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5 Lectures on
Peer-peer and Application-level Networking

Advanced System Topics

Presented by Jon Crowcroft
Ack for material by

Jim Kurose,Brian Levine,Don Towsley,Umass, + Marcello Pias (CL) & Ant Rowstron (MSR)
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0.Introduction

� Background
�Motivation
� outline of the lectures
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Peer-peer networking
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Peer-peer networking Focus at the application level
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Peer-peer networking
Peer-peer applications
� Napster, Gnutella, Freenet: file sharing
� ad hoc networks
� multicast overlays (e.g., video distribution)
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Peer-peer networking
� Q: What are the new technical challenges?
� Q: What new services/applications enabled?
� Q: Is it just “networking at the application-level”?

� “There is nothing new under the Sun” (William Shakespeare)
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Course Lecture Contents

� Introduction
� Client-Server v. P2P
� File Sharing/Finding
� Napster
� Gnutella

� Overlays and Query 
Routing
� RON
� Freenet
� Publius

� Distributed Hash 
Tables
� Chord
� CAN
� Tapestry

� Middleware
� JXTA
� ESM
� Overcast

� Applications
� Storage
� Conferencing
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Client Server v. Peer to Peer(1)

� RPC/RMI
� Synchronous
� Assymmetric
� Emphasis on language 

integration and binding 
models (stub  
IDL/XDR compilers 
etc)

� Kerberos style 
security – access 
control, crypto

� Messages
� Asynchronous
� Symmetric
� Emphasis on service 

location, content 
addressing, application 
layer routing.

� Anonymity, high 
availability, integrity.

� Harder to get right☺
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Client Server v. Peer to Peer(2)       
RPC
Cli_call(args)

Srv_main_loop() 
{

while(true) {
deque(call)
switch(call.procid)
case 0: 
call.ret=proc1(call.args)
case 1: 
call.ret=proc2(call.args)
… … …
default:
call.ret = exception
}

}
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Client Server v. Peer to Peer(3)
P2P
Peer_main_loop()

{
while(true) {

await(event)
switch(event.type) {
case timer_expire: do some p2p work()

randomize timers
break;

case inbound message: handle it
respond
break;

default: do some book keeping
break;

}
}
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Peer to peer systems actually 
old
� IP routers are peer to peer.
� Routers discover topology, and maintain it
� Routers are neither client nor server
� Routers continually chatter to each other
� Routers are fault tolerant, inherently
� Routers are autonomous
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Peer to peer systems

�Have no distinguished role
�So no single point of bottleneck or failure.
�However, this means they need distributed 

algorithms for
� Service discovery (name, address, route, 

metric, etc)
�Neighbour status tracking
� Application layer routing (based possibly on 

content, interest, etc)
� Resilience, handing link and node failures
� Etc etc etc
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Ad hoc networks and peer2peer

�Wireless ad hoc networks have many 
similarities to peer to peer systems

�No a priori knowledge
�No given infrastructure
�Have to construct it from “thin air”!
�Note for later – wireless☺
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Overlays and peer 2 peer 
systems
� P2p technology is often used  to create 

overlays which offer services that could be 
offered in the IP level

�Useful deployment strategy
�Often economically a way around other 

barriers to deployment
� IP Itself was an overlay (on telephone core 

infrastructure)
� Evolutionary path!!!
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Rest of lectures oriented 14 
case studies from literature
� Piracy^H^H^H^H^H^content sharing ☺
�Napster
�Gnutella
� Freenet
� Publius
� etc
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1. NAPSTER

�The most (in)famous
�Not the first (c.f. probably Eternity, from 

Ross Anderson in Cambridge)
� But instructive for what it gets right, and
�Also wrong…
�Also has a political message…and economic 

and legal…etc etc etc
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Napster
� program for sharing files over the Internet
� a “disruptive” application/technology?
� history:

� 5/99: Shawn Fanning (freshman, Northeasten U.) founds 
Napster Online music service

� 12/99: first lawsuit
� 3/00: 25%  UWisc traffic Napster
� 2000: est. 60M users
� 2/01: US Circuit Court of 

Appeals: Napster knew users 
violating copyright laws

� 7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K, Morpheus: 300K
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Napster: how does it work

Application-level, client-server protocol over point-
to-point TCP 

Four steps:
� Connect to Napster server
� Upload your list of files (push) to server.
� Give server keywords to search the full list with.
� Select “best” of correct answers. (pings)
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Napster

napster.com

users

File list is 
uploaded

1.
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Napster

napster.com

user

Request
and

results

User   
requests 
search at 
server.

