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Software Engineering II
Design, Models, Tools & Processes

Alan Blackwell

Objective of this course
Software Engineering I

Understand the problems that you must solve (A)
Programming in Java

Understand the technology you will use (B)
Software Engineering II

Practical techniques for getting from A to B
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Where are the technical answers?
Software Engineering I raised many problems

What technical means can we use to solve them?
But “engineering, as it is properly understood, 
is not possible for software.” (Paulson 2002)

A systematic approach:
State what the system should do {D1, D2, D3 …}
State what it shouldn’t do {U1, U2, U3 …}
Systematically add features that can be proven to 
implement Dn, while not implementing Un

Ideally a process of definition and proof

A candidate for definition and proof?
The United Kingdom Passport Agency

http://www.parliament.the-stationery-office.co.uk/
pa/cm199900/cmselect/cmpubacc/65/6509.htm

1997 contract for new computer system
aimed to improve issuing efficiency, on tight project timetable
project delays meant throughput not thoroughly tested
first live office failed the throughput criterion to continue roll-out
second office went live, roll out halted, but no contingency plan
rising backlog in early 1999, alongside increasing demand
passport processing times reached 50 days in July 1999
widespread publicity, anxiety and panic for travelling public
telephone service overloaded, public had to queue at UKPA offices
only emergency measures eventually reduced backlog

So how hard can it be to issue a passport?
… let’s try some simple definition



3

Defining a bureaucratic system

born in 
UK

dies

leave UK
return to 

UK

issue 
passport

cancel

record 
exit

record 
entry

Defining a bureaucratic system
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Why is the world complicated?
Bureaucratic systems are complex because 
managers (and people) always mess up

Passports
Ambulance systems
University financials

What about physical systems, which don’t 
rely on people to work?

Start with known characteristics of physical 
device.
Assemble behaviours to achieve function
This is how “real” engineering products (bridges 
and aircraft) are designed.

Defining a physical system
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Defining a physical system

What is the problem?
The problem is not that we don’t understand 
the computer.
The problem is that we don’t understand the 
problem!
Does computer science offer any answers?

(or is this six hours of waffle?)
The good news:

Computer scientists have been working on the 
problem of software engineering since 1968

The bad news:
There is still no silver bullet!
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Introduction

A design process based on knowledge

Pioneers – Bavarian Alps, 1968
1954: complexity of 
SAGE air-defence 
project was under-
estimated by 6000 
person-years …

… at a time when 
there were only 
about 1000 
programmers 
in the whole world!
… “Software Crisis!”

1968: First meeting on “Software Engineering” 
convened in Garmisch-Partenkirchen.
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Engineering and ignorance
An engineer should be ignorant –
systematically ignorant!
Design is the process of learning about a 
problem and describing a solution

at first with many gaps …
eventually in sufficient detail to build it.

Learning by building models
Software engineering is a process of gaining 
knowledge about a problem, and about its 
technical solution.
We describe both the problem and the 
solution in a series of design models.
Testing, manipulating and transforming those 
models helps us gather more knowledge.
One of the most detailed models is written in 
a programming language.

Getting a working program is almost a side-effect 
of describing it!



8

Outline of course
Roughly follows Rational Unified Process
Inception

structured description of what system must do
Elaboration

defining classes, data and system structure
Construction

object interaction, behaviour and state
Transition

testing and optimisation
(phases may iterate in spiral/agile models)

Books
Code Complete: A practical handbook of software construction

Steve McConnell, Microsoft Press 1993
UML Distilled (2nd edition)

Martin Fowler, Addison-Wesley 2000
Further:

Software Pioneers, Broy & Denert
Software Engineering, Roger Pressman
Interaction Design, Holtzblatt & Meyer
The Sciences of the Artificial, Herb Simon
Educating the Reflective Practitioner, Donald Schon
The Golem at Large, Collins & Pinch
To Engineer is Human, Petroski
What Engineers Know, Vincenti
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Exam questions
This course has been completely revised for 
2004/05

Some past exam questions cover material that is 
no longer in the course (especially Z and ML).

