/16+(512) 17.2 11.8
Intel 440BX Pentium II 400 16/16+(512) 15.8 11.4
Intel 440BX Pentium II 350 16/16+(512) 13.9 10.2
Intel 440BX Pentium II 330 16/16+(512) 13.0 8.8
Intel 440BX Pentium II 300 16/16+(512) 11.9 8.1
Intel 440BX Pentium II 266 16/16+(512) 10.7 7.5
Intel 440BX Pentium II 233 16/16+(512) 9.4 6.7

DEC 4100/5/400 A21164 400/75 8/8+96+4M 10.1 16.0
DEC 4100/5/400 2xA21164 400/75 8/8+96+4M 10.1 20.7
DEC 4100/5/400 4xA21164 400/75 8/8+96+4M 10.1 26.6

Intel XXpress Pentium 200 8/8+1M 5.47 2.92
Intel Alder PentPro 200 8/8+256 8.09 5.99

2
9

Comparing Implementations
Summary

• Fabrication technology has a huge influence

• Exponential improvement in technology

• Processor for a product chosen on:

– Instruction Set Compatibility

– Power Consumption

– Price

– Performance

• Performance is application dependent

– Avoid MIPS, MHz

– Benchmark suites

30

Instruction Set Architecture

• Processor s/w interface

• Externally visible features

– Word size

– Operation sets

– Register set

– Operand types

– Addressing modes

– Instruction encoding

• Introduction of new ISAs now rare

• ISAs need to last several generations of
implementation

• How do you compare ISAs ?

– yields ‘best’ implementation

∗ performance, price, power

∗ are other factors equal?

– ‘aesthetic qualities’

∗ ‘nicest’ for systems programmers

31

Instruction Set Architecture

• New implementations normally backwards
compatible

– Should execute old code correctly

– Possibly some exceptions e.g.

∗ Undocumented/unsupported features

∗ Self modifying code on 68K

– May add new features e.g. FP, divide, sqrt,
SIMD, FP-SIMD

– May change execution timings

– → CPU specific optimization

– Can rarely remove features

∗ Unless never used

∗ software emulation fast enough

– → Layers of architectural baggage

∗ (8086 16bit mode on Pentium IV)

• Architecture affects ease of utilizing new
techniques e.g.

– Pipelining

– Super-scalar (multi-issue)

• But x86 fights real hard!

– more T’s tolerable unless on critical path

32

Reduced Instruction Set
Computers

• RISC loosely classifies a number of Architectures
first appearing in the 80’s

• Not really about reducing number of instructions

• Result of quantitative analysis of the usage of
existing architectures

– Many CISC features designed to eliminate the
‘semantic gap’ were not used

• RISC designed to easily exploit:

– Pipelining

∗ Easier if most instructions take same
amount of time

– Virtual Memory (paging)

∗ Avoid tricky exceptional cases

– Caches

∗ Use rest of Si area

• Widespread agreement amongst architects

33

Amdahl’s Law

• Every ‘enhancement’ has a cost:

– Would Si be better used elsewhere?

∗ e.g. cache

– Will it slow down other instructions?

∗ e.g. extra gate delays on critical path

∗ → longer cycle time

• Even if it doesn’t slow anything else down, what
overall speedup will it give?

• size and delay

speedup = execution time for entire task without using enhancement

execution time for entire task using enhancment when possible

34

Amdahl’s Law :2

• How frequently can we use enhancement?

– examine instruction traces e.g. SPEC

– will code require different optimization?

– Fractionenhanced

• When we can use it, what speedup will it give?

– Speedupenhanced

– e.g. cycles before/cycles after

Speedupoverall =
1

(1− Fractionenhanced) + Fractionenhanced

Speedupenhanced

→ Spend resources where time is
spent

Optimize for the common case

35

Amdahl’s Law for
Speedup=10

1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100

ov
er

al
l s

pe
ed

up
 fa

ct
or

percentage of time speedup is usable

1 / ((1-x) + (x/10))

36

Amdahl’s Law Example

• FPSQRT is responsible for 20% of execution time
in a (fictitious) critical benchmark

• FP operations account for 50% of execution time
in total

• Proposal A:

– New FPSQRT hardware with 10x performance

speedupA =
1

(1− 0.2) + 0.2
10

=
1

0.82
= 1.22

• Proposal B:

– Use Si area to double speed all FP operations

speedupB =
1

(1− 0.5) + 0.5
2

=
1

0.75
= 1.33

• → Proposal B is better

• (Probably much better for other users)

37

Word Size

• Native size of an integer register

– 32bits on ARM, MIPS II, x86 32bit mode

– 64bits on Alpha, MIPS III, SPARC v8,
PA-RISC v2

• NOT size of FP or SIMD registers

– 64 / 128 bit on Pentium III

• NOT internal data-path width

– 64bit internal paths in Pentium III

• NOT external data-bus width

– 8bit Motorola 68008

– 128bit Alpha 21164

• NOT size of an instruction

– Alpha, MIPS, etc instructions 32bit

• But, ‘word’ also used as a type size

– 4 bytes on ARM, MIPS

– 2 bytes on Alpha, x86

∗ longword = 4 bytes, quadword = 8

38

64bit vs 32bit words

• Alpha, MIPS III, SPARC v8, PA-RISC v2

4 Access to a large region of address space from a
single pointer

– large data-structures

– memory mapped files

– persistent objects

4 Overflow rarely a concern

– require fewer instructions

8 Can double a program’s data size

– need bigger caches, more memory b/w

8 May slow the CPU’s max clock speed

• Some programs gain considerably from 64bit,
others get no benefit.

• Some OS’s and compilers provide support for
32bit binaries

39

Byte Sex

• Little Endian camp

– Intel, Digital

• Big Endian camp

– Motorola, HP, IBM

– Sun: ‘Network Endian’, JAVA

• Bi-Endian Processors

– Fixed by motherboard design

– MIPS, ARM

• Endian swapping instructions

ef

de

ad

be

ef

&x+0

de be

0 (lsb)31(msb)

in
cr

ea
si

ng
ad

dr
es

se
s

ad

ef

be

ad

de

32
bi

t w
or

d

Big Endian Little Endian

int x= 0xdeadbeef;
char *p= (char*)&x;
if(*p == 0xde) printf("Big Endian");
if(*p == 0xef) printf("Little Ebdian");

&x+1

&x+2

&x+3

&x+0

&x+1

&x+2

&x+3

40

Data Processing Instructions

• 2’s Complement Arithmetic

– add, subtract, multiply, compare, multiply

– some: divide, modulus

• Logical

– and, or, not, xor, bic, . . .

• Shift

– shift left, logical shift right, arithmetic shift
right

– some: rotate left, rotate right

41

Operand Size

• CISC

– 8,16,32 bit operations

– zero/sign extend sources

∗ need unsigned/signed instrs

– merge result into destination

– some even allow mixed size operands

72

49 b3 7a 83

r1.b

ff be

031

ff

83ff ffff

adds r3.w, r1.b, r2.w
(Signed add of r1.b and r2.w to r3.w)

de ad be ef

031

efff beff

r2.w

Sign Extend

a0 b1 c2 d3

31 r3.w 0

a0 b1 be 72

r3.w
Truncate & Merge

32bit ALU

• RISC

– Word size operations only

– (except 64bit CPUs often support 32bit ops)

– Pad char and short to word

42

(Zero/Sign Extension)

• Unsigned values: zero extend

– e.g. 8bit values to 32bit values
unsigned char a; int b;
and b ← a, #0xff

• Signed values: sign extend

– e.g. 8bit values to 32bit values

– Replicate sign bit
char a; int b;
lsl b ← a, #24
asr b ← b, #24

• C: 32bit to 8bit

– Just truncate
and b ← a, #0xff

43

CISC instructions RISC
dropped

• Emulated in RISC:
move r1 ← r2 e.g. or r1 ← r2, r2
zero r1 e.g. xor r1 ← r1, r1
neg r1 e.g. sub r1 ← #0, r1
nop e.g. or r1 ← r1, r1
sextb r1 ← r2 e.g. lsl r1 ← r2, #24;

asr r1 ← r1, #24

• Used too infrequently:

– POLY, polynomial evaluation (VAX)

– BCD, bit-field operations (68k)

– Loop and Procedure call primitives

∗ Not quite right for every HLL

∗ Unable to take advantage of compiler’s
analysis

• Exceptions & interrupts are awkward:

– memcpy/strcmp instructions

44

New Instructions

• integer divide, sqrt

• popcount, priority encode

• Integer SIMD (multimedia)

– Intel MMX, SPARC VIS, Alpha, PA-RISC MAX

– MPEG, JPEG, polygon rendering

– parallel processing of packed sub-words

– E.g. 8x8, 4x16 bit packed values in 64b word

– arithmetic ops with ’saturation’

∗ s8 case: 125+4 = 127

– min/max, logical, shift, permute

– RMS error estimation (MPEG encode)

– Will compilers ever use these instrs?