2.
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Napster

napster.com

user

pings pings

User pings 
hosts that 
apparently 
have data.

Looks for 
best transfer 
rate.

3.
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Napster

napster.com

user

Retrieves
file

User 
retrieves file

4.
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Napster messages
General Packet Format

[chunksize]    [chunkinfo]    [data...]

CHUNKSIZE:
Intel-endian 16-bit integer
size of [data...] in bytes

CHUNKINFO: (hex)
Intel-endian 16-bit integer.

00 - login rejected
02 - login requested
03 - login accepted
0D - challenge? (nuprin1715)
2D - added to hotlist
2E - browse error (user isn't online!)
2F - user offline

5B - whois query
5C - whois result
5D - whois: user is offline!
69 - list all channels
6A - channel info
90 - join channel
91 - leave channel
…..
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Napster: requesting a file
SENT to server (after logging in to server)

2A 00 CB 00 username
"C:\MP3\REM - Everybody Hurts.mp3"

RECEIVED
5D 00 CC 00 username

2965119704 (IP-address backward-form = A.B.C.D)
6699 (port)
"C:\MP3\REM - Everybody Hurts.mp3" (song)
(32-byte checksum)
(line speed)

[connect to A.B.C.D:6699]
RECEIVED from client

31 00 00 00 00 00
SENT to client

GET
RECEIVED from client

00 00 00 00 00 00

SENT to client
Myusername
"C:\MP3\REM - Everybody Hurts.mp3"
0 (port to connect to)

RECEIVED from client
(size in bytes)

SENT to server
00 00 DD 00  (give go-ahead thru server)

RECEIVED from client
[DATA]

From: http://david.weekly.org/code/napster.php3
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Napster: architecture notes

� centralized server: 
� single logical point of failure
� can load balance among servers using DNS 

rotation
� potential for congestion
�Napster “in control” (freedom is an illusion)

� no security: 
� passwords in plain text
� no authentication 
� no anonymity
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2 Gnutella

�Napster fixed
�Open Source
�Distributed
�Still very political…



27

Gnutella

� peer-to-peer networking: applications connect to 
peer applications 

� focus: decentralized method of searching for files
� each application instance serves to:

� store selected files
� route queries (file searches) from and to its neighboring 

peers
� respond to queries (serve file) if file stored locally

� Gnutella history:
� 3/14/00: release by AOL, almost immediately withdrawn
� too late: 23K users on Gnutella at 8 am this AM
� many iterations to fix poor initial design (poor design 

turned many people off)
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Gnutella: how it works
Searching by flooding:
� If you don’t have the file you want, query 7 of 

your partners.
� If they don’t have it, they contact 7 of their 

partners, for a maximum hop count of 10.
� Requests are flooded, but there is no tree 

structure.
� No looping but packets may be received twice.
� Reverse path forwarding(?)

Note: Play gnutella animation at: 
http://www.limewire.com/index.jsp/p2p
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Flooding in Gnutella: loop prevention

Seen already list: “A”
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Gnutella message format

� Message ID: 16 bytes  (yes bytes)
� FunctionID: 1 byte indicating 

� 00 ping: used to probe gnutella network for hosts
� 01 pong: used to reply to ping, return # files shared
� 80 query: search string, and desired minimum bandwidth
� 81: query hit: indicating matches to 80:query, my IP 

address/port, available bandwidth
� RemainingTTL: decremented at each peer to 

prevent TTL-scoped flooding
� HopsTaken: number of peer visited so far by this 

message
� DataLength: length of data field
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Gnutella: initial problems and fixes

� Freeloading: WWW sites offering search/retrieval 
from Gnutella network without providing file sharing 
or query routing.
� Block file-serving to browser-based non-file-sharing users 

� Prematurely terminated downloads: 
� long download times over modems
� modem users run gnutella peer only briefly (Napster 

problem also!) or any users becomes overloaded
� fix: peer can reply “I have it, but I am busy. Try again 

later”
� late 2000: only 10% of downloads succeed
� 2001: more than 25% downloads successful (is this success 

or failure?)

www.limewire.com/index.jsp/net_improvements
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Gnutella: initial problems and fixes (more)

� 2000: avg size of reachable network ony 400-800 
hosts. Why so smalll?
� modem users: not enough bandwidth to provide search 

routing capabilities: routing black holes
� Fix: create peer hierarchy based on capabilities

� previously: all peers identical, most modem blackholes
� connection preferencing:

• favors routing to well-connected peers
• favors reply to clients that themselves serve large number of 

files: prevent freeloading
� Limewire gateway functions as Napster-like central server 

on behalf of other peers (for searching purposes)

www.limewire.com/index.jsp/net_improvements
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Anonymous?