There is substantial new material
Some has been taught elsewhere in the Tripos
(especially UML):
Programming in Java 2004, Paper 1, Q10
Software Engineering and Design 2003 Paper 10, 
Q12 and 2004 Paper 11, Q11
Additional Topics 2000, Paper 7, Q13

Unified Modeling Language
Combines several methods from early 90s

Grady Booch “Rational Rose”

Ivar Jacobson “Object Oriented Software 
Engineering”

Jim Rumbaugh “Object Modeling Technique”

Competition and consolidation
Natural leaders emerged, mostly by merit

Jacobson joined Rational Software

Object Management Group blessed the result

UML v1.1 1997, v1.3 1998
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Using a design language
“Organic” hacking 

doesn’t work when:
Many programmers on 
project.
Too large to hold in
your head.
Need for accurate 
estimates.
Several companies 
involved.

So design techniques 
must provide:

language for 
communication
decomposition and 
simplification
predictable relationship 
to implementation 
language
basis for contractual 
agreements

Modeling (“CASE”) tools
Computer Aided Software Engineering
Diagram editors: enforce syntax

drawing packages or specialist diagram tools will do

Repositories: understand diagram content
maintain name/type database, diagram consistency

Code generation: at the least, saves typing
dumping class signatures in Java/C++ syntax is easy
anything more is hard (and perhaps pointless)

Use with non-OO languages
inheritance, instantiation can be implemented in C etc.
OO design can be exploited in later development work
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UML diagrams - overview
Use Case diagrams - interactions with / interfaces 
to the system.
Class diagrams - type structure of the system.
Collaboration diagrams - interaction between 
instances
Sequence diagrams - temporal structure of 
interaction
Activity diagrams - ordering of operations
Statechart diagrams - behaviour of individual 
objects
Component and Deployment diagrams - system 
organisation

Overview of a design process with UML

Usage Model

Structure Model

Implementation
Models

Behaviour Models

Class Diagrams

Statechart Diagrams

Activity Diagrams

Sequence Diagrams

Collaboration Diagrams

Use Case Diagrams

Component Diagrams

Deployment Diagrams

Interaction Models

Inception

Elaboration

Construction

Transition
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Inception

structured description of system usage 
and function

Pioneers – Tom DeMarco
Structured Analysis

1978, Yourdon Inc
Defined the critical technical role of the 
system analyst

Analyst acts as a middleman between user and 
developer

Analyst’s job is to construct a functional 
specification

data dictionary
data flow
partitioning
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Analysis scenarios
Describe the human activity that the system 
has to carry out or support.

Known as use cases in UML
Used to discover and record object 
interactions (collaborations).
Can be developed as a group activity.
May be based on observation & interview 
techniques such as Contextual Inquiry
(Beyer & Holtzblatt 1997)

UML Use Case diagram
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UML Use Case diagram
Actors

play system role
may not be people

Use case
like a scenario

Relationships
include
extend
generalisation

Objects in a scenario
The nouns in a description refer to ‘things’.

A source of classes and objects.
The verbs refer to actions.

A source of interactions between objects.
Actions describe object behavior, and hence 
required methods.
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Example of problem description

The cinema booking system should store seat bookings for
multiple theatres.
Each theatre has seats arranged in rows.
Customers can reserve seats and are given a row number
and seat number.
They may request bookings of several adjoining seats.
Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).
Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.
The system stores the customers’ telephone number.

Extracted nouns & verbs

Cinema booking system
Stores (seat bookings)
Stores (telephone number)

Seat booking

Theatre
Has (seats)

Seat

Row

Customer
Reserves (seats)
Is given (row number, seat number)
Requests (seat booking)

Row number

Seat numberShow
Is scheduled (in theatre)

Movie

DateTime

Telephone number
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Scenario structure: CRC cards
First described by Kent Beck and Ward 
Cunningham.