• FP SIMD (3D geometry processing)

– E.g. 4x32 bit single precision

– streaming vector processing

– Intel SSE, AMD 3D-Now, PPC AltiVec

• prefetch / cache hints (e.g. non-temporal)

• Maintaining backwards compatiblity

– Use alternate routines

– Query CPU feature set

45

Registers and Memory

• Register set types

– Accumulator architectures

– Stack

– GPR

• Number of operands

– 2

– 3

• Memory accesses

– any operand

– one operand

– load-store only

46

Accumulator Architectures

• Register implicitly specified

• E.g. 6502, 8086 (older machines)

LoadA foo
AddA bar
StoreA res

• Compact instruction encoding

• Few registers, typically ≤ 4 capable of being
operands in arithmetic operations

• Forced to use memory to store intermediate values

• Registers have special functions

– e.g. loop iterators, stack pointers

• Compiler writers don’t like non-orthogonality

47

Stack Architectures

• Operates on top two stack items

• E.g. Transputer, (Java)

Push foo
Push bar
Add
Pop res

• Stack used to store intermediate values

• Compact instruction encoding

• Smaller executable binaries, good if:

– memory is expensive

– downloaded over slow network

• Fitted well with early compiler designs

48

General Purpose Register
Sets

• Post 1980 architectures, both RISC and CISC

• 16,32,128 registers for intermediate values

• Separate INT and FP register sets

– Int ops on FP values meaningless

– RISC: Locate FP regs in FP unit

• Separate Address/Data registers

– address regs used as bases for mem refs

– e.g. Motorola 68k

– not favoured by compiler writers (8 + 8 6= 16)

– RISC: Combined GPR sets

49

Load-Store Architecture

• Only load/store instructions ref memory

• The RISC approach

→ Makes pipelining more straightforward

Load r1 ← foo
Load r2 ← bar
Add r3 ← r1, r2
Store res← r3

• Fixed instruction length (32bits)

• 3 register operands

• Exception: ARM-Thumb, MIPS-16 is two operand

– more compact encoding (16bits)

50

Register-Memory

• ALU instructions can access 1 or more memory
locations

• E.g. Intel x86 32bit modes

– 2 operands

– can’t both be memory

Load r1←foo
Add r1←bar
Store res←r1

• E.g. DEC VAX

– 2 and 3 operand formats

– fully orthogonal

Add res←bar,foo

• Fewer instructions

– Fewer load/stores

– Each instruction may take longer

– → Increased cycle time

• Variable length encoding

– May be more compact

– May be slower to decode

51

Special Registers : 1

• Zero register

– Read as Zero, Writes discarded

– e.g. Alpha, Mips, Sparc, IA-64

– Data move: add r2 ← r1, r31

– nop: add r31 ← r31, r31

– prefetch: ldl r31 ← (r1)

– Zero is a frequently used constant

• Program Counter

– NOT usually a GPR

– Usually accessed by special instructions e.g.
branch, branch and link, jump

– But, PC is GPR r15 on ARM

52

Special Registers : 2

• Condition code (Flag) registers

– Carry, Zero, Negative, Overflow

– Used by branches, conditional moves

– Critical for pipelining and super-scalar

– CISC: one CC reg updated by all instructions

– ARM, SPARC: one CC reg, optionally updated

– PowerPC: multiple CC regs (instr chooses)

– IA64: 64 one bit predicate regs

– Alpha, MIPS: no special CC regs

• Link registers

– Subroutine call return address

– CISC: pushed to stack

– RISC: saved to register

∗ register conventions

∗ only push to stack if necessary

– Jump target/link regs (PowerPC, IA-64)

– fixed GPR (r14, ARM) (r31,MIPS)

– GPR nominated by individual branch (Alpha)

53

Register Conventions

• Linkage (Procedure Call) Conventions

– Globals: sp, gp etc.

– Args: First (4-6) args (rest on stack)

– Return value: (1-2)

– Temps: (8-12)

– Saved: (8-9) Callee saves

• Goal: spill as few registers as possible in total

• Register Windows (SPARC)

– save and restore

– 2-32 sets of windows in ring

– 16 unique registers per window

– spill/fill windows to special stack

globals

in

out

locals

8 globals

in

out

locals8

8

8 new

new

save

• IA-64: Allows variable size frames

– 32 globals

– 0-8 args/return, 0-96 locals/out args

– h/w register stack engine operates in
background

54

Classic RISC Addressing Modes

• Register

– Mov r0 ← r1

– Regs[r0] = Regs[r1]

– Used when value held in register

• Immediate

– Mov r0 ← 42

– Regs[r0] = 42

– Constant value limitations

• Register Indirect

– Ldl r0 ← [r1]

– Regs[r0] = Mem[Regs[r1]]

– Accessing variable via a pointer held in reg

• Register Indirect with Displacement

– Ldl r0 ← [r1, #128]

– Ldl r0 ← 128(r1)

– Regs[r0] = Mem[128 + Regs[r1]]

– Accessing local variables

55

Less RISCy addr modes

• ARM and PowerPC

• Register plus Register (Indexed)

– Ldl r0 ← [r1,r2]

– Regs[r0] = Mem[Regs[r1] + Regs[r2]]

– Random access to arrays

– e.g. r1=base, r2=index

• Register plus Scaled Register

– Ldl r0 ← [r1, r2, asl #4]

– Regs[r0] = Mem[Regs[r1] + (Regs[r2]�4)]

– Array indexing

– sizeof(element) is power of 2, r2 is loop index

• Register Indirect with Displacement and Update

– Pre inc/dec Ldl r0 ← [r1!, #4]

– Post inc/dec Ldl r0 ← [r1], #4

– C *(++p) and *(p++)

– Creating stack (local) variables

– Displacement with post update is IA-64’s only
addressing mode

56

CISC Addressing Modes

• Direct (Absolute)

– Mov r0 ← (1000)

– Regs[r0] = Mem[1000]

– Offset often large

– x86 Implicit base address

– Most CISCs

• Memory Indirect

– Mov r0 ← @[r1]

– Regs[r0] = Mem[Mem[Regs[r1]]]

– Two memory references,

– C **ptr, linked lists

• PC Indirect with Displacement

– Mov r0 ← [PC, #128]

– Regs[r0] = Mem[PC + 128]

– Accessing constants

57

Why did RISC choose these
addressing modes?

0% 10% 20% 30% 40% 50% 60%

40%
55%

32%

39%
17%

43%

11%
3%

24%

6%
16%

0%

1%
6%

1%TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

Memory Indirect

Register +
register scaled

Register indirect

Immediate

Register indirect
+ displacement

Frequency of addressing modes (VAX)

• RISC

– immediate

– register indirect with displacement

• ARM, PowerPC reduce instruction counts by
adding:

– register + register scaled

– index update

58

Immediates and
Displacements

• CISC: As instructions are variable length,
immediates and displacements can be any size
(8,16,32 bits)

• RISC: How many spare bits in instruction format?

• Immediates

– used by data-processing instructions

– usually zero extended (unsigned)

∗ add → sub

∗ and → bic

– For traces on previous slide:
50-70% fit in 8bits, 75-80% in 16bits

– IA-64 22/14, MIPS 16, Alpha 8,
ARM 8 w/ shift

• Displacement values in load and stores

– Determine how big a data segment you can
address without reloading base register

– usually sign extended

– MIPS 16, Alpha 16, ARM 12, IA-64 9

59

Instruction Encoding
RISC: small number of fixed encodings of same length

Operation Ra Rb Signed Displacement

Operation Ra Rb Function Rdest

Operation Ra Immediate Value Rdest

Zero SBZ

Function

load/
store

operate

operate
immediate

Operation Ra Signed Displacement branch

RISC instruction words are 32 bit

IA-64 packs three 41 bit instructions into a 128 bit
‘bundle’

VAX: fully variable. Operands specified independently

Operation and
of operands

Address
specifier 1

Address
field 1

Address
specifier N

Address
field N

x86: knows what to expect after first couple of bytes

Operation Address
specifier

Address
field

Operation Address
specifier

Address
field1

Address
field2

Operation Address
specifier

Address
field1

Address
field2

Extended
specifier

60

Code Density Straw Poll

• CISC: Motorola 68k, Intel x86

• RISC: Alpha, Mips. PA-RISC

• Very rough-figures for 68k and Mips include
statically linked libc

arch text data bss total filename
x86 29016 14861 468 44345 gcc
68k 36152 4256 360 40768
alpha 46224 24160 472 70856
mips 57344 20480 880 78704
hp700 66061 15708 852 82621
x86 995984 156554 73024 1225562 gcc-cc1
alpha 1447552 272024 90432 1810008
hp700 1393378 21188 72868 1487434
68k 932208 16992 57328 1006528
mips 2207744 221184 76768 2505696
68k 149800 8248 229504 387552 pgp
x86 163840 8192 227472 399504
hp700 188013 15320 228676 432009
mips 188416 40960 230144 459520
alpha 253952 57344 222240 533536

• CISC text generally more compact,
but not by a huge amount

• Alpha’s 64bit data/bss is larger

61

Code Density

• Important if:

– Memory is expensive

∗ can be in embedded applications

∗ eg. mobile phones

⇒ ARM Thumb, MIPS-16

– Executable loaded over slow network

∗ Though Java not particularly dense!

• Speed vs. size optimization tradeoffs

– loop unrolling

– function inlining

– brunch/jump target alignment

62

Instruction caches

0% 10% 20% 30% 40% 50% 60%

li
gcc

espresso
eqntott

compress

su2cor
mdljdp

hydro2d
ear

doduc

80% of executed instruction
90% of executed instruction

SPEC92
program

Fraction of Program

Fraction of program responsible for 80% and 90% of
instruction executions

• Caches generally solve I-stream b/w requirements

– 4bytes x 1GHz x 2-4 instrs = 8-16GB/s !

