
1

5 Lectures on
Peer-peer and Application-level Networking

Advanced System Topics

Presented by Jon Crowcroft
Ack for material by

Jim Kurose,Brian Levine,Don Towsley,Umass, + Marcello Pias (CL) & Ant Rowstron (MSR)

2

0.Introduction

� Background
�Motivation
� outline of the lectures

3

Peer-peer networking

4

Peer-peer networking Focus at the application level

5

Peer-peer networking
Peer-peer applications
� Napster, Gnutella, Freenet: file sharing
� ad hoc networks
� multicast overlays (e.g., video distribution)

6

Peer-peer networking
� Q: What are the new technical challenges?
� Q: What new services/applications enabled?
� Q: Is it just “networking at the application-level”?

� “There is nothing new under the Sun” (William Shakespeare)

7

Course Lecture Contents

� Introduction
� Client-Server v. P2P
� File Sharing/Finding
� Napster
� Gnutella

� Overlays and Query
Routing
� RON
� Freenet
� Publius

� Distributed Hash
Tables
� Chord
� CAN
� Tapestry

� Middleware
� JXTA
� ESM
� Overcast

� Applications
� Storage
� Conferencing

8

Client Server v. Peer to Peer(1)

� RPC/RMI
� Synchronous
� Assymmetric
� Emphasis on language

integration and binding
models (stub
IDL/XDR compilers
etc)

� Kerberos style
security – access
control, crypto

� Messages
� Asynchronous
� Symmetric
� Emphasis on service

location, content
addressing, application
layer routing.

� Anonymity, high
availability, integrity.

� Harder to get right☺

9

Client Server v. Peer to Peer(2)
RPC
Cli_call(args)

Srv_main_loop()
{

while(true) {
deque(call)
switch(call.procid)
case 0:
call.ret=proc1(call.args)
case 1:
call.ret=proc2(call.args)
… … …
default:
call.ret = exception
}

}

10

Client Server v. Peer to Peer(3)
P2P
Peer_main_loop()

{
while(true) {

await(event)
switch(event.type) {
case timer_expire: do some p2p work()

randomize timers
break;

case inbound message: handle it
respond
break;

default: do some book keeping
break;

}
}

11

Peer to peer systems actually
old
� IP routers are peer to peer.
� Routers discover topology, and maintain it
� Routers are neither client nor server
� Routers continually chatter to each other
� Routers are fault tolerant, inherently
� Routers are autonomous

12

Peer to peer systems

�Have no distinguished role
�So no single point of bottleneck or failure.
�However, this means they need distributed

algorithms for
� Service discovery (name, address, route,

metric, etc)
�Neighbour status tracking
� Application layer routing (based possibly on

content, interest, etc)
� Resilience, handing link and node failures
� Etc etc etc

13

Ad hoc networks and peer2peer

�Wireless ad hoc networks have many
similarities to peer to peer systems

�No a priori knowledge
�No given infrastructure
�Have to construct it from “thin air”!
�Note for later – wireless☺

14

Overlays and peer 2 peer
systems
� P2p technology is often used to create

overlays which offer services that could be
offered in the IP level

�Useful deployment strategy
�Often economically a way around other

barriers to deployment
� IP Itself was an overlay (on telephone core

infrastructure)
� Evolutionary path!!!

15

Rest of lectures oriented 14
case studies from literature
� Piracy^H^H^H^H^H^content sharing ☺
�Napster
�Gnutella
� Freenet
� Publius
� etc

16

1. NAPSTER

�The most (in)famous
�Not the first (c.f. probably Eternity, from

Ross Anderson in Cambridge)
� But instructive for what it gets right, and
�Also wrong…
�Also has a political message…and economic

and legal…etc etc etc

17

Napster
� program for sharing files over the Internet
� a “disruptive” application/technology?
� history:

� 5/99: Shawn Fanning (freshman, Northeasten U.) founds
Napster Online music service

� 12/99: first lawsuit
� 3/00: 25% UWisc traffic Napster
� 2000: est. 60M users
� 2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

� 7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K, Morpheus: 300K

18

Napster: how does it work

Application-level, client-server protocol over point-
to-point TCP

Four steps:
� Connect to Napster server
� Upload your list of files (push) to server.
� Give server keywords to search the full list with.
� Select “best” of correct answers. (pings)

19

Napster

napster.com

users

File list is
uploaded

1.

