Internet Coordinate Systems Tutorial

Marcelo Pias Computer Laboratory marcelo.pias@cl.cam.ac.uk

UNIVERSITY OF CAMBRIDGE Computer Laboratory

Digital Technology Group

Outline

Motivation

- Problem statement
- General Approach
- Techniques
 - Global Network Positioning (GNP)
 - Practical Internet Coordinates (PIC)
 - Lighthouses
 - PCA-based techniques (Virtual Landmark and ICS)
- · Conclusions
- · Open Issues

Digital Technology Group

Motivation

What's the closest server to a client in Brazil?

Motivation

- Network round-trip-time = network distance
 - E.g. ping measurements
- Issue
 - Client needs 'N' measurements to select the closest server
 - Update list of network distances (overhead)
- . How do we solve this problem ?

Internet Coordinate System

Outline

- Motivation
- Problem statement
- General Approach
- Techniques
 - Global Network Positioning (GNP)
 - Practical Internet Coordinates (PIC)
 - Lighthouses
 - PCA-based techniques (Virtual Landmark and ICS)
- Conclusions
- Open Issues

Digital Technology Group

Problem Statement

Outline

- Motivation
- Problem statement
- General Approach
- Techniques
 - Global Network Positioning (GNP)
 - Practical Internet Coordinates (PIC)
 - Lighthouses
 - PCA-based techniques (Virtual Landmark and ICS)
- Conclusions
- · Open Issues

Digital Technology Group

General Approach

Steps:

- 1) Select a subset of hosts for 'reference points' (RP)
 - . Create the origin of the coordinate system
- 2) Measure round-trip-time (distance) between RPs
- 3) Calculate coordinates for each RP
- 4) Measure RTT between host and RPs
- 5) Calculate coordinates for the host
- Different proposed techniques for steps 1,3 and 5
- Reference points = landmarks, lighthouses, beacons

Digital Technology Group

Outline

- · Motivation
- Problem statement
- General Approach
- Techniques
 - Global Network Positioning (GNP)
 - Practical Internet Coordinates (PIC)
 - Lighthouses
 - PCA-based techniques (Virtual Landmark and ICS)
- · Conclusions
- · Open Issues

Digital Technology Group

Global Network Positioning (GNP)

- Pioneering work: T.S.E. Ng, H. Zhang [ACM IMW'01, INFOCOM'02]
- Landmark coordinates

 Landmark Selection (fixed set)
'L' landmarks measure mutual network RTT/distance (ping)
Landmarks computes coordinates by minimizing the overall error between the measured and the estimated distances Multi-dimensional global minimisation problem minimise: error(d_{ij},D_{ij})
Digital Technology Group

Global Network Positioning (GNP)

Global Network Positioning (GNP)

Issues:

- Landmark selection
 - · Fixed set
 - · Landmark failures and overload
 - · What's the optimal selection ?
- Technique (Simplex downhill)
 - · Unique coordinates are not guaranteed
 - · Depends on the starting point of the algorithm

Lighthouses

Digital Technology Group

- Pias, M. et al [IPTPS'03]
- · Host selects random reference points (lighthouses)
- Coordinates computed through linear transformations

CAMBRIDGE Computer Laboratory

Lighthouses

Host coordinates

1) Host measures its network distances to the 'L' lighthouses 2) Distances of the host are projected onto the orthogonal basis 3) Host coordinates $H = Q \cdot B$, where B is the matrix with RTTs between the host and lighthouses

Digital Technology Group

Lighthouses

Practical Internet Coordinates (PIC)

Practical Internet Coordinates (PIC)

- PIC was tested in Pastry (Structured P2P system):
 - Each node maintains a routing table with distances to closest nodes
 - Without coordinates: a joining node measures 297 RTT distances in a p2p system of 20,000 nodes
 - Using coordinates: joining node measures 32 RTTs
- Selection strategy
 - Random: pick landmarks randomly
 - Closest: pick landmarks 'closest' to the host
 - Hybrid: pick landmarks as in random and others as in closest

CAMBRIDGE Computer Laboratory

Digital Technology Group

PCA-based techniques (Virtual Landmarks and ICS)

- Tang, L, Crovella, M. [ACM IMC'03]: "Virtual Landmarks"
- Lim, H, Hou, J.C, Choi, C-H [ACM IMC'03]: "ICS"

Larger number of landmarks/beacons (m) - high dimensionality
Derive a landmark distance matrix m x m
Use Principal Component Analysis to derive an optimal basis

CAMBRIDGE Computer Laboratory

Digital Technology Group

PCA-based techniques (Virtual Landmarks and ICS)

- Optimal basis through Singular Value Decomposition: $D = U \cdot W \cdot V^{T}$
- Where columns of U are the principal components and form an orthogonal basis
- U has 'm' columns (components)

Digital Technology Group

Use the first 'k' principal components that allow 'good' projections

PCA-based techniques (Virtual Landmarks and ICS)

- Host Coordinates
 - Linear projections on the first 'k' principal components
 - $H_{i=}U^{T} \cdot d_{i}$

Digital Technology Group

CAMBRIDGE Computer Laboratory

Outline

Motivation

Problem statement

General Approach

Techniques

- Global Network Positioning (GNP)
- Practical Internet Coordinates (PIC)
- Lighthouses
- PCA-based techniques (Virtual Landmark and ICS)

Conclusions

Open Issues

Digital Technology Group

Conclusions

- Techniques explored:
 - Minimisation of error functions: GNP and PIC
 - Linear matrix transformation: Lighthouses, Virtual Landmarks and ICS
- Applications
 - Closest server selection (e.g. distributed network games)
 - Network-aware construction of peer-to-peer systems
 - Routing in mobile ad-hoc networks
 - Network distance estimation
- Internet Coordinate System is promising but ...

Open Issues/Future work

- Landmark placement
- How many dimensions do we need to create an "Internet Coordinate System" ?
 - Some of the research suggested 6-9 dimensions
 - However, different datasets give different values
- Routing policies x dimensionality x error
- Future work
 - Visualisation tools (network topology/dynamics)
 - Refine the Usable Coordinate System (UCS) on PlanetLab

Digital Technology Group

Motivation

What's the closest server to a client in Brazil?

Motivation

- · Difficulties:
 - Geographical distance ≠ network distance
 - · Routing policies/connectivity
 - · GPS is not wide available
 - Client needs 'N' distances to select the closest server

Digital Technology Group

Practical Internet Coordinates (PIC)

Thanks to Manuel Costa (MSR)

Distortion vs. Dimensionality

Distortion vs. Dimensionality

Triangle Inequality