– Loops are common! (90% in 10%)

– Internal I-caches often get 95%+ hit-rates

– Code density not usually a performance issue

∗ assuming decent compilers and app design

∗ code out-lining (trace straightening) vs.
function in-lining and loop unrolling

• D-Cache generally much more of a problem

63

Instruction Mix

0% 5% 10% 15% 20% 25% 30%

store int
compare int

add int
conditional branch

load int

and
shift

or

Total Dynamic
Count

load immediate

mul/div

call/return
jump

other

Instruction mix for SPEC INT92

0% 5% 10% 15% 20% 25% 30%

add FP
conditional branch

store FP

mul FP
load FP

mov reg FP
compare FP

sub FP

Total Dynamic
Count

shift
other

add int

Instruction mix for SPEC FP92

There are no ‘typical’ programs

64

Aligned Loads and Stores

• Address mod sizeof(type) = 0

• Most ISA support 8,16,32,(64)
bit loads and stores in hardware

• Signed and unsigned stores same

• Sub-word loads can be Signed and Unsigned

– CISC: loads merge into dest reg

– RISC: loads extend into dest reg E.g:

F

D

E

F

G

H

I

19

20

21

22

23

24

byte load
from addr=21

unsigned

0 0

result 0 (lsb)31

in
cr

ea
si

ng
ad

dr
es

s

32
bi

t w
or

d

0 F

signed

S S

result 0 (lsb)31

S

65

Aligned Sub-word Load
Logic

0(lsb)31(msb)

Dest Reg

External
Databus

b h w

3 2 1 0 1 0 a1

sz

a0,1

d24 d16 d8 d0 d16 d0 d0

b h w

3 2 1 0 1 0 a1

sz

a0,1

d31 d23 d15 d7 d24 d8 d8

s usi

sb Z

sb
1 0a1

d31 d15

sh

b h w

s u

sz

sh d16

s usi

sb Z

si

Z

b h w

s u

sz

sh d24

s usi

sb Z

si

Z

A0

A1

a0

a1

0 = Little Endian
1 = Big Endian

d0d7d8d15d16d24d31 d23

si = signed / unsigned
sz = byte / halfword / word

• byte-lane steering

• sign/zero extension

• Big/Little endian modes

66

Aligned Sub-word Store
Logic

Src Reg

s0 s8 s8

b h w sz

d0d7d8d15d16d24d31 d23

s0 s0s16

b h w sz

s0 s8s24

b h w sz

we3

a1 a0 sz we3 we2 we1 we0

 0 0 w 1 1 1 1
 0 0 h 0 0 1 1
 1 0 h 1 1 0 0
 0 0 b 0 0 0 1
 0 1 b 0 0 1 0
 1 0 b 0 1 0 0
 1 1 b 1 0 0 0

s31 s0

we2 we1 we0

External Databus

• Replicate bytes/halfwords across bus

• Write enable lines tell memory system which byte
lanes to latch

67

Sub-Word Load/Stores

• Word addressed machines

– Addr bit A0 addresses words

• Alpha (v1):

– Byte addressed, but 32/64 load/stores only

– Often critical path

– Sub-word stores hard with ECC memory

– So, emulate in s/w using special instructions
for efficiency

0(lsb)31

Src Reg

0(lsb)31

ECC
check
bits

ECC
calculation

logic

Error

compare

68

Emulating Byte Loads

1. Align pointer

2. Do word load

3. Shift into low byte

4. Mask

5. (sign extend)

• e.g. 32bit, Little Endian, unsigned

unsigned int temp;
temp = *(p&(~3));
temp = temp >> ((p&3) *8);
reg = temp & 255;

• e.g. 32bit, Big Endian, unsigned

unsigned int temp;
temp = *(p&(~3));
temp = temp >> ((3-(p&3)) * 8);
reg = temp & 255;

• e.g. 64bit, Little Endian, signed

long temp;
temp = *(p&(~7));
temp = temp << ((7-(p&7)) * 8);
reg = temp >> 56;

69

Unaligned Accesses

• Address mod sizeof(value) 6= 0

• E.g. :

D

A

C

D

E

F

G

H

I

J

B

16

17

18

19

20

21

22

23

24

25

in
cr

ea
si

ng
ad

dr
es

s

32
bi

t w
or

d
32bit unaligned

load from addr=19

Little Endian

D C B AH G F E

31 0 (lsb)*(p&~3)*((p+3)&~3)

D

>>((p&3)*8)

000G F E

<<((4-(p&3))*8)

0

G F E

or

031

G

Big Endian

E F G HA B C D

31 0 (lsb)*(p&~3) *((p+3)&~3)

G

>>((4-(p&3))*8)

FE0D 0 0

<<((p&3)*8)

0

D E F

or

031

0 (lsb)310 (lsb)31

result

70

Unaligned Accesses

• CISC and Power PC support unaligned accesses in
hardware

– Two memory accesses

∗ → Less efficient

– May cross page boundaries

• Most RISCs synthesize in software

– Provide special instructions

• Compilers try to keep data aligned

– struct element padding

• Casting char * to int * dangerous

71

MIPS Unaligned Support

• LWR Load Word Right

• LWL Load Word Left

– Only one memory access per instruction

– Does shifting and merging as well as load

→ Unaligned load in 2 instrs

D

A

C

D

E

F

G

H

I

B

16

17

18

19

20

21

22

23

24

in
cr

ea
si

ng
ad

dr
es

s

32
bi

t w
or

d

32bit unaligned
load from addr=19

Little Endian Mode

DLDR Rd,Rp XXX

G F ELDL Rd,Rp

G

Big Endian Mode
31 0 (lsb)

D E F G

X E F

031

LDL Rd,Rp

LDR Rd,Rp

Adds 4 to Rp

Adds 4 to Rp

• STR Store Word Right

• STL Store Word Left

• Uses byte store hardware to merge into
memory/cache

72

Alpha Unaligned Loads

• LDQ trap if not 8byte aligned

• LDQ U ignore a0-a2

• EXTQL Rd ← Rs, Rp
Shift Rs right by Rp&7 bytes and extracts quad
word into Rd.

• EXTQH Rd ← Rs, Rp
Shift Rs left by 8-Rp&7 bytes and extracts quad
word into Rd.

• Alpha requires 5 instrs for arbitrary unaligned load
LDQ U Rd ← Rp
LDQ U Re ← Rp + #7
EXTQL Rd ← Rd, Rp
EXTQH Re ← Re, Rp
OR Rd ← Rd, Re

• EXTBL Rd ← Rs, Rp
Shift Rs right by Rp&7 bytes and extracts low
byte into Rd.

• also EXTLL, EXTLH, EXTWL, EXTWH

• If alignment of pointer is known, may use
optimized sequence
E.g. load 4bytes from address 0x123
LDQ Rd ← -3(Rp)
EXTLL Rd ← Rd, #3

73

Alpha unaligned stores

• No byte hardware, so load quad words, merge, and
store back

• INSQL Rd ← Rs, Rp
Shift Rs left by Rp&7 bytes

• INSQH Rd ← Rs, Rp
Shift Rs right by 8-Rp&7 bytes

• MSKQL Rd ← Rs, Rp
Zero top 8-Rp&7 bytes

• MSKQH Rd ← Rs, Rp
Zero bottom Rp&7 bytes

• E.g.: Store quad word Rv to unaligned address Rp
LDQ U R1 ← Rp Load both quad words
LDQ U R2 ← Rp + #7
INSQH R4 ← Rv, Rp Slice & Dice Rv
INSQL R3 ← Rv, Rp
MSKQH R2 ← R2, Rp Zero bytes to be replaced
MSKQL R1 ← R1, Rp
OR R2 ← R2, R4 Merge
OR R1 ← R1, R3
STQ U R2 → Rp + #7 Store back
STQ U R1 → Rp Order important:aligned case

74

Copying Memory

• Often important:

– OS: user args, IPC, TCP/IP

– user: realloc, pass-by-value

• memmove

– Must deal correctly with overlapping areas

• memcpy

– Undefined if areas overlap

– Enables fixed direction

• copy aligned

– Source and Dest long aligned

– Fastest

• Small copies (< 100 bytes)

– Avoid large start-up costs

• Medium sized copies (100–100KB bytes)

– Use highest throughput method

• Large copies

– Probably memory b/w limited anyway...