Later innovators of “agile” programming
(more on this later in course)

Use simple index cards, with each cards 
recording:

A class name.
The class’s responsibilities.
The class’s collaborators.

Typical CRC card

Class name                              Collaborators

Responsibilities



17

Partial example

CinemaBookingSystem Collaborators
Can find shows by       Show
title and day.
Stores collection of    Collection
shows.
Retrieves and displays
show details.
...

Refinement of usage model
Scenarios allow you to check that the 
problem description is clear and complete.
Analysis leads gradually into design.

Talking through scenarios & class responsibilities 
leads to elaborated models.

Spotting errors or omissions here will save 
considerable wasted effort later!

Sufficient time should be taken over the analysis.
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Elaboration

defining classes, data and system 
structure

Pioneers – Peter Chen
Entity-Relationship Modeling

1976, Massachusetts Institute of Technology
User-oriented response to Codd’s relational 
database model

Define attributes and values
Relations as associations between things 
Things play a role in the relation.

Diagrams show entity (box), relation 
(diamond), role (links).
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Review of objects and classes
objects

represent ‘things’ in some problem domain 
(example: “the red car down in the car park”)

classes
represent all objects of a kind (example: “car”)

operations
actions invoked on objects (Java “methods”)

instance
can create many instances from a single class

state
all the attributes (field values) of an instance

UML Class 
diagram
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UML Class diagram
Attributes

type and visibility

Operations
signature and visibility

Relationships
association

with multiplicity
potentially aggregation

generalisation

Class design from CRC cards
Scenario analysis helps to clarify application 
structure.

Each card maps to a class.
Collaborations reveal class cooperation/object 
interaction.

Responsibilities reveal public methods.
And sometimes fields; e.g. “Stores collection ...”
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Refining class interfaces
Replay the scenarios in terms of method 
calls, parameters and return values.
Note down the resulting method signatures.
Create outline classes with public-method 
stubs.
Careful design is a key to successful 
implementation.

Dividing up a design model
Abstraction

Ignore details in order to focus on higher level 
problems (e.g. aggregation, inheritance). 
If classes correspond well to types in domain they 
will be easy to understand, maintain and reuse. 

Modularization
Divide model into parts that can be built and 
tested separately, interacting in well-defined ways.
Allows different teams to work on each part
Clearly defined interfaces mean teams can work 
independently & concurrently, with increased 
chance of successful integration.
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Implementing multiple associations
Most applications involve collections of 
objects

java.util package contains classes for this
The number of items to be stored varies

Items can be added and deleted
Collection increases capacity as necessary
Count of items obtained with size()
Items kept in order, accessed with iterator

Details of how all this is done are hidden.

Pioneers – David Parnas
Information Hiding

1972, Carnegie Mellon University
How do you decide the points at which a 
program should be split into pieces?

Are small modules better?
Are big modules better?
What is the optimum boundary size?

Parnas proposed the best criterion for 
modularization:

Aim to hide design decisions within the module.
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Information hiding in OO models
Data belonging to one object is hidden from 
other objects. 

Know what an object can do, not how it does it.
Increases independence, essential for large 
systems and later maintenance

Use visibility to hide implementation
Only methods intended for interface to other 
classes should be public.
Fields should be private – accessible only within 
the same class.
Accessor methods provide information about 
object state, but don’t change it.
Mutator methods change an object’s state.

Cohesion in OO models
Aim for high cohesion:

Each component achieves only “one thing”
Method (functional) cohesion

Method only performs out one operation
Groups things that must be done together

Class (type) cohesion
Easy to understand & reuse as a domain concept

Causes of low, poor, cohesion
Sequence of operations with no necessary relation
Unrelated operations selected by control flags
No relation at all – just a bag of code
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Construction

object interaction, behaviour and state

UML Collaboration diagram
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UML Collaboration 
diagram

Objects
class instances
can be transient

Links 
from associations

Messages
travel along links
numbered to show 
sequence

Loose coupling
Coupling: links between parts of a program.
If two classes depend closely on details of 
each other, they are tightly coupled.
We aim for loose coupling.

keep parts of design clear & independent
may take several design iterations

Loose coupling makes it possible to:
achieve reusability, modifiability
understand one class without reading others;
change one class without affecting  others.