�Not anymore than it’s scalable.
�The person you are getting the file from 

knows who you are. That’s not anonymous.

�Other protocols exist where the owner of 
the files doesn’t know the requester.

� Peer-to-peer anonymity exists.
�See Eternity and, next, Freenet!
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Gnutella Discussion:

�Architectural lessons learned?
�Do Gnutella’s goals seem familiar? Does it 

work better than say squid or summary 
cache? Or multicast with carousel?

� anonymity and security?
�Other?
�Good source for technical info/open 

questions:
http://www.limewire.com/index.jsp/tech_papers
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Lecture 3: Distributed Hash 
Tables
� Can we go from content to location in one 

go?
� Can we still retain locality?
� Can we keep any anonimity
� Look at Chord, Tapestry, CAN (pastry is 

similar… … …)
�Notice how networking people like silly 

names☺
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Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

MIT and Berkeley

Now we see some CS in strength – Hash and Content based….for more 
scaleble (distributed) directory lookup

6. Chord: A Scalable Peer-to-peer Lookup 
Service for Internet Applications

6. Chord: A Scalable Peer-to-peer Lookup 
Service for Internet Applications

� presentation based on slides by Robert Morris (SIGCOMM’01)
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OutlineOutline

� Motivation and background

� Consistency caching

� Chord

� Performance evaluation

� Conclusion and discussion
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MotivationMotivation

How to find data in a distributed file sharing system?

� Lookup is the key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?
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Centralized SolutionCentralized Solution

� Requires O(M) state
� Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

� Central server (Napster)
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Distributed Solution (1)Distributed Solution (1)

� Worst case O(N) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

� Flooding (Gnutella, Morpheus, etc.)
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Distributed Solution (2)Distributed Solution (2)
� Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

� Only exact matches
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Routing ChallengesRouting Challenges

� Define a useful key nearness metric

� Keep the hop count small

� Keep the routing tables “right size”

� Stay robust despite rapid changes in membership

Authors claim:
� Chord: emphasizes efficiency and 
simplicity
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Chord OverviewChord Overview

� Provides peer-to-peer hash lookup service:
� Lookup(key) → IP address

� Chord does not store the data

� How does Chord locate a node?

� How does Chord maintain routing tables? 

� How does Chord cope with changes in membership?
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Chord propertiesChord properties

� Efficient: O(Log N) messages per lookup

� N is the total number of servers 

� Scalable: O(Log N) state per node

� Robust: survives massive changes in membership 

� Proofs are in paper / tech report

� Assuming no malicious participants
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Chord IDsChord IDs

� m bit identifier space for both keys and nodes

� Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
� Node identifier = SHA-1(IP address)

� Both are uniformly distributed

� How to map key IDs to node IDs? 
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Consistent Hashing [Karger 97]Consistent Hashing [Karger 97]

� A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”
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Consistent HashingConsistent Hashing
� Every node knows of every other node

� requires global information
� Routing tables are large O(N)
� Lookups are fast O(1)

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”? 

“N90 has K60”

K60
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Chord: Basic LookupChord: Basic Lookup

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”? 

“N90 has K60”

K60

� Every node knows its successor in the ring

� requires O(N) time



49

“Finger Tables”“Finger Tables”

� Every node knows m other nodes in the ring

� Increase distance exponentially

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26
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“Finger Tables”“Finger Tables”

� Finger i points to successor of n+2i

N120

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26
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Lookups are FasterLookups are Faster

� Lookups take O(Log N) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19
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Joining the RingJoining the Ring

� Three step process:
� Initialize all fingers of new node

� Update fingers of existing nodes

� Transfer keys from successor to new node

� Less aggressive mechanism (lazy finger update):
� Initialize only the finger to successor node

� Periodically verify immediate successor, predecessor

� Periodically refresh finger table entries
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Joining the Ring - Step 1Joining the Ring - Step 1