75

copy aligned

• E.g. for 32bit machine

void copy_aligned(int32 *d, const int32 *s, int n)
{

sub n, n, #4
blt n, return ; if n<0 exit

loop:
ldw tmp, (s)
add d, d, #4
sub n, n, #4 ; set branch value early
add s, s, #4
stw tmp, -4(d) ; maximise load-to-use
bgt n, loop ; if n>0 branch (no delay slot)

}

• Use widest datapath

– (64bit FP regs on PPro)

• Maximize cycles before tmp is used

• Update n well in advance of branch

• To further optimize:

– Unroll loop to reduce loop overhead

– Instruction scheduling of unrolled loop

– (software pipelining)

76

copy aligned (2)
void copy_8_aligned(int32 d[], const int32 s[], int n)
{

int32 t0,t1,t2,t3,t4,t5,t6,t7;
top:

t0 = s[0]; t1 = s[1];
t2 = s[2]; t3 = s[3];
t4 = s[4]; t5 = s[5];
t6 = s[6]; t7 = s[7];
n = n - 32; s = s + 32;
d[0] = t0; d[1] = t1;
d[2] = t2; d[3] = t3;
d[4] = t4; d[5] = t5;
d[6] = t6; d[7] = t7;
d = d + 32; if (n) goto top;

}

• Need to deal with boundary conditions

– e.g. if n mod 32 != 0

• Get cache line fetch started early

– Issue a load for the next cache line

∗ OK if non-blocking cache

∗ beware exceptions (array bounds)

⇒ prefetch or speculative load & check

⇒ non-temporal cache hints

• IA-64: ’Rotating register files’ to assist software
pipelining without the need to unroll loops

77

Unaligned copy

• E.g. 32bit, Little Endian

void memcpy(char *d, const char *s, int n)

{

uint32 l,h,k,*s1,*d1;

/* Align dest to word boundary */

while (((ulong)d&3) && n>0) {*d++ = *s++; n--;}

/* Do main work copying to aligned dest */

if(((ulong)s & 3) == 0) { /* src aligned ? */

k = n & ~3; /* round n down */

copy_aligned(d, s, k);

d+=k; s+=k; n&=3; /* ready for end */

}

else

{

s1 = (uint32 *)((ulong)s & ~3); /* round s down */

d1 = (uint32 *) d; /* d is aligned */

h = *s1++; /* init h */

k = (ulong)s &3; /* src alignment */

for(; n>=4; n-=4) { /* stop if n<4 */

l = *s1++;

*d1++ = (h >> (k*8)) |

(l << ((4-k)*8)) ;

h = l;

}

d = (char *) d1; /* ready for end */

s = ((char *)s1) - 4 + k;

}

/* Finish off if last 0-3 bytes if necessary */

for(; n>0; n--) *d++ = *s++;

}

78

Memory Translation and
Protection

• Protection essential, even for embedded systems

– isolation, debugging

• Translation very useful

– demand paging, CoW, avoids relocation

• Segmentation vs. Paging

– x86 still provides segmentation support

– descriptor tables: membase, limit

– segment selectors : cs, ds, ss, fs, gs

• Page protection preferred in contemporary OSes

• Translation Lookaside Buffer (TLB)

– translate Virtual Frame Number to PFN

– check user/supervisor access

– check page present (valid)

– check page writeable (DTLB)

• Separate D-TLB and I-TLB

– often a fully associative CAM

– separate I-TLB and D-TLB

– typically 32-128 entries

– sometimes an L2 Joint-TLB e.g. 512 entry

• Hardware managed vs. software managed TLB

79

Hardware page table walking

• Hierarchical lookup table

• E.g. x86/x86 64 4KB pages evolved over time:

– 2-level : 4GB virt, 4GB phys (4B PTEs)

– 3-level : [512GB] virt, 64GB phys (8B PTEs)

– 4-level : 256TB virt, 1TB phys (8B PTEs)
(48 bit VAs are sign extended to 64bit)

• ’set PT base’ instruction

– implicit TLB flush (on x86)

• Flush virtual address

• Global pages not flushed

– special bit in PTE

– should be same in every page table!

– typically used for kernel’s address space

– special TLB flush all

• Superpages are PTE ’leaves’ placed in higher
levels of the page table structure

– e.g. 4MB pages on x86 2-level

80

Software managed TLB

• OS can use whatever page table format it likes

– e.g. multilevel, hashed, guarded, etc.

– (generally more compact than hierarchical)

– use privileged ’untranslated’ addressing mode

• Install TLB Entry instruction

– specify tag and PTE

– replacement policy usually determined by h/w

∗ e.g. not most recently used

• (may allow TLB contents to be read out for
performance profiling)

• Flush all, flush ASN, flush specified VA

• Flexible superpage mappings often allowed of e.g.
8, 64, 512 pages.

• Notion of current Address Space Number (ASN)

• TLB entries tagged with ASN

• Try to assign each process a different ASN

– no need to flush TLB on process switch

– (only need to flush when recycling ASNs)

• IA-64 : s/w TLB with hardware PT walking assist

• PPC: h/w fill from larger s/w managed hash table

81

ISA Summary

• RISC

– Product of quantitative analysis

– Amdahl’s Law

– Load-Store GPRs

– ALU operates on words

– Relatively simple instructions

– Simple addressing modes

– Limited unaligned access support

– (s/w managed TLB)

• Architecture extensions

– Backwards compatibility

• Copying memory efficiently

Does Architecture matter?

82

CPU Performance Equation
T ime for task = C ∗ T ∗ I

C =Average # Cycles per instruction
T =Time per cycle
I =Instructions per task

• Pipelining

– e.g. 3-5 pipeline steps (ARM, SA, R3000)

– Attempt to get C down to 1

– Problem: stalls due to control/data hazards

• Super-Pipelining

– e.g. 8+ pipeline steps (R4000)

– Attempt to decrease T

– Problem: stalls harder to avoid

• Super-Scalar

– Issue multiple instructions per clock

– Attempt to get C below 1

– Problem: finding parallelism to exploit

∗ typically Instruction Level Parallelism (ILP)

83

The classic RISC pipe

4 PC

Instruction
Memory

ADD

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op
PC

d
a

Branch
Test

Data
Memory

Branch target PC
Branch taken?

a

din dout

Data from ALU OP

Data to write back

Instruction
Fetch

Instruction
Decode EXecute Memory

Access
Write
Back

d

d
d
a

a a

IF Send out PC to I-cache. Read instruction into
IR. Increment PC.

ID Decode instruction and read registers in parallel
(possible because of fixed instruction format).
Sign extend any immediate value.

EX Calculate Effective Address for Load/Stores.
Perform ALU op for data processing instruc-
tions. Calculate branch address. Evaluate con-
dition to decide whether branch taken.

MA Access memory if load/store.
WB Write back load data or ALU result to register

file.

84

The cost of pipelining

• Pipeline latches add to cycle time

• Cycle time determined by slowest stage

– Try to balance each stage

• Some resources need to be duplicated to avoid
some Structural Hazards

– (PC incrementer)

– Multiple register ports (2R/1W)

– Separate I&D caches

⇒ Effectiveness determined by CPI achieved

Pipelining is efficient

85

Non Load-Store
Architectures

• Long pipe with multiple add and memory access
stages

– Lots of logic

– Many stages unused by most instructions

• Or, multiple passes per instruction

– Tricky control logic

• Or, convert architectural instructions into multiple
RISC-like internal operations

– Good for multi-issue

– More ID stages

– Pentium Pro/II/III (µops)

– AMD x86 K7 (r-ops)

Pipelining easiest if all instructions
do a similar amount of ‘work’

86

ALU Result Forwarding

• E.g. 4 forwarding paths to avoid stalls:

a: add r1 ← r8, r9
b: add r2 ← r1, r7
c: add r3 ← r1, r2
d: add r4 ← r1, r2

4 PC

Instruction
Memory

ADD

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op
PC

d
a

Branch
Test

Data
Memory

Branch target PC
Branch taken?

a

din dout

Data from ALU OP

Data to write back

Instruction
Fetch

Instruction
Decode EXecute Memory

Access
Write
Back

d

d
d
a

a a

• Read after Write

• Doubled # mux inputs

• Deeper pipes → more forwarding

– R4000, 8 deep pipe
forward to next 4 instructions

87

Load Data Hazards

• Impossible without a stall:

lw r1 ← r9(4)
add r2 ← r1, r6

• Read after Write (RaW) hazard

• New forwarding path saves a cycle

• Re-order code to avoid stall cycle

– Possible for 60-90% of loads

• Software Interlocked

– Compiler must insert nop

– e.g. R2000/R3000

• Hardware Interlocked

– Save nop: better for I-stream density

– Register scoreboard

∗ track location of reg values e.g.:

∗ File, EX, MA, MUL1, MUL2, MemVoid

∗ hold back issue until RaW hazard resolved

∗ control operand routeing

– Required for all sophisticated pipelines

• More stalls for deeper pipes

– 2 stalls and 2 more forwarding paths for R4000

88

Longer Latency Instructions

• Mul/Div, Floating Point

• Different functional units operating in parallel with
main pipeline

• Extra problems:

– Structural hazards

∗ Unit may not be fully pipelined, eg:

· 21264 FDiv: 16cy latency, not pipelined

· 21164 FMul: 8cy latency, issue every 4cy

→ 21264 FMul: 4cy latency, fully pipelined

∗ Multiple Write Back stages

· more register write ports?