20

Napster

napster.com

user

Request
and

results

User
requests
search at
server.

2.

21

Napster

napster.com

user

pings pings

User pings
hosts that
apparently
have data.

Looks for
best transfer
rate.

3.

22

Napster

napster.com

user

Retrieves
file

User
retrieves file

4.

23

Napster messages
General Packet Format

[chunksize] [chunkinfo] [data...]

CHUNKSIZE:
Intel-endian 16-bit integer
size of [data...] in bytes

CHUNKINFO: (hex)
Intel-endian 16-bit integer.

00 - login rejected
02 - login requested
03 - login accepted
0D - challenge? (nuprin1715)
2D - added to hotlist
2E - browse error (user isn't online!)
2F - user offline

5B - whois query
5C - whois result
5D - whois: user is offline!
69 - list all channels
6A - channel info
90 - join channel
91 - leave channel
…..

24

Napster: requesting a file
SENT to server (after logging in to server)

2A 00 CB 00 username
"C:\MP3\REM - Everybody Hurts.mp3"

RECEIVED
5D 00 CC 00 username

2965119704 (IP-address backward-form = A.B.C.D)
6699 (port)
"C:\MP3\REM - Everybody Hurts.mp3" (song)
(32-byte checksum)
(line speed)

[connect to A.B.C.D:6699]
RECEIVED from client

31 00 00 00 00 00
SENT to client

GET
RECEIVED from client

00 00 00 00 00 00

SENT to client
Myusername
"C:\MP3\REM - Everybody Hurts.mp3"
0 (port to connect to)

RECEIVED from client
(size in bytes)

SENT to server
00 00 DD 00 (give go-ahead thru server)

RECEIVED from client
[DATA]

From: http://david.weekly.org/code/napster.php3

25

Napster: architecture notes

� centralized server:
� single logical point of failure
� can load balance among servers using DNS

rotation
� potential for congestion
�Napster “in control” (freedom is an illusion)

� no security:
� passwords in plain text
� no authentication
� no anonymity

26

2 Gnutella

�Napster fixed
�Open Source
�Distributed
�Still very political…

27

Gnutella

� peer-to-peer networking: applications connect to
peer applications

� focus: decentralized method of searching for files
� each application instance serves to:

� store selected files
� route queries (file searches) from and to its neighboring

peers
� respond to queries (serve file) if file stored locally

� Gnutella history:
� 3/14/00: release by AOL, almost immediately withdrawn
� too late: 23K users on Gnutella at 8 am this AM
� many iterations to fix poor initial design (poor design

turned many people off)

28

Gnutella: how it works
Searching by flooding:
� If you don’t have the file you want, query 7 of

your partners.
� If they don’t have it, they contact 7 of their

partners, for a maximum hop count of 10.
� Requests are flooded, but there is no tree

structure.
� No looping but packets may be received twice.
� Reverse path forwarding(?)

Note: Play gnutella animation at:
http://www.limewire.com/index.jsp/p2p

29

Flooding in Gnutella: loop prevention

Seen already list: “A”

30

Gnutella message format

� Message ID: 16 bytes (yes bytes)
� FunctionID: 1 byte indicating

� 00 ping: used to probe gnutella network for hosts
� 01 pong: used to reply to ping, return # files shared
� 80 query: search string, and desired minimum bandwidth
� 81: query hit: indicating matches to 80:query, my IP

address/port, available bandwidth
� RemainingTTL: decremented at each peer to

prevent TTL-scoped flooding
� HopsTaken: number of peer visited so far by this

message
� DataLength: length of data field

31

Gnutella: initial problems and fixes

� Freeloading: WWW sites offering search/retrieval
from Gnutella network without providing file sharing
or query routing.
� Block file-serving to browser-based non-file-sharing users

� Prematurely terminated downloads:
� long download times over modems
� modem users run gnutella peer only briefly (Napster

problem also!) or any users becomes overloaded
� fix: peer can reply “I have it, but I am busy. Try again

later”
� late 2000: only 10% of downloads succeed
� 2001: more than 25% downloads successful (is this success

or failure?)

www.limewire.com/index.jsp/net_improvements

32

Gnutella: initial problems and fixes (more)

� 2000: avg size of reachable network ony 400-800
hosts. Why so smalll?
� modem users: not enough bandwidth to provide search

routing capabilities: routing black holes
� Fix: create peer hierarchy based on capabilities

� previously: all peers identical, most modem blackholes
� connection preferencing:

• favors routing to well-connected peers
• favors reply to clients that themselves serve large number of

files: prevent freeloading
� Limewire gateway functions as Napster-like central server

on behalf of other peers (for searching purposes)

www.limewire.com/index.jsp/net_improvements

33

Anonymous?