� Initialize the new node finger table
� Locate any node p in the ring

� Ask node p to lookup fingers of new node N36

� Return results to new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80
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Joining the Ring - Step 2Joining the Ring - Step 2

� Updating fingers of existing nodes
� new node calls update function on existing nodes

� existing nodes can recursively update fingers of other 
nodes

N36

N60

N40

N5

N20
N99

N80
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Joining the Ring - Step 3Joining the Ring - Step 3

� Transfer keys from successor node to new node
� only keys in the range are transferred 

Copy keys 21..36
from N40 to N36K30

K38

N36

N60

N40

N5

N20
N99

N80

K30

K38
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Handing FailuresHanding Failures
� Failure of nodes might cause incorrect lookup

N120
N113

N102

N80

N85

N10

Lookup(90)

� N80 doesn’t know correct successor, so lookup fails

� Successor fingers are enough for correctness
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Handling FailuresHandling Failures

� Use successor list
� Each node knows r immediate successors

� After failure, will know first live successor

� Correct successors guarantee correct lookups

� Guarantee is with some probability
� Can choose r to make probability of lookup failure 
arbitrarily small
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Evaluation OverviewEvaluation Overview

� Quick lookup in large systems

� Low variation in lookup costs

� Robust despite massive failure

� Experiments confirm theoretical results
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Cost of lookupCost of lookup
� Cost is O(Log N) as predicted by theory
� constant is 1/2

Number of Nodes

Av
er

ag
e 

M
es

sa
ge

s 
pe

r 
Lo

ok
up
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RobustnessRobustness
� Simulation results: static scenario

� Failed lookup means original node with key failed (no replica of keys)

� Result implies good balance of keys among nodes!
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RobustnessRobustness
� Simulation results: dynamic scenario

� Failed lookup means finger path has a failed node

� 500 nodes initially

� average stabilize( ) call 30s

� 1 lookup per second (Poisson)

� x join/fail per second (Poisson)
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Current implementationCurrent implementation

� Chord library: 3,000 lines of C++

� Deployed in small Internet testbed

� Includes: 

� Correct concurrent join/fail

� Proximity-based routing for low delay (?)

� Load control for heterogeneous nodes (?) 

� Resistance to spoofed node IDs (?)
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StrengthsStrengths

� Based on theoretical work (consistent hashing)

� Proven performance in many different aspects
� “with high probability” proofs

� Robust (Is it?)
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WeaknessWeakness

� NOT that simple (compared to CAN)

� Member joining is complicated
� aggressive mechanisms requires too many messages and updates

� no analysis of convergence in lazy finger mechanism

� Key management mechanism mixed between layers
� upper layer does insertion and handle node failures

� Chord transfer keys when node joins (no leave mechanism!)

� Routing table grows with # of members in group

� Worst case lookup can be slow
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DiscussionsDiscussions

� Network proximity (consider latency?)

� Protocol security
� Malicious data insertion

� Malicious Chord table information

� Keyword search and indexing

� ...
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Sylvia Ratnasamy,   Paul Francis,   Mark Handley, 

Richard Karp,  Scott Shenker

8. A Scalable, Content-
Addressable Network

ACIRI U.C.Berkeley Tahoe 
Networks

1 2 3

1,2 3 1

1,2 1
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Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work
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Internet-scale hash tables

� Hash tables
� essential building block in software systems

� Internet-scale distributed hash tables
� equally valuable to large-scale distributed systems?
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� Hash tables
� essential building block in software systems

� Internet-scale distributed hash tables
� equally valuable to large-scale distributed systems?

• peer-to-peer systems
– Napster, Gnutella,, FreeNet, MojoNation…

• large-scale storage management systems
– Publius, OceanStore,, CFS ...

• mirroring on the Web

Internet-scale hash tables
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Content-Addressable Network
(CAN)

� CAN: Internet-scale hash table

� Interface
� insert(key,value)
� value = retrieve(key) 
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Content-Addressable Network
(CAN)

� CAN: Internet-scale hash table

� Interface
� insert(key,value)
� value = retrieve(key) 

� Properties
� scalable
� operationally simple
� good performance (w/ improvement)
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Content-Addressable Network
(CAN)

� CAN: Internet-scale hash table

� Interface
� insert(key,value)
� value = retrieve(key) 

� Properties
� scalable
� operationally simple
� good performance

� Related systems: Chord/Pastry/Tapestry/Buzz/Plaxton ...
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Problem Scope