· or, schedule pipeline bubble

– Read after Write hazards more likely

∗ compiler instruction scheduling

– Instruction complete out of order

∗ Write after Write hazards possible

∗ Dealing with interrupts/exceptions

• Use scoreboard to determine when safe to issue

• Often hard to insert stalls after ID stage

– synthesize NOPs in ID to create bubble

– ‘replay trap’ : junk & refetch

89

Exceptions and Pipelining

User SWI/trap ID Precise (easy)
Illegal Instruction ID Precise (easy)
MMU TLB miss IF/MA Precise required
Unaligned Access MA Precise required
Arithmetic EX 1..N Imprecise possible

• Exceptions detected past the point of in-order
execution can be tricky

– FP overflow

– Int overflow from Mul/Div

• Exact arithmetic exceptions

– Appears to stop on faulting instruction

– Need exact PC

∗ care with branch delay slots

– Roll back state/In-order commit (PPro)

• Imprecise arithmetic exceptions

– Exception raised many cycles later

– Alpha: Trap Barriers

– PPC: Serialise mode

– IA-64: Poison (NaT) bits on registers

∗ instructions propagate poison

∗ explicit collection with ’branch if poison’

90

Interrupts

• Interrupts are asynchronous

• Need bounded latency

– Real-time applications

– Shadow registers avoid spilling state

∗ Alpha, ARM

• Some CISC instructions may need to be
interruptible

– Resume vs. Restart

∗ eg. overlapping memcpy

– Update operands to reflect progress

∗ VAX MOVC

91

Control Flow Instructions

• Absolute jumps

– To an absolute address
(usually calculated by linker)

– Immediate / Register modes

– usage: function pointers, procedure call/return
into other compilation modules, shared
libraries, switch/case statements

• PC Relative branches

– Signed immediate offset

– Limited range on RISC

∗ Typically same compilation module
(calculated by compiler)

– Conditional

• Branch/Jump to Subroutine

– Save PC of following instruction into:

∗ CISC: stack

∗ most RISC: special register

∗ ALPHA: nominated register

∗ IA-64: nominated Branch Reg

92

Conditional Branches

• Conditional branch types

– most: Test condition code flags

∗ Z, C, N, V

∗ Bxx label

– Alpha/MIPS: Test bits in named reg

∗ msb (sign), lsb, ‘zero’

∗ Bxx Ra, label

– some: Compare two registers and branch

∗ Bxx Ra, Rb, label

∗ (PA-RISC, MIPS, some CISC)

– IA-64: Test one of 64 single bit predicate regs

• Conditional branch stats (for MIPS and SPEC92)

– 15% of executed instructions

∗ 73% forward (if/else)

∗ 27% backward (loops)

– 67% of branches are taken

∗ 60% forward taken

∗ 85% backward taken (loops)

93

Control Hazards

• ‘classic’ evaluates conditional branches in EX

– Identify branch in ID, and stall until outcome
known

– Or better, assume not taken and abort if
wrong

→ 2 stall taken-branch penalty

• If evaluating branch is simple, replicate h/w to
allow early decision

– Branch on condition code

– Alpha/MIPS: Test bits in named reg

∗ Special ‘zero’ bit stored with each reg

– Hard if Bxx Ra, Rb, label

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op

Data
Memory

a

din dout

Data from ALU OP

Data to write back
Instruction

Fetch
Instruction

Decode EXecute Memory
Access

Write
Back

d

d
d
a

a a ADD

Branch
Test4 PC

Instruction
Memory

ADD

d
a

94

Control Hazards (2)

• Evaluate branches in ID (when possible)

⇒ Only 1 cycle stall if test value ready
(Set flags/reg well before branch)

– Bad if every instruction sets flags (CISC)

– Helps if setting CC optional (SPARC/ARM)

– Good if multiple CC regs (PPC/IA-64), or
none (Alpha/MIPS)

• Branch delay slots avoided the taken branch stall
on early MIPS

– Always execute following instruction

– Can’t be another branch

– Compiler fills slot ∼60% of the time

– Branches with optional slots: avoid nop

• Modern CPUs typically have more stages before
EX, due to complicated issue-control logic, thus
implying a greater taken-branch cost

• Stalls hurt more on a multi-issue machine. Also,
fewer cycles between branch instructions

Control hazards can cripple
multi-issue CPUs

95

Static Branch Prediction

• Speculation should not change semantics!

• Simple prediction

– e.g. predict backward as taken, forward not

• Branch instructions with hints

– Branch likely/unlikely

∗ strong/weak hint varients

– Use Feedback Directed Optimization (FDO)

– Fetch I-stream based on hint

• Delayed branch instrs with hints and annulment

– If hint is correct execute following instruction
else don’t

– e.g. new MIPS, PA-RISC

– Compiler able to fill delay slot more easily

96

Dynamic Branch Prediction

• Static hints help, but need to do better

• Branch prediction caches

– Indexed by significant low order bits of branch
instruction address

– Cache entries do not need tags (they’re only
hints)

– E.g. 512-8K entries

• Bi-modal prediction method

⇒ many branches are strongly biased

– Single bit predictor

∗ Bit predicts branch as taken/not taken

∗ Update bit with actual behaviour

∗ Gets first and last iterations of loops wrong

– Two bit predictors

∗ Counter saturates at 0 and 3

∗ Predict taken if 2 or 3

∗ Add 1 if taken, subtract 1 if not

∗ Little improvement above two bits

∗ ≥90% for 4K entry buffer on SPEC92

97

Local History predictors

• Able to spot repetitive patterns

• Copes well with minor deviations from pattern

• E.g. 4 bit local history branch predictor

– 4 bit shift reg stores branch’s prior behaviour

– 16 x 2 bit bi-modal predictors per entry

– use shift reg to select predictor to use

– perfectly predicts all patterns < length 6, as
well as some longer ones (up to length 16)

– used on Pentium Pro / Pentium II

∗ 512 entries x (16 x 2 + 4) = 18K bits
SRAM

– trained after two sequence reps

– other seqs up to 6% worse than random

• An alternative approach is to use two arrays. One
holds branch history, the other is a shared array of
counters indexed by branch history

– branches with same pattern share entries in
2nd array (more efficient)

– 21264 LH predictor: 1024 entries x 10 bits of
history per branch, and shared array of 1024
counters indexed by history

98

Global Correlating predictors

• Behaviour of some branches is best predicted by
observing behaviour of other branches

• (Spatial locality)

⇒ Keep a short history of the direction that the last
few branch instructions executed have taken

• E.g. Two bit correlating predictor:

– 2 bit shift register to hold processor branch
history

– 4 bi-modal counters in each cache entry, one
for each possible global history

• Rather than using branch address, some GC
predictors use the processor history as the index
into a single bi-modal counter array. Also possible
to use a hash of (branch address, global history)

– Alpha 21264 GC predictor uses a 12 bit history
and 4096 x 2 bit counters

• Combination of Local History and Global
Correlating predictor works well

– ≥95% for 30K bit table on SPEC92

– E.g. Alpha 21264

99

Reducing Taken-Branch Penalty

• Branch predictors usually accessed in ID stage,
hence at least one bubble required for
taken-branches

• Need other mechanisms to try and maintain a full
stream of useful instructions:

• Branch target buffers

– In parallel with IF, look up PC in BTB

– if PC is present in BTB, start fetching from
the address indicated in the entry

– Some BTBs actually cache instructions from
the target address

• Next-fetch predictors

– Very simple, early, prediction to avoid fetch
bubbles, used on PPro, A21264

– I-cache lines have pointer to the next line to
fetch

– Update I-cache ptr. based on actual outcome

• Trace caches (Pentium IV)

– Replace traditional I-cache

– Cache commonly executed instr sequences,
crossing basic block boundaires

– (c.f. “trace straightening” s/w optimization)

– Table to map instr address to position in cache

– Instrs typically stored in decoded form

100

Avoiding branches

• Loop Count Register (PowerPC, x86, IA-64)

– Decrement and branch instruction

– Only available for innermost loops

• Predicated Execution (ARM, IA-64)

– Execution of all instructions is conditional

∗ ARM: on flags registers

∗ IA-64: nominated predicate bit (of 64)

– IA-64: cmp instructions nominate two
predicate bits, one is set and cleared depending
on outcome

– E.g. if([r1] && [r2] && [r3]) {...} else {...}

ld r4 <- [r1]
p6,p0 <= cmp(true)
p1,p2 <= cmp(r4==true)
<p1> ld r5 <- [r2]
<p1> p3,p4 <= cmp(r5==true)
<p3> ld r6 <- [r3]
<p3> p5,p6 <= cmp(r6==true)
<p6> br else
...

4 Transform control dependency into data dep

4 Instruction ‘boosting’

∗ e.g. hoist a store ahead of a branch

4 Inline simple if/else statements

8 Costs opcode bits

8 Issue slots wasted executing nullified instrs

101

Avoiding branches 2

• Conditional Moves (Alpha, new on MIPS and x86)

– Move if flags/nominated reg set

– Just provides a ‘commit’ operation

∗ beware side effects on ‘wrong’ path

– PA-RISC supports arbitrary nullification

• Parallel Compares (IA-64)

– Eliminate branches in complex predicates

– Evaluate in parallel

∗ (despite predicate dependancy)

– if ((rA<0) && (rB==-15) && (rC>0)) {...}

cmp.eq p1,p0 = r0, r0 ;; // p1 =1
cmp.ge.and p1,p0 = rA,r0
cmp.ne.and p1,p0 = rB,-15
cmp.le.and p1,p2 = rB,10
(p1) br.cond if-block

Avoid hard to predict branches

102

Optimizing Jumps

• Alpha: Jumps have static target address hint

– A16−2 of target instruction virtual address

– Enough for speculative I-cache fetch

– Filled in by linker or dynamic optimizer

• Subroutine Call Returns

– Return address stack

– Alpha: Push/pop hints for jumps

– 8 entry stack gives ≥ 95% for SPEC92

• Jump target registers (PowerPC/IA64)

– Make likely jump destinations explicit

– Buffer instructions from each target

• Next-fetch predictors / BTBs / trace caches help
for jumps too

– Learn last target address of jumps

– Good for shared library linkage

103

Super-Scalar CPUs

• # execution units (INT/FP)

– Pentium (2/1), P6 (2+/2), P7 (4/2)

– 21164 (2/2), 21264 (4/2)

• Units often specialised e.g 21264:

– Int ALU + multiply

– Int ALU + shifter

– 2x Int ALU + load/store

– FP add + divide + sqrt

– FP multiply

• Max issue rate

– Pentium (2), P6&P7 (3µops)

– 21164 (4), 21264 (4)

– Ideal instruction sequence

∗ Right combination of INT and FP

– Lower than number of exec units

• Two basic types

– Static in-order issue (21164, Pentium, Merced)

– Dynamic out-of-order execution (21264, PPro)

104

Static Scheduled

• All instructions begin execution in-order

1. Fetch and decode a block of instructions

2. ‘Slot’ instructions to pipes based on function unit
capability and current availability

3. Issue checks:

• Data Hazards

– Are the instructions independent?