�Not anymore than it’s scalable.
�The person you are getting the file from

knows who you are. That’s not anonymous.

�Other protocols exist where the owner of
the files doesn’t know the requester.

� Peer-to-peer anonymity exists.
�See Eternity and, next, Freenet!

34

Gnutella Discussion:

�Architectural lessons learned?
�Do Gnutella’s goals seem familiar? Does it

work better than say squid or summary
cache? Or multicast with carousel?

� anonymity and security?
�Other?
�Good source for technical info/open

questions:
http://www.limewire.com/index.jsp/tech_papers

35

Lecture 3: Distributed Hash
Tables
� Can we go from content to location in one

go?
� Can we still retain locality?
� Can we keep any anonimity
� Look at Chord, Tapestry, CAN (pastry is

similar… … …)
�Notice how networking people like silly

names☺

36

Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

MIT and Berkeley

Now we see some CS in strength – Hash and Content based….for more
scaleble (distributed) directory lookup

6. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

6. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

� presentation based on slides by Robert Morris (SIGCOMM’01)

37

OutlineOutline

� Motivation and background

� Consistency caching

� Chord

� Performance evaluation

� Conclusion and discussion

38

MotivationMotivation

How to find data in a distributed file sharing system?

� Lookup is the key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

39

Centralized SolutionCentralized Solution

� Requires O(M) state
� Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

� Central server (Napster)

40

Distributed Solution (1)Distributed Solution (1)

� Worst case O(N) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

� Flooding (Gnutella, Morpheus, etc.)

41

Distributed Solution (2)Distributed Solution (2)
� Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

� Only exact matches

42

Routing ChallengesRouting Challenges

� Define a useful key nearness metric

� Keep the hop count small

� Keep the routing tables “right size”

� Stay robust despite rapid changes in membership

Authors claim:
� Chord: emphasizes efficiency and
simplicity

43

Chord OverviewChord Overview

� Provides peer-to-peer hash lookup service:
� Lookup(key) → IP address

� Chord does not store the data

� How does Chord locate a node?

� How does Chord maintain routing tables?

� How does Chord cope with changes in membership?

44

Chord propertiesChord properties

� Efficient: O(Log N) messages per lookup

� N is the total number of servers

� Scalable: O(Log N) state per node

� Robust: survives massive changes in membership

� Proofs are in paper / tech report

� Assuming no malicious participants

45

Chord IDsChord IDs

� m bit identifier space for both keys and nodes

� Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
� Node identifier = SHA-1(IP address)

� Both are uniformly distributed

� How to map key IDs to node IDs?

46

Consistent Hashing [Karger 97]Consistent Hashing [Karger 97]

� A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

47

Consistent HashingConsistent Hashing
� Every node knows of every other node

� requires global information
� Routing tables are large O(N)
� Lookups are fast O(1)

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

48

Chord: Basic LookupChord: Basic Lookup

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

� Every node knows its successor in the ring

� requires O(N) time

49

“Finger Tables”“Finger Tables”

� Every node knows m other nodes in the ring

� Increase distance exponentially

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

50

“Finger Tables”“Finger Tables”

� Finger i points to successor of n+2i

N120

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

51

Lookups are FasterLookups are Faster

� Lookups take O(Log N) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

52

Joining the RingJoining the Ring

� Three step process:
� Initialize all fingers of new node

� Update fingers of existing nodes

� Transfer keys from successor to new node

� Less aggressive mechanism (lazy finger update):
� Initialize only the finger to successor node

� Periodically verify immediate successor, predecessor

� Periodically refresh finger table entries

53

Joining the Ring - Step 1Joining the Ring - Step 1

� Initialize the new node finger table
� Locate any node p in the ring

� Ask node p to lookup fingers of new node N36

� Return results to new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

54

Joining the Ring - Step 2Joining the Ring - Step 2

� Updating fingers of existing nodes
� new node calls update function on existing nodes

� existing nodes can recursively update fingers of other
nodes

N36

N60

N40

N5

N20
N99

N80

55

Joining the Ring - Step 3Joining the Ring - Step 3

� Transfer keys from successor node to new node
� only keys in the range are transferred