Thus improves maintainability.
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Responsibility-driven design
Which class should I add a new method to?

Each class should be responsible for manipulating 
its own data.
The class that owns the data should be 
responsible for processing it.

Leads to low coupling & “client-server 
contracts”

Consider every object as a server
Improves reliability, partitioning, graceful 
degradation

Interfaces as specifications
Define method signatures for classes to 
interact

Include parameter and return types.
Strong separation of required functionality from 
the code that implements it (information hiding).

Clients interact independently of the 
implementation.

But clients can choose from alternative 
implementations.
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Interfaces in Java
Provide specification without implementation.

Fully abstract – implementing classes don’t inherit 
code
Support not only polymorphism, but multiple 
inheritance
implementing classes are still subtypes of the 
interface type, but allowed more than one “parent”.

public class Fox extends Animal implements Drawable

public class Hunter implements Actor, Drawable

Alternative implementations
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Causes of error situations
Incorrect implementation.

Does not meet the specification.
Inappropriate object request.

E.g., invalid index.
Inconsistent or inappropriate object state.

E.g. arising through class extension.
Not always programmer error

Errors often arise from the environment (incorrect 
URL entered, network interruption).
File processing often error-prone (missing files, 
lack of appropriate permissions).

Defensive programming
Client-server interaction.

Should a server assume that clients are well-
behaved?
Or should it assume that clients are potentially 
hostile?

Significant differences in implementation 
required.
Issues to be addressed

How much checking by a server on method calls?
How to report errors?
How can a client anticipate failure?
How should a client deal with failure?
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Argument values
Arguments represent a major ‘vulnerability’ 
for a server object.

Constructor arguments initialize state.
Method arguments often control behavior.

Argument checking is one defensive 
measure.
How to report illegal arguments?

To the user? (Is there a human user? Can they 
solve the problem?)
To the client object: return a diagnostic value, or 
throw an exception.

Example of diagnostic return

public boolean removeDetails(String key)
{

if(keyInUse(key)) {
ContactDetails details =

(ContactDetails) book.get(key);
book.remove(details.getName());
book.remove(details.getPhone());
numberOfEntries--;
return true;

}
else {

return false;
}

}
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Client response to diagnostic
Test the return value.

Attempt recovery on error.
Avoid program failure.

Ignore the return value.
Cannot be prevented.
Likely to lead to program failure.

Exceptions are preferable.

Exception-throwing
Special language feature

Java does provide exceptions
Advantages

No ‘special’ return value needed.
Errors cannot be ignored in the client.

Disadvantages (or are they?)
The normal flow-of-control is interrupted.
Specific recovery actions are encouraged.
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Example of argument exception

public ContactDetails getDetails(String key)
{

if(key == null) {
throw new NullPointerException(

"null key in getDetails");
}
if(key.trim().length() == 0) {

throw new IllegalArgumentException(
"Empty key passed to getDetails");

}
return (ContactDetails) book.get(key);

}

Error response and recovery
Clients should take note of error notifications.

Check return values.
Don’t ‘ignore’ exceptions.

Include code to attempt recovery.
Will often require a loop.
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Attempting recovery
// Try to save the address book.
boolean successful = false;
int attempts = 0;
do {

try {
addressbook.saveToFile(filename);
successful = true;

}
catch(IOException e) {

System.out.println("Unable to save to " + filename);
attempts++;
if(attempts < MAX_ATTEMPTS) {

filename = an alternative file name;
}

}
} while(!successful && attempts < MAX_ATTEMPTS);
if(!successful) {

Report the problem and give up;
} 

Error avoidance
Clients can often use server query methods 
to avoid errors.

More robust clients mean servers can be more 
trusting.
Unchecked exceptions can be used.
Simplifies client logic.