– Check register scoreboard

∗ Are the source operands ready?

∗ Will write order be preserved?

– Non-blocking missed loads

∗ Do not stall until value is used

– Maintain in-order dispatch

• Control hazards

– Is one of the instructions a predicted-taken
branch?

∗ Discard instructions past branch

– Be prepared to squash speculated instrs

4. move onto next block when all issued

105

Static Scheduled Examples

IF D1

D2 EX WB

D2 EX WB
Instruction slotting

V-pipe (reduced capability)

U-pipe

Issue checks.
Access registers
and/or D-cache

Write back to
registers or

D-cache

Pentium pipeline

IF

Instruction fetch
and access BTB

IB SL

AC EX1 EX2 WB

EX1 EX2 WB

RA EX1 EX2 EX3 WB FP Add

FP Mul

INT E0 +(shifts,mul)

INT E1 +(branches)

RA EX1 EX2 EX3 WB

Alpha 21164 pipeline

Access branch prediction
compute new PC

AC

AC

AC
Slot to function

unit

Issue checks.
Access int reg file

FP reg access

INT execute/
start D-cache read

106

Static Scheduled
Super-Scalar

• Relies greatly on compiler

– Instruction scheduling

∗ slotting

∗ data-dependence

– Issue loads early (or prefetch)

– Reduce # branches and jumps

∗ unroll loops

∗ function inlining

∗ use of CMOV/predication

– Align branches and targets

∗ avoid wasted issue slots

• Optimization can be quite implementation
dependent

• Static analysis is imperfect

– basic blocks can be reached from multiple
sources

– compiler doesn’t know which loads will miss

– Feedback Directed Optimization can help

⇒ On most code, actual issue rate will be << max

107

Helping the compiler

• Wish to issue loads as early as possible, but

– mustn’t overtake a store/load to same address

– Stack / Global variables solvable

∗ [r12,4] != [r12,16]

– Heap refs harder to disambiguate

∗ [r2,8] != [r4,32] ???

∗ C/C++ particularly bad in this respect

⇒ Data speculation (IA-64, Transmeta)

– allows loads to be moved ahead of possibly
conflicting load/stores

– ld.a r3 = [r5] enters address into Address
Aliasing Table

– any other memory reference to same address
removes entry

– ld.c r3 = [r5] checks entry is still present else
reissues load

• Predication enables load issue to be hoisted ahead
of branch, but not above compare

⇒ Control speculation (IA-64)

– ld.s r3 = [r5] execute load before it is known
if it should actually be executed

– chk.s r3, fixup check poison bit and branch if
load generated an exception

108

Dynamic Scheduling

• Don’t stop at the first stalled instruction, continue
past it to find other non-dependent work for
execution units

• Search window into I-stream

– Data-flow analysis to schedule execution

– Out-of-order execution

– In-order retirement to architectural state

– P6 core ≤ 30 µops, P7 ≤ 126

• Use speculation to allow search window to extend
across multiple basic blocks

– (Loops automatically unrolled)

– Need excellent branch prediction

– Track instructions so they can be aborted if
prediction was wrong

– Try to make branch result available ASAP (to
limit waste caused by mis-prediction)

109

Register Renaming

• Register reuse causes false dependencies

• (Often referred to as name-dependencies)

– WaR, WaW: no data transfer

• Undo compiler’s register colouring

• Necessary to unroll loops

⇒ Register renaming

– Large pool of internal physical registers

– P6 40, 21264 80+72, P7 128

– New internal register allocated for the result
operand of every instruction

– Re-mapper keeps track of which internal
registers instructions should use for their
source operands

∗ needs to be able to rollback upon exception
or mispredict

• Architectural register state updated when
instructions retire

110

Out-of-Order Execution

Arch
registersFetch/

Decode

Register
allocation

Dispatch/
Execute

Retire

ReOrder Buffer

Reservation
station

1. Fetch and decode instructions

2. Re-map source operands to appropriate internal
registers. Allocate a destination register from
register free list. Place instruction in a free
Re-Order Buffer (ROB) slot.

3. Reservation station scans ROB to find
instructions for which all source operands are
available, and a suitable execution unit is free
(Favour older instructions if multiple ready)

4. Executed instructions and results are returned to
the ROB (internal registers which are no longer
needed are placed on free list)

5. Retire unit removes completed instructions from
ROB in-order, and updates architecturally visible
state. Detect exceptions & mis-predicted
branches; Roll-back ROB contents and mapping
register state, start fetch from new PC

111

Loads and Stores

• Dyn Exec helps hide latency of L2/L3 cache

– Find other work to do in the meantime

– Allow loads to issue early

• Stores cannot be undone

⇒ Update memory in Retirement stage

– Hold in Store Queue until retirement

• Loads that overtake stores must be checked to
see if they refer to the same location (alias)

– Address of store may not yet be known

⇒ Speculate load and check later:

– Load Queue stores addresses of issued loads
until they retire

– when a store ‘executes’ (target address is
known) it checks the LQ to see whether a
newer load has issued to the same address

– if so, execution is rolled back to the store
instruction (replay load)

∗ 21264 has 32 entry LQ and a 1024 entry
prediction cache to predict which loads to
‘hold back’ and thus avoid replay trap

• Loads overtaking loads treated similarly to
maintain ordering rules with other CPUs/DMA

112

Out-of-order Execution

• Less dependency on compiler than static-sched

• Better at avoiding wasted issue slots

• But, O-o-O execution uses a lot of transistors

– ReOrder Buffer and Reservation Stations are
large structures incorporating lots of Content
Addressable Memory

– Tend to be at least O(N2) in complexity

– Tend to be on critical path

∗ diminishing returns...

– 20%+ of chip area on 21264

• Factors effecting usable ILP

– Window size

– Number of renamed registers

– Memory reference alias analysis

– Branch and jump prediction accuracy

– Data cache performance

– (Value speculation performance)

• Simulation suggests the ‘perfect’ processor:
18-150 instructions per cycle for SPEC92

• 10 way for int progs feasible, more for FP

• Some code just exhibits very poor ILP...

113

VLIW Architectures

• Very Long Instruction Word (VLIW)

• Each instruction word (or ’packet’) contains fields
to specify an operation for each function unit

• Compiler instruction scheduling:

– allocates sub-instructions to function units

– avoids any resource restrictions

– ensures producer-consumer latencies satisfied
(delay slots)

4 CPU doesn’t need to worry about issue-checks

⇒ High clock speed

8 Relies heavily on compiler / assembler programmer

– loop unrolling

– trace scheduling

8 Stall in any function unit causes whole processor
to stall

– D-cache misses a big problem

8 Often sparse I-stream (lots of nops)

8 Exposes processor internals

– Typically no binary compatibility

114

Intel EPIC (VLIW-like)

• Intel: Explicitly Parallel Instruction Computer

– Merced (Itanium) , McKinley

• Three 41 bit instrs packed into 128 bit ’bundle’
with 5 template bits

• Template determines function unit dispatch

– restricted set of possibilities simplifies
instruction dispersement hardware

∗ e.g. [Mem,Int,Branch], no [Int,Int,Int]

• Stop bits: barriers between independent
instructions groups

– groups can cross multiple bundles

• Compiler collects instrs into independent groups

• Hardware interlock of longer-latency instructions
as well as load-use latencies

4 Reduces issue-check complexity for CPU

4 Retains binary compatibility

• Need good compilers

– hope extensive use of load speculation
instructions enables hoisting of loads to avoid
stalling whole CPU

• Optimization for new implementations important?

115

Transmeta ‘Code Morphing’

• VLIW core hidden behind x86 emulation

• Uses combination of interpretation, translation
and on-line feedback-directed optimization

• Only ‘code morphing’ s/w written for VLIW

– Apps, OS and even BIOS are x86

• Keeps an in-memory translation cache

• Translate and optimise along frequently executed
paths (trace scheduling)

– speculative load instrs increase trace length

• Hardware features to assist translation:

– Shadow registers with commit instruction

∗ assist rollback upon x86
exceptions/mispredicts

– hold-back stores until commit

• Performance counters assist re-optimization

4 Binary compatibility, High clock speed, Low power

4 Potential for more complex scheduling than h/w

8 Overhead of performing translation

8 Less dynamic than h/w scheduling

116

Beyond ILP

• Diminishing returns for further effort extracting
ILP from a single thread?