Copy keys 21..36
from N40 to N36K30

K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

56

Handing FailuresHanding Failures
� Failure of nodes might cause incorrect lookup

N120
N113

N102

N80

N85

N10

Lookup(90)

� N80 doesn’t know correct successor, so lookup fails

� Successor fingers are enough for correctness

57

Handling FailuresHandling Failures

� Use successor list
� Each node knows r immediate successors

� After failure, will know first live successor

� Correct successors guarantee correct lookups

� Guarantee is with some probability
� Can choose r to make probability of lookup failure
arbitrarily small

58

Evaluation OverviewEvaluation Overview

� Quick lookup in large systems

� Low variation in lookup costs

� Robust despite massive failure

� Experiments confirm theoretical results

59

Cost of lookupCost of lookup
� Cost is O(Log N) as predicted by theory
� constant is 1/2

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r
Lo

ok
up

60

RobustnessRobustness
� Simulation results: static scenario

� Failed lookup means original node with key failed (no replica of keys)

� Result implies good balance of keys among nodes!

61

RobustnessRobustness
� Simulation results: dynamic scenario

� Failed lookup means finger path has a failed node

� 500 nodes initially

� average stabilize() call 30s

� 1 lookup per second (Poisson)

� x join/fail per second (Poisson)

62

Current implementationCurrent implementation

� Chord library: 3,000 lines of C++

� Deployed in small Internet testbed

� Includes:

� Correct concurrent join/fail

� Proximity-based routing for low delay (?)

� Load control for heterogeneous nodes (?)

� Resistance to spoofed node IDs (?)

63

StrengthsStrengths

� Based on theoretical work (consistent hashing)

� Proven performance in many different aspects
� “with high probability” proofs

� Robust (Is it?)

64

WeaknessWeakness

� NOT that simple (compared to CAN)

� Member joining is complicated
� aggressive mechanisms requires too many messages and updates

� no analysis of convergence in lazy finger mechanism

� Key management mechanism mixed between layers
� upper layer does insertion and handle node failures

� Chord transfer keys when node joins (no leave mechanism!)

� Routing table grows with # of members in group

� Worst case lookup can be slow

65

DiscussionsDiscussions

� Network proximity (consider latency?)

� Protocol security
� Malicious data insertion

� Malicious Chord table information

� Keyword search and indexing

� ...

66

Sylvia Ratnasamy, Paul Francis, Mark Handley,

Richard Karp, Scott Shenker

8. A Scalable, Content-
Addressable Network

ACIRI U.C.Berkeley Tahoe
Networks

1 2 3

1,2 3 1

1,2 1

67

Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work

68

Internet-scale hash tables

� Hash tables
� essential building block in software systems

� Internet-scale distributed hash tables
� equally valuable to large-scale distributed systems?

69

� Hash tables
� essential building block in software systems

� Internet-scale distributed hash tables
� equally valuable to large-scale distributed systems?

• peer-to-peer systems
– Napster, Gnutella,, FreeNet, MojoNation…

• large-scale storage management systems
– Publius, OceanStore,, CFS ...

• mirroring on the Web

Internet-scale hash tables

70

Content-Addressable Network
(CAN)

� CAN: Internet-scale hash table

� Interface
� insert(key,value)
� value = retrieve(key)

71

Content-Addressable Network
(CAN)

� CAN: Internet-scale hash table

� Interface
� insert(key,value)
� value = retrieve(key)

� Properties
� scalable
� operationally simple
� good performance (w/ improvement)

72

Content-Addressable Network
(CAN)

� CAN: Internet-scale hash table

� Interface
� insert(key,value)
� value = retrieve(key)

� Properties
� scalable
� operationally simple
� good performance

� Related systems: Chord/Pastry/Tapestry/Buzz/Plaxton ...