� Design a system that provides the interface
� scalability 
� robustness
� performance  
� security   

� Application-specific, higher level primitives
� keyword searching 
� mutable content 
� anonymity
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Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work
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K  V

CAN: basic idea

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V
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CAN: basic idea

insert
(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V
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CAN: basic idea

insert
(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V
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CAN: basic idea

(K1,V1)

K  V

K  V
K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V
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CAN: basic idea

retrieve (K1)

K  V

K  V
K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V
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CAN: solution

� virtual Cartesian coordinate space

� entire space is partitioned amongst all the nodes 
� every node “owns” a zone in the overall space

� abstraction
� can store data at “points” in the space 
� can route from one “point” to another

� point  = node that owns the enclosing zone 
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CAN: simple example

1
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CAN: simple example

1 2
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CAN: simple example

1

2

3
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CAN: simple example

1

2

3

4
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CAN: simple example
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CAN: simple example

I
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CAN: simple example

node I::insert(K,V)

I
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(1)  a = hx(K)

CAN: simple example

x = a

node I::insert(K,V)

I
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(1)  a = hx(K)
b = hy(K)

CAN: simple example

x = a

y = b

node I::insert(K,V)

I
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(1)  a = hx(K)
b = hy(K)

CAN: simple example

(2)  route(K,V) -> (a,b)

node I::insert(K,V)

I
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CAN: simple example

(2)  route(K,V) -> (a,b)

(3)  (a,b) stores (K,V) 

(K,V)

node I::insert(K,V)

I(1)  a = hx(K)
b = hy(K)
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CAN: simple example

(2)  route “retrieve(K)” to (a,b) (K,V)

(1)  a = hx(K)
b = hy(K)

node J::retrieve(K)

J
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Data stored in the CAN is addressed by 
name (i.e. key), not location (i.e. IP 
address)

CAN
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CAN: routing table
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CAN: routing

(a,b)

(x,y)
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A node only maintains state for its 
immediate neighboring nodes

CAN: routing
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CAN: node insertion

Bootstrap
node

1) Discover some node “I” already in CAN
new node
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CAN: node insertion

I

new node
1) discover some node “I” already in CAN
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CAN: node insertion

2) pick random 
point in space

I

(p,q)

new node
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CAN: node insertion

(p,q)

3) I routes to (p,q), discovers node J 

I

J

new node
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CAN: node insertion

newJ

4) split J’s zone in half… new owns one half
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Inserting a new node affects only a single 
other node and its immediate neighbors

CAN: node insertion
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CAN: node failures

� Need to repair the space 

� recover database (weak point)
• soft-state updates
• use replication, rebuild database from replicas

� repair routing 
• takeover algorithm
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CAN: takeover algorithm

� Simple failures
� know your neighbor’s neighbors
� when a node fails, one of its neighbors takes over its 

zone

� More complex failure modes
� simultaneous failure of multiple adjacent nodes 
� scoped flooding to discover neighbors
� hopefully, a rare event
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Only the failed node’s immediate neighbors 
are required for recovery

CAN: node failures
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Design recap

� Basic CAN
� completely distributed
� self-organizing
� nodes only maintain state for their immediate neighbors

� Additional design features
� multiple, independent spaces (realities)
� background load balancing algorithm
� simple heuristics to improve performance 
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Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work
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Evaluation

� Scalability

� Low-latency

� Load balancing

� Robustness
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CAN: scalability

� For a uniformly partitioned space with n nodes and d
dimensions 
� per node, number of neighbors is 2d
� average routing path is  (dn1/d)/4 hops
� simulations show that the above results hold in practice

� Can scale the network without increasing per-node 
state 

� Chord/Plaxton/Tapestry/Buzz
� log(n) nbrs with log(n) hops
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CAN: low-latency

� Problem
� latency stretch = (CAN routing delay)

(IP routing delay)
� application-level routing may lead to high stretch 

�Solution
� increase dimensions, realities (reduce the path 

length)
�Heuristics (reduce the per-CAN-hop latency)

• RTT-weighted routing
• multiple nodes per zone (peer nodes)
• deterministically replicate entries 
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CAN: low-latency

#nodes

La
te

nc
y 

st
re

tc
h

0
20

40
60
80

100
120
140

160
180

16K 32K 65K 131K

#dimensions = 2

w/o heuristics

w/ heuristics
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CAN: low-latency
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w/ heuristics
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CAN: load balancing