• System-level parallelism

– some workloads naturally parallel

∗ multi-user machine

∗ application plus XServer

∗ application plus asynchronous I/O

• Process/Thread-level parallelism

– Some applications already multithreaded

∗ database, HTTP server, NFS server

∗ fork, pthreads

– may have smaller cache footprint

– may be same Virtual address space

• Loop-level parallelism

– generated by auto-parallelizing compilers

– co-operative threads

– need fast synchronization, communication, fork

117

Exploiting Parallelism

• Multiple CPUs on a chip

– Exploit thread/process level parallelism

– Use traditional SMP mechanisms

8 Need correspondingly bigger caches and
external memory bandwidth

– IBM Power4 2-way SMP on a chip

• Multi-threading

– Use one CPU to execute multiple threads

– Replicate PCs, architectural register file

– Different virtual address spaces?

• Static multi-threading

– Round-robin issue from a large # threads

4 No instruction dependencies

4 Hides memory latency

∗ No expensive caches

4 Fast synchronization / fork possible

8 Requires many register files

8 Progress of an individual thread is slow

∗ Poor SPEC marks (great SPEC Rate)

– Tera/Cray MTA, 128 threads

• Course-grained multi-threading

– Switch between threads on a major stall

– e.g. cache miss on Stanford SPARCLE

118

Simultaneous
Multi-Threading (SMT)

• Work on a small number of threads at once,
aiming to keep all function units busy

• Duplicate architectural state

• Duplicate instruction fetch units

• Need to control allocation of resources

– priority . fair share

– (prioritising can be counter productive)

4 Progress of individual threads is pretty good

4 Cooperating threads may have smaller cache
footprint than independent ones

4 Potential for register-register synchronization and
communication

4 Potential for lightweight thread create

• Pentium IV Xeon uses 2-way “hyperthreading”

– 2 virtual CPUs per chip

– looks like SMP - separate VM contexts

– Staticly partitions resources if both active

– SMT halt and pause instructions

– OS scheduler should understand SMT

119

Other techniques

• Data-flow processors

– Fine-grained control-flow, course-grained
data-flow (opposite of standard super-scalar)

– Begin execution of a block of sequential
instructions when all inputs become available

8 Inputs are memory locations. The matching
store required to figure out when all inputs are
ready is large and potentially slow. (matching
is easier with a small number of registers a la
out-of-order execution)

120

Caching

• Caches exploit the temporal and spatial locality of
access exhibited by most programs

• Cache equation:

Access T imeAvg = (1− P) ∗ CostHit + P ∗ CostMiss

Where P consists of:

– Compulsory misses

– Capacity misses (size)

– Conflict misses (associativity)

– Coherence misses (multi-proc/DMA)

8 Caches can increase CostMiss

• Build using fast (small and expensive) SRAM

• Tag RAM and Data RAM

121

Associativity

• Direct Mapped (1-way, no choice)

– potentially fastest: tag check can be done in
parallel with speculatively using data

• n-way Set Associative (choice of n e.g. 2/4/8)

• Fully associative (full choice)

– many-way comparison is slow

3821

0

511

12499024

8x64 bits21bits 21bits21bits

8:1 mux 8:1 mux 8:1 mux

480

3:1 mux
hit/miss

hit result

0

511

025143440
Tag

e.g.1249
Index

e.g.480
Line

IndexAddress

A 96KB 3-way set associative cache with 64 byte lines
(supporting 2 bytes of cacheable memory)35

64

data1 data2 data3

valid?

3920

ignored

32KB 32KB 32KB
8x64 bits 8x64 bits

122

Replacement Policy

• Associative caches need a replacement policy

• FIFO

8 Worse than random

• Least Recently Used (LRU)

8 Expensive to implement

8 Bad degenerate behaviour

∗ sequential access to large arrays

• Random

– Use an LFSR counter

4 No history bits required

4 Almost as good as LRU

4 Degenerate behaviour unlikely

• Not Last Used (NLU)

– Select randomly, but NLU

4 log2n bits per set

4 Better than random

123

Caching Writes

• Write-Back vs. Write Through

• Read Allocate vs. Read/Write Allocate

• Allocate only on reads and Write-Through

– Writes update cache only if line already present

– All writes are passed on to next level

– Normally combined with a Write Buffer

• Read/Write Allocate and Write-Back

– On write misses: allocate and fetch line, then
modify

– Cache holds the only up-to-date copy

– Dirty bit to mark line as modified

4 Helps to reduce write bandwidth to next level

– Line chosen for eviction may be dirty

∗ Victim writes to next level

∗ e.g. write victim, read new line, modify

124

Write Buffers

• Small high-bandwidth resource for receiving
store data

• Give reads priority over writes to reduce load
latency

– All loads that miss must check write buffer

– If RaW hazard detected:

∗ flush buffer to next level cache and replay

∗ or, service load from buffer (PPro, 21264)

• Merge sequential writes into a single transaction

• Collapse writes to same location

• Drain write buffer when bus otherwise idle

• 21164: 6 addresses, 32 bytes per address

• ARM710: 4 addresses, 32 bytes total

125

Cache Miss Rate E.g.

• SPEC 92 on MIPS

• 32 byte lines

• LRU replacement

• Write allocate/write back

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8 16 32 64 128

Capacity Misses

Compulsory Misses

8-way

4-way

2-way

1-way

M
iss

 ra
te

 p
er

 ty
pe

Cache size (KB)

A direct-mapped cache of size N has about the same
miss rate as a 2-way set-associative cache of size N/2

126

L1 Caches

• L1 I-cache

– Single-ported, read-only (but may snoop)

– Wide access (e.g. block of 4 instrs)

– (trace caches)

• L1 D-cache

– Generally 8-64KB 1/2/4-way on-chip

∗ Exception: HP PA-8200

– Fully pipelined, Low latency (1-3cy),
multi-ported

– Size typ constrained by propagation delays

– Trade miss rate for lower hit access time

∗ May be direct-mapped

∗ May be write-through

– Often virtually indexed

∗ Access cache in parallel with TLB lookup

∗ Need to avoid virtual address aliasing

· Enforce in OS

· or, Ensure index size < page size
(add associativity)

127

Enhancing Performance :1

• Block size (Line size)

– Most currently 32 or 64

4 Increasing block size reduces # compulsory
misses

4 Typically increases bandwidth

8 Can increase load latency and # conflict
misses

• Fetch critical-word-first and early-restart

– Return requested word first, then wrap

– Restart execution as soon as word ready

4 Reduces missed-load latency

– Widely used. Intel order vs. linear wrap

• Nonblocking caches

– Allow hit under miss (nonblocking loads)

– Don’t stall on first miss: allow multiple
outstanding misses

∗ merge misses to same line

– Allow memory system to satisfy misses
out-of-order

4 Reduces effective miss penalty

128

Enhancing Performance :2

• Victim caches

– Small highly associative cache to backup up a
larger cache with limited associativity

4 Reduces the cost of conflict misses

• Victim buffers

– A small number of cache line sized buffers
used for temporarily holding dirty victims
before they are written to Ln+1

– Allows victim to be written after the requested
line has been fetched

4 Reduces average latency of misses that evict
dirty lines

• Sub-block presence bits

– Allows size of tag ram to be reduced without
increasing block size

– Sub-block dirty bits can avoid cache line fills
on write misses

∗ (would break coherence on multiprocessors)

129

L2 caches

• L2 caches help hide poor DRAM latency

– large write-back cache

• L2 caches used to share the system bus pins
(e.g. Pentium)

8 electrical loading limits performance

• now, a dedicated ‘backside bus’ is used

• L2 on same die (21164)

4 low latency and wider bus

4 associativity easier

8 limited die size, so may need an L3

∗ (e.g. 21164 has 2-16MB L3)

• L2 in CPU package (Pentium Pro)

4 lower latency than external

• L2 in CPU ‘cartridge’ (Pentium II)

4 controlled layout

4 use standard SSRAM

• L2 on motherboard

8 requires careful motherboard design

• L1/L2 inclusive vs. exclusive

130

Hierarchy Examples

Pentium

L1-D
8KB

2-way
WT
16B

L1-I
8KB

2-way
16B

L2
256KB
1-way
WB
32B

64b
66MHz

Pentium Pro

L1-D
8KB

2-way
WB
32B

L1-I
8KB

2-way
32B

64b
66MHz

L2, 256KB, 4-way,
WB 32B

64b 200Mhz

L1-D
16KB
4-way
WB
32B

L1-I
16KB
4-way
32B

L2, 512KB, 4-way,
WB 32B

64b 150Mhz

64b
66/100MHz

dual cavity
package

cartridge
slot-1

Pentium II

L1-D
8KB

1-way
WT
32B

L1-I
8KB

1-way
32B

128b
100MHz

Alpha 21164
L2, 96KB, 3-way

WB 64B

L3
2MB

1-way
WB
64B

L1-D
8KB

1-way
WT
32B

L1-I
16KB
1-way
32B

128b
100MHz

Alpha 21164-PC

L2, 2MB, 1-way,
WB 64B

128b 150Mhz

L1-D
64KB
2-way
WT
64B

L1-I
64KB
2-way
64B

64b
300MHz

Alpha 21264

L2, 8MB, 1-way,
WB 64B

128b 300Mhz

cartridge
slot-A

131

Performance Examples

��� �����	� ��

����� ������� ��������� �����������! �������"���# ��$���%'&�(��) ������%'&�(*�#
�,+ -/.0& + 1/2 354 + 6 +�287/9 :�6;9
�<2 :8=8.>& 1 =�6 3?& @ 28= =/9A6 :�6;9
�B1 2�786/-8.>& + =�6 3?& 2/2 -/1 1�6/7 1�+�9
%C%

 :/= 1/=�+ +�6/7 +8+�1

266MHz 21164 EB164 (Alcor/CIA)