73

Problem Scope

� Design a system that provides the interface
� scalability
� robustness
� performance
� security

� Application-specific, higher level primitives
� keyword searching
� mutable content
� anonymity

74

Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work

75

K V

CAN: basic idea

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

76

CAN: basic idea

insert
(K1,V1)

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

77

CAN: basic idea

insert
(K1,V1)

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

78

CAN: basic idea

(K1,V1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

79

CAN: basic idea

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

80

CAN: solution

� virtual Cartesian coordinate space

� entire space is partitioned amongst all the nodes
� every node “owns” a zone in the overall space

� abstraction
� can store data at “points” in the space
� can route from one “point” to another

� point = node that owns the enclosing zone

81

CAN: simple example

1

82

CAN: simple example

1 2

83

CAN: simple example

1

2

3

84

CAN: simple example

1

2

3

4

85

CAN: simple example

86

CAN: simple example

I

87

CAN: simple example

node I::insert(K,V)

I

88

(1) a = hx(K)

CAN: simple example

x = a

node I::insert(K,V)

I

89

(1) a = hx(K)
b = hy(K)

CAN: simple example

x = a

y = b

node I::insert(K,V)

I

90

(1) a = hx(K)
b = hy(K)

CAN: simple example

(2) route(K,V) -> (a,b)

node I::insert(K,V)

I

91

CAN: simple example

(2) route(K,V) -> (a,b)

(3) (a,b) stores (K,V)

(K,V)

node I::insert(K,V)

I(1) a = hx(K)
b = hy(K)

92

CAN: simple example

(2) route “retrieve(K)” to (a,b) (K,V)

(1) a = hx(K)
b = hy(K)

node J::retrieve(K)

J

93

Data stored in the CAN is addressed by
name (i.e. key), not location (i.e. IP
address)

CAN

94

CAN: routing table

95

CAN: routing

(a,b)

(x,y)

96

A node only maintains state for its
immediate neighboring nodes

CAN: routing

97

CAN: node insertion

Bootstrap
node

1) Discover some node “I” already in CAN
new node

98

CAN: node insertion

I

new node
1) discover some node “I” already in CAN

99

CAN: node insertion

2) pick random
point in space

I

(p,q)

new node

100

CAN: node insertion

(p,q)

3) I routes to (p,q), discovers node J

I

J

new node

101

CAN: node insertion

newJ

4) split J’s zone in half… new owns one half

102

Inserting a new node affects only a single
other node and its immediate neighbors

CAN: node insertion

103

CAN: node failures

� Need to repair the space

� recover database (weak point)
• soft-state updates
• use replication, rebuild database from replicas

� repair routing
• takeover algorithm

104

CAN: takeover algorithm

� Simple failures
� know your neighbor’s neighbors
� when a node fails, one of its neighbors takes over its

zone

� More complex failure modes
� simultaneous failure of multiple adjacent nodes
� scoped flooding to discover neighbors
� hopefully, a rare event

105

Only the failed node’s immediate neighbors
are required for recovery

CAN: node failures

106

Design recap

� Basic CAN
� completely distributed
� self-organizing
� nodes only maintain state for their immediate neighbors

� Additional design features
� multiple, independent spaces (realities)
� background load balancing algorithm
� simple heuristics to improve performance

107

Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work

108

Evaluation

� Scalability

� Low-latency

� Load balancing

� Robustness

109

CAN: scalability

� For a uniformly partitioned space with n nodes and d
dimensions
� per node, number of neighbors is 2d
� average routing path is (dn1/d)/4 hops
� simulations show that the above results hold in practice

� Can scale the network without increasing per-node
state

� Chord/Plaxton/Tapestry/Buzz
� log(n) nbrs with log(n) hops

110

CAN: low-latency

� Problem
� latency stretch = (CAN routing delay)

(IP routing delay)
� application-level routing may lead to high stretch

�Solution
� increase dimensions, realities (reduce the path

length)
�Heuristics (reduce the per-CAN-hop latency)

• RTT-weighted routing
• multiple nodes per zone (peer nodes)
• deterministically replicate entries

111

CAN: low-latency

#nodes

La
te

nc
y

st
re

tc
h

0
20

40
60
80

100
120
140

160
180

16K 32K 65K 131K

#dimensions = 2

w/o heuristics

w/ heuristics

112

0

2

4

6

8

10

CAN: low-latency

#nodes

La
te

nc
y

st
re

tc
h

16K 32K 65K 131K

#dimensions = 10

w/o heuristics

w/ heuristics

113

CAN: load balancing

� Two pieces

� Dealing with hot-spots
• popular (key,value) pairs
• nodes cache recently requested entries
• overloaded node replicates popular entries at neighbors

� Uniform coordinate space partitioning
• uniformly spread (key,value) entries
• uniformly spread out routing load