� Two pieces

� Dealing with hot-spots
• popular (key,value) pairs
• nodes cache recently requested entries
• overloaded node replicates popular entries at neighbors

� Uniform coordinate space partitioning
• uniformly spread (key,value) entries
• uniformly spread out routing load
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Uniform Partitioning

� Added check 
� at join time, pick a zone
� check neighboring zones
� pick the largest zone and split that one
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CAN: Robustness

� Completely distributed 
� no single point of failure ( not applicable to pieces of 

database when node failure happens)

�Not exploring database recovery (in case 
there are multiple copies of database)

� Resilience of routing
� can route around trouble
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Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work



118

Strengths

�More resilient than flooding broadcast 
networks

� Efficient at locating information
� Fault tolerant routing
�Node & Data High Availability (w/ 

improvement)
�Manageable routing table size & network 

traffic
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Weaknesses

� Impossible to perform a fuzzy search
�Susceptible to malicious activity
�Maintain coherence of all the indexed data 

(Network overhead, Efficient distribution)
�Still relatively higher routing latency
� Poor performance w/o improvement
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Suggestions

� Catalog and Meta indexes  to perform 
search function

� Extension to handle mutable content 
efficiently for web-hosting

�Security mechanism to defense against 
attacks
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Outline

� Introduction
�Design
� Evaluation
�Strengths & Weaknesses
�Ongoing Work
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Ongoing Work

� Topologically-sensitive CAN construction
� distributed binning
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Distributed Binning 

� Goal
� bin nodes such that co-located nodes land in same bin

� Idea
� well known set of landmark machines
� each CAN node, measures its RTT to each landmark
� orders the landmarks in order of increasing RTT

� CAN construction
� place nodes from the same bin close together on the CAN
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Distributed Binning

� 4 Landmarks (placed at 5 hops away from each other)
� naïve partitioning 
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Ongoing Work (cont’d)

� Topologically-sensitive CAN construction
� distributed binning

� CAN Security (Petros Maniatis - Stanford)
� spectrum of attacks
� appropriate counter-measures
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Ongoing Work (cont’d)

� CAN  Usage

� Application-level Multicast (NGC 2001)

� Grass-Roots Content Distribution 

� Distributed Databases using CANs
(J.Hellerstein, S.Ratnasamy, S.Shenker, I.Stoica, S.Zhuang)
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Summary

� CAN
� an Internet-scale hash table
� potential building block in Internet applications

�Scalability
�O(d) per-node state

� Low-latency routing
� simple heuristics help a lot

� Robust
� decentralized, can route around trouble
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Wrapup discussion questions (1):
� What is a peer-peer network (what is not a peer-to-peer 

network?). Necessary:
� every node is designed to (but may not by user choice) 

provide some service that helps other nodes in the 
network get service

� no 1-N service providing
� each node potentially has the same responsibility, 

functionality (maybe nodes can be polymorhpic)
• corollary: by design, nothing (functionally)  prevents two 

nodes from communicating directly 
� some applications (e.g., Napster) are a mix of peer-peer 

and centralized (lookup is centralized, file service is 
peer-peer) [recursive def. of peer-peer]

� (logical connectivity rather than physical connectivity) 
routing will depend on service and data
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Overlays?

� What is the relationship between peer-peer and 
application overlay networks?
� Peer-peer and application overlays are different things.  

It is possible for an application level overlay to be built 
using peer-peer (or vice versa) but not always necessary

� Overlay: in a wired net: if two nodes can communicate in 
the overlay using a path that is not the path the network 
level routing would define for them.  Logical network on 
top of underlying network

• source routing?
� Wireless ad hoc nets – what commonality is there 

REALLY?
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Wrapup discussion questions (2):
�What were the best p2p idea
� Vote now (and should it be a secret ballot 

usign Eternity☺
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Wrapup discussion questions (3):
� Is ad hoc networking a peer-peer application?

� Yes (30-1)
� Why peer-peer over client-server?

� A well-deigned p2p provides better “scaability”
� Why client-server of peer-peer

� peer-peer is harder to make reliable
� availability different from client-server (p2p is more 

often at least partially “up”)
� more trust is required

� If all music were free in the future (and organized), would 
we have peer-peer.
� Is there another app: ad hoc networking, any copyrighted data, 

peer-peer sensor data gathering and retrieval, simulation
� Evolution #101 – what can we learn about systems?


