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Advanced Graphics 2006
� Subdivision curves & surfaces

Beware: some slides contain multi-layer 
animations, which do not print well.
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Modelling smooth 3D surfaces
� Where are smooth 3D surfaces used?

� Computer Aided Design (CAD)
� First developed for cars & aeroplanes
� Adopted for other manufactured objects

� Computer animation

� What mechanisms exist?
� Bézier patches
� NURBS surfaces
� Subdivision surfaces
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Desirable features
� Need to handle any surface
� Need guaranteed continuity

� C1-continuity
� Smooth surfaces

� C2-continuity
� Smoothly reflecting surfaces
� Required for some aerodynamics

� Need to allow discontinuities
� Edges, creases and holes

� Needs to be easy to use
4

History of 3D modelling 1/3
� Some mechanism was needed for 

modelling 3D surfaces
� Hermite interpolation was generalised 

to bivariate patches
� …but proved too difficult to use in practice

� Bézier patches
� Developed for car design around 1960

� Bézier (Renault), de Casteljau (Citreön), de 
Boor (GM)
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History of 3D modelling 2/3
� B-spline theory

� Developed in the 1960s and ’70s, led to:

� NURBS (Non-Uniform Rational B-Splines)
� More general than Bézier patches

� Béziers are special cases of NURBS

� NURBS quickly became the industry 
standard in CAD
� …and remain the industry standard today

� Adopted by the computer animation industry 
when it began
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History of 3D modelling 3/3
� Subdivision surfaces

� Theory developed in 1970s and early ’80s
� Picked up by computer animation industry 

in late 1990s
� Now replaced NURBS in computer 

animation
� Solves one of the big problems of NURBS

� Still under active research for use in CAD
� Introduces new problems, not present in 

NURBS, which make it unsuitable for CAD in its 
present form
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NURBS curve
� A curve is defined parametrically
� Its shape is determined by:

� control points, Pi

� and the NURBS basis functions, Ni,k
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Basic properties of NURBS 1/3

� The basis functions must sum to 1 to 
produce a valid new point

∑
+

=

=
1

1
, )()(

n

i
iki PtNtP

∑
+

=

≤≤=
1

1
maxmin, ,1)(

n

i
ki ttttN



Advanced Graphics

©2002,2003,2004,2006 Neil Dodgson 3

9

Basic properties of NURBS 2/3

� The basis functions are calculated from 
a knot vector
� Just a non-decreasing sequence of real 

numbers
� e.g. [0,0,0,1,1,1] or [1,2,3,4,5,6]

or [1.2, 3.4, 5.6, 5.6, 7.2, 15.6]

� See lecture notes or Rogers & Adams for 
details
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Basic properties of NURBS 3/3

� If the basis functions are Cm-continuous 
at t, then P(t) is guaranteed to be Cm-
continuous at t
� So continuity depends only on the basis 

functions, Ni,k

� Continuity does not depend on the 
locations of the control points
� you can sometimes get extra continuity by 

careful positioning of control points
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NURBS surface
� A bivariate

generalisation of the 
univariate NURBS 
curve
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The big constraint…
� NURBS surfaces require a quadrilateral 

mesh of (m+1)×(n+1) points
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The first problem
� Very few objects are made up of a single 

rectangular patch, so we need to join 
patches together
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The second problem
� What do we do at special points where 

other than four patches meet?

� Either we cannot get C2
� Which means that curvature is not continuous

� Or we get C2 be forcing curvature to be zero
� Which produces a flat spot

� Or we get C2 using very high degree patches
� Which are very hard for a designer to control
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Drawing a NURBS curve
� NURBS curves and surfaces are always 

drawn on a pixelated surface
� NURBS curves can be approximated by 

straight lines
� So long as each straight line deviates from 

the curve by less than half a pixel
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Drawing a NURBS surface
� NURBS surfaces are sub-

divided and drawn as a 
series of planar polygons

� Each polygon is only one 
or two pixels in area on 
the screen

� Shading algorithms are 
used to ensure that the 
surfaces appear to be 
smoothly curved
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Subdivision surfaces

� Do away with the explicit parametric 
representation

� Base a curve or surface solely on its 
control points and their connectivity

� Provide a simple mechanism which 
produces a larger, more refined set of 
control points from the current set

� Iterate refinement until the 
appropriate level of detail is achieved
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History of subdivision schemes

� A univariate (curve) scheme was 
described by de Rahm in 1947

� Rediscovered by Chaikin in 1974
� Extended to bivariate (surfaces)

� Doo-Sabin bi-quadratic patches (1978)
� Catmull-Clark bi-cubic patches (1978)