114

Uniform Partitioning

� Added check
� at join time, pick a zone
� check neighboring zones
� pick the largest zone and split that one

115

0

20

40

60

80

100

Uniform Partitioning

V 2V 4V 8V

Volume

Percentage
of nodes

w/o check

w/ check

V = total volume
n

V
16

V
8

V
4

V
2

65,000 nodes, 3 dimensions

116

CAN: Robustness

� Completely distributed
� no single point of failure (not applicable to pieces of

database when node failure happens)

�Not exploring database recovery (in case
there are multiple copies of database)

� Resilience of routing
� can route around trouble

117

Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work

118

Strengths

�More resilient than flooding broadcast
networks

� Efficient at locating information
� Fault tolerant routing
�Node & Data High Availability (w/

improvement)
�Manageable routing table size & network

traffic

119

Weaknesses

� Impossible to perform a fuzzy search
�Susceptible to malicious activity
�Maintain coherence of all the indexed data

(Network overhead, Efficient distribution)
�Still relatively higher routing latency
� Poor performance w/o improvement

120

Suggestions

� Catalog and Meta indexes to perform
search function

� Extension to handle mutable content
efficiently for web-hosting

�Security mechanism to defense against
attacks

121

Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work

122

Ongoing Work

� Topologically-sensitive CAN construction
� distributed binning

123

Distributed Binning

� Goal
� bin nodes such that co-located nodes land in same bin

� Idea
� well known set of landmark machines
� each CAN node, measures its RTT to each landmark
� orders the landmarks in order of increasing RTT

� CAN construction
� place nodes from the same bin close together on the CAN

124

Distributed Binning

� 4 Landmarks (placed at 5 hops away from each other)
� naïve partitioning

number of nodes

256 1K 4K

la
te

nc
y

St
re

tc
h

5

10

15

20

256 1K 4K

�
w/o binning
w/ binning

w/o binning
w/ binning

#dimensions=2 #dimensions=4

125

Ongoing Work (cont’d)

� Topologically-sensitive CAN construction
� distributed binning

� CAN Security (Petros Maniatis - Stanford)
� spectrum of attacks
� appropriate counter-measures

126

Ongoing Work (cont’d)

� CAN Usage

� Application-level Multicast (NGC 2001)

� Grass-Roots Content Distribution

� Distributed Databases using CANs
(J.Hellerstein, S.Ratnasamy, S.Shenker, I.Stoica, S.Zhuang)

127

Summary

� CAN
� an Internet-scale hash table
� potential building block in Internet applications

�Scalability
�O(d) per-node state

� Low-latency routing
� simple heuristics help a lot

� Robust
� decentralized, can route around trouble

128

Wrapup discussion questions (1):
� What is a peer-peer network (what is not a peer-to-peer

network?). Necessary:
� every node is designed to (but may not by user choice)

provide some service that helps other nodes in the
network get service

� no 1-N service providing
� each node potentially has the same responsibility,

functionality (maybe nodes can be polymorhpic)
• corollary: by design, nothing (functionally) prevents two

nodes from communicating directly
� some applications (e.g., Napster) are a mix of peer-peer

and centralized (lookup is centralized, file service is
peer-peer) [recursive def. of peer-peer]

� (logical connectivity rather than physical connectivity)
routing will depend on service and data

129

Overlays?

� What is the relationship between peer-peer and
application overlay networks?
� Peer-peer and application overlays are different things.

It is possible for an application level overlay to be built
using peer-peer (or vice versa) but not always necessary

� Overlay: in a wired net: if two nodes can communicate in
the overlay using a path that is not the path the network
level routing would define for them. Logical network on
top of underlying network

• source routing?
� Wireless ad hoc nets – what commonality is there

REALLY?

130

Wrapup discussion questions (2):
�What were the best p2p idea
� Vote now (and should it be a secret ballot

usign Eternity☺

131

Wrapup discussion questions (3):
� Is ad hoc networking a peer-peer application?

� Yes (30-1)
� Why peer-peer over client-server?

� A well-deigned p2p provides better “scaability”
� Why client-server of peer-peer

� peer-peer is harder to make reliable
� availability different from client-server (p2p is more

often at least partially “up”)
� more trust is required

� If all music were free in the future (and organized), would
we have peer-peer.
� Is there another app: ad hoc networking, any copyrighted data,

peer-peer sensor data gathering and retrieval, simulation
� Evolution #101 – what can we learn about systems?