��� ������� ��

�D�	� ������� �������E� ���A�������! �������"���# ��$���%'&�(*�# �F����%C&G(*�#
�,+ -8.0& 2 +	= 354 + 9 =8186 -/2
�<2 2898=8.0& + 1/2 354 +/+ 9/9 +	:/1 -/2
%C%

 28- +�6/7 +�281 -�+

200MHz Pentium 430HX

��� ������� ��

�D�	� ������� �������E� ���A�������! �������"���# ��$���%'&�(*�# �F����%C&G(*�#
�,+ -8.0& 2 1/2 35& 2 +�7 =8:H9 6I@I+
�<2 2898=8.0& 6 1/2 35& = 1/7 6H28= 6H28=
%C%

 6/6 282�7 +*@A: -;@

200MHz PPro 440FX

��� ������� ��

�D�	� ������� �������E� ���A�������! �������"���# ��$���%'&�(*�# �F����%C&G(*�#
�,+ +	=/.0& 6 1/2 35& 2 @ +	786/- @*1H9
�<2 9J+�2�.0& 6 1/2 35& +�9 987 9A6;9 2�-H2
%C%

 =86 2J+	1 2�1K+ +8+�=

300MHz PII 440LX

132

0

200

400

600

800

1000

1200

1400

1000 10000 100000 1e+06

M
B/

s

Array size in bytes

Alpha 21164 275MHz. 8KB L1, 96KB L2, 2MB L3

’load-loop’
’store-loop’
’sum-loop’

Main Memory

• Increasing sequential bandwidth

– Wide memory bus

– Interleave memory chips

⇒ DDR SDRAM or RAMBUS

• Access latency can impair bandwidth

– Larger cache block sizes help

• Reducing average latency

– Keep memory banks ‘open’

∗ Quick response if next access is to same
DRAM Row

– Multiple independent memory banks

∗ Access to an open row more likely

∗ SDRAM/RAMBUS chips contain multiple
banks internally

– System bus that supports multiple outstanding
transaction requests

∗ Service transactions out-of-order as banks
become ready

133

Programming for caches

• Design algorithms so working set fits in cache

– Large lookup tables may be slower than
performing the calculation

• Organise data for spatial locality

– Merge arrays accessed with the same index

• Fuse together loops that access the same data

• Prefer sequential accesses to non-unit strides

– innermost loop should access array sequentially

• If row and column access to 2D arrays is
necessary, use cache blocking

– divide problem into sub-matrices that fit cache

– e.g. matrix multiply C = C + A×B

for (kb=0;kb<N;kb+=b){
for (jb=0;jb<N;jb+=b){

for (ib=0;ib<N;ib+=b){
for(k=kb;k<kb+b;++k){

for(j=jb;j<jb+b;++j){
for(i=ib;i<ib+b;++i){

C[k][i] = C[k][i] + (A[k][j] * B[j][i]);
} } } } } }

• Avoid access patterns that are likely to cause
conflict misses (aliasing)

– e.g. large powers of 2

• Large strides can thrash the TLB

134

Special Instructions

• Prefetch

– fetch data into L1, suppressing any exceptions

– enables compiler to speculate more easily
e.g. Alpha: ld r0 ← [r1]

• ‘Two-part loads’ (e.g. IA-64)

– speculative load suppresses exceptions

– ‘check’ instruction collects any exception

– enables compiler to ‘hoist’ loads to as early as
possible, across multiple basic blocks

– ld.s r4 ← [r5]
chk.s r4

• Load with bypass hint

– indicates that the load should bypass the
cache, and thus not displace data already there

– e.g. random accesses to large arrays

• Load with spatial-locality-only hint

– fetch line containing the specified word into a
special buffer aside from the main cache

∗ or, into set’s line that will be evicted next

• Write invalidate

– allocate a line in cache, & mark it as modified

– avoids mem read if whole line is to be updated

135

Multiprocessor Systems
Two main types:

1. Cache Coherenet

⇒ implicit shared memory communicationbetween
processes/threads on single OS instance

• Symmetric MultiProcessor (SMP) (Uniform
Mem Access)

• Non-Uniform Memory Access (ccNUMA)

• 2-256+ processors

2. Message Passing

⇒ explicit communication between processes on
multiple OS instances

– May appear as ‘single system image’ cluster

• Conventional networking (send/receive)

– RPC

• Remote DMA (read/write)

– requires more trust & co-ordination

• Gigabit Ethernet or specialist low-latency
network

• Avoid OS latency and overhead

– zero-copy user-level accessible interface

– (still need OS for blocking RX)

• Highly scalable

⇒ Big supercomputers typically use a combination of
both

136

Cache Coherent Systems

1. Single shared memory (SMP)

• shared bus (2-4 CPUs)

• switched interconnect (2-8 CPUs)

2. Distriubted Memory (ccNUMA)

• memory per group of CPUs (e.g. 4)

• or, memory hangs off each CPU

• addressable as single physical memory

– e.g. top bits identify ’node’

– accesses to remote memory slower

• (physical memory may be sparse)

• interconnect via: crossbar, mesh, hypercube

Desire large WB caches to reduce memory traffic

137

Cache Coherence

• Coherence

– Write serialization : all writes to the same
location are seen in the same order

• Consistency

– Behaviour of reads and writes wrt other
memory locations

⇒ Implement shared & exclusive cache line
ownership states (and invalid)

– CPU must get exclusive access to cache line
before updating it

– Must inform all CPUs that have the line in
‘shared’ state

– On bus systems, snoop ‘write upgrade request’

– On switched interconnect, broadcast, or use
directory stored at ’home node’

138

Programming considerations

• False sharing

– variables with different ‘owners’ placed in same
cache line

– line ‘exclusive’ ownership thrashes between
CPUs

⇒ pack variables according to owner

⇒ consider padding to cache line boundaries

• Page allocation - ccNUMA

– physical address determines which node pages
’live’ on

– ideally, same node they’ll be accessed from

– different placement policies:

∗ local

∗ random

– OS may employ page migration

∗ copy page to different node, update all page
tables

139

POWER MORE
IMPORTANT THAN
PERFORMANCE ?

1. Battery operated PICOs

• Intel Centrino

• Transmeta Crusoe

• ARM

• Tensilica

2. Processors Everywhere

• We own 100 computers each!

• Maybe 10,000 by 2012

3. Joule is the unit of energy

• One instruction on Intel XScale takes 1 nJ

• 720 Joules/gram for Li-Fe batteries.

• Reducing switching voltage - great power
savings

• Reducing clock frequency - only saves wasted
clock cycles

• Dynamic clock and voltage adjustment versus
parallelism

From Asanovic/Devadas

140

1
9
9
8
:

A
P
la

t
fo

rm
C
h
ip

:
D

3
2
/
A
3
2

tw
ic
e
!

Ethernet
block

USB
block

UART(s)

PCI bus
interface

I/O
Processor

ARM

DSP
processor

Special peripheral
function

DRAM
Interface

DRAM

Cache

Local
RAM

for DSP

Local
IO/BUS

Misc Peripherals
on the same PCB

Counter
Timer
Block

AtoD
channels

DtoA
channelsBus

Bridge

FIFO Bus Bridge

DRAM
Interface

10/100/1G
Ethernet

USB

Serial lines

PCI Bus

I/O pins
for special
peripheral
function

Analog Input

Analog Output
(e.g.) L/R audio

PSU
and test logic

etc

Control
Processor

ARM

Cache

Counter
Timer
Block

Bus
Bridge

Microcontoller
style GPIO

DSP
processor DMA

Controller

A D R/W

S
y
ste

m
o
n

a
C
h
ip

=
S
o
C

d
e
sig

n
.

O
u
r

p
la

tfo
rm

c
h
ip

h
a
s

tw
o

A
R
M

p
ro

c
e
sso

rs
a
n
d

tw
o

D
S
P

p
ro

c
e
sso

rs.
E
a
c
h

A
R
M

h
a
s

a
lo

c
a
l
c
a
c
h
e

a
n
d

b
o
th

sto
re

th
e
ir

p
ro

g
ra

m
s

a
n
d

d
a
ta

in
th

e
sa

m
e

o
ff
c
h
ip

D
R
A
M

.

1
4
1

The left-hand-side ARM is used as an I/O processor and so is
connected to a variety of standard peripherals. In any typical
application, many of the peripherals will be unused and so held in
a power down mode.

The right-hand-side ARM is used as the system controller. It can
access all of the chip’s resources over various bus bridges. It can
access off-chip devices, such as an LCD display or keyboard via a
general purpose A/D local bus.

The bus bridges map part of one processor’s memory map into
that of another so that cycles can be executed in the other’s
space, allbeit with some delay and loss of performance. A FIFO
bus bridge contains its own transaction queue of read or write
operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such
SRAM may dominate the die area of the chip. If both are
fetching instructions from the same port of the same RAM, then
they had better be executing the same program in lock-step or
else have some own local cache to avoid huge loss of performance
in bus contention.

The rest of the system is normally swept up onto the same piece

of silicon and this is denoted with the ‘special function

periperhal.’ This would be the one part of the design that varies

from product to product. The same core set of components

would be used for all sorts of different products, from iPODs,

digital cameras or ADSL modems.

DOUBLE DATA RATE
SDRAM CHIP

142

PC MOTHERBOARD

143

PC MOTHERBOARD Block
Diagram

144