� Flurry of mathematical work in the
early 1980s
� Dyn & Levin at Tel Aviv University
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Use of subdivision schemes
� Pixar picked up the ideas and tested 

them in Geri’s Game (1997)
� …then discarded its NURBS based 

software in favour of subdivision schemes

� NURBS
� Toy Story 1995
� A Bug’s Life 1998

� Subdivision surfaces
� Toy Story II 1999
� Monsters Inc. 2001
� Finding Nemo 2003

20

Subdivision basics

� An example: Catmull-
Clark subdivision
� Introduce new points

� At face-centres
� At mid-edges

� Adjust positions of 
original points

� Repeat until sufficiently 
detailed
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Chaikin curve subdivision
� Underlies Doo-Sabin surface subdivision
� C1-continuous in the limit
� Essentially just a ¼-¾ rule

22
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The maths of Chaikin
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The limit curve
� It can be shown that the limit curve of 

the Chaikin scheme is the uniform 
quadratic B-spline, which is guaranteed 
to be C1

� When drawing curves in computer 
graphics, we draw a set of straight 
lines, so only need to subdivide until 
each segment is about a pixel long and 
we have a good enough approximation 
to the curve

24

C2 approximating scheme
� Underlies Catmull-Clark surface subdivision
� Can be described as: “Insert a midpoint 

and adjust the old control points”
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The maths of the C2 scheme
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Why this notation?
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� Easy to analyse
� Allows use of the z-transform

27

The analysis tools
� Generating function formalism

� Use the z-transform on the kernel, h
� Provides sufficient conditions for continuity

� Essentially checks that the differences between 
adjacent points decrease fast enough at each 
refinement step to produce a smooth curve

� There is also a matrix formalism
� Analyse stationary points
� Provides necessary conditions for 

continuity

� For details see our research papers ☺
28
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Useful subdivision kernels
� C1, approximating, limit curve is 

quadratic B-spline
� C2, approximating, limit curve is 

cubic B-spline

� C1, interpolating, “four-point 
scheme”

� There is also a C2 interpolating 
six-point scheme
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From Chaikin to Doo-Sabin
� Doo-Sabin scheme is bivariate

generalisation of Chaikin ¼-¾ scheme
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Extraordinary polygons

� Need special 
co-efficients for 
these

(Doo-Sabin)
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Catmull-Clark subdivision
� Catmull-Clark is based on the 

1/8[1,4,6,4,1] univariate scheme

32

Catmull-Clark rules

� This is easy: the rules are simply the 
tensor product of the univariate 
1/8[1,4,6,4,1] rules.

64
16

64
16

64
16

64
16 64

4
64
4

64
4

64
4

64
24

64
24

64
1

64
1

64
6

64
1

64
1

64
6

64
6

64
6

64
36

face edge vertex



Advanced Graphics

©2002,2003,2004,2006 Neil Dodgson 9

33

Catmull-Clark special cases
� This is more difficult: we need to find 

co-efficients which maintain continuity
� It is only possible to get C1 continuity at 

these extraordinary points.

Extraordinary polygons: 
disappear after one step

Extraordinary vertices: 
remain in the mesh
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Subdivision vs NURBS
� Extraordinary points

� Subdivision handles them easily
� NURBS requires the use of other types of 

surface to fill in the holes

� Memory requirements
� Subdivision needs a lot (many MB)
� NURBS is very compact

� Artifacts
� Some artifacts present in both
� Subdivision has extra artifacts

35

The future
� Computers now have enough memory 

to handle subdivision easily
� Subdivision now standard for computer 

animation
� NURBS still standard for CAD
� Subdivision will eventually replaced 

NURBS for CAD if we can sort out the 
artifact problems

36

Our work at Cambridge
� Univariate schemes that are not 

binary
� Ternary (×3) schemes
� Sesquiary (×1½) schemes

� Towards a bestiary of bivariate
schemes
� Classification & analysis of all schemes
� Identification & analysis of new 

schemes (especially ternary)

� Geometrically-sensitive subdivision
� Modifying existing schemes to take 

account of geometric relationships
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Principal subdivision schemes

� Doo-Sabin
� C1, approximating

� Catmull-Clark
� C2, approximating

� only C1 at extra-
ordinary points

� Kobbelt (four-point)
� C1, interpolating

� Loop
� C2, approximating

� only C1 at extra-
ordinary points

� Butterfly
� C1, interpolating

These are the five 
subdivision schemes 

which were thought to 
be the only useful ones

38

√2 and √3 schemes

� Reif-Peters
� C1, approximating
� The simplest 

possible scheme: 
there are no 
special cases!

� Velho-Zorin
� C4, approximating

� only C1 at 
extraordinary 
points

� √3 (Kobbelt)
� C2, approximating

� only C1 at 
extraordinary 
points

These were discovered 
in the late 1990s