May increase client-server coupling.
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More construction

object internals

UML Activity
diagram
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UML Activity diagram
Like flow charts

Activity as action states

Flow of control
transitions
branch points
concurrency (fork & join)

Illustrate flow of control
high level - e.g. workflow
low level - e.g. lines of 
code

Pioneers – Edsger Dijkstra
Structured Programming

1968, Eindhoven
Why are programmers so bad at 
understanding dynamic processes and 
concurrency?

(ALGOL then – but still hard in Java today!)
Observed that “go to” made things worse

Hard to describe what state a process has 
reached, when you don’t know which process is 
being executed.

Define process as nested set of execution 
blocks, with fixed entry and exit points
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Top-down design & stepwise refinement

dispatch ambulance

identify regiontake 999 call send ambulance

allocate vehicleestimate arrivalnote patient
condition

radio crew

record address
find vehicle 

in region

assign 
vehicle to call

Bottom-up construction
Why?

Start with what you understand
Build complex structures from well-understood 
parts
Deal with concrete cases in order to understand 
abstractions

Real design combines top-down and bottom 
up.
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Modularity at code level
Is this “routine” required?
Define what it will do

What information will it hide?
Inputs
Outputs (including side effects)
How will it handle errors?

Give it a good name
How will you test it?
Think about efficiency and algorithms
Write as comments, then fill in actual code

Modularity in non-OO languages
Separate source files in C

Inputs, outputs, types and interface functions 
defined by declarations in “header files”.
Private variables and implementation details 
defined in the “source file”

Modules in ML, Perl, Fortran, …
Export publicly visible interface details.
Keep implementation local whenever possible, in 
interest of information hiding, encapsulation, low 
coupling.
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Source code as a design model
Objectives:

Accurately express logical structure of the code
Consistently express the logical structure
Improve readability

Good visual layout shows program structure
Mostly based on white space and alignment
The compiler ignores white space
Alignment is the single most obvious feature to 
human readers.

Code layout is most like the art of typography

Code as a structured model
Function_name (parameter1, parameter2)

// Function which doesn’t do anything, beyond showing the fact
// that different parts of the function can be distinguished.

type1: local_data_A, local_data_B
type2: local_data_C

// Initialisation section
local_data_A := parameter1 + parameter2;
local_data_B := parameter1 - parameter2;
local_data_C := 1;

// Processing
while (local_data_C < 40) {

if ( (local_data_B ^ 2) > local_data_A ) then {
local_data_B := local_data_B – 1;

} else {
local_data_B := local_data_B + 1;

} // end if
local_data_C := local_data_C + 1;

} // end while

} // end function
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Expressing local control structure
while (local_data_C < 40) {

form_initial_estimate(local_data_C);
record_marker(local_data_B – 1);
refine_estimate(local_data_A);
local_data_C := local_data_C + 1;

} // end while

if ( (local_data_B ^ 2) > local_data_A ) then {
// drop estimate
local_data_B := local_data_B – 1;

} else {
// raise estimate
local_data_B := local_data_B + 1;

} // end if

Expressing structure within a line
Whitespacealwayshelpshumanreaders

newtotal=oldtotal+increment/missamount-1;
newtotal = oldtotal + increment / missamount - 1;

The compiler doesn’t care – take care!
x = 1  *  y+2  *  z;

Be conservative when nesting parentheses
while ( (! error) && readInput() )

Continuation lines – exploit alignment
if ( ( aLongVariableName & anotherLongOne ) |

( someOtherCondition() ) )
{
…
}
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Naming variables: Form
Priority: full and accurate (not just short)

Abbreviate for pronunciation (remove vowels)
e.g. CmptrScnce (leave first and last letters)

Parts of names reflect conventional functions
Role in program (e.g. “count”)
Type of operations (e.g. “window” or “pointer”)
Hungarian naming (not really recommended): 

e.g. pscrMenu, ichMin

Even individual variable names can exploit 
typographic structure for clarity

xPageStartPosition
x_page_start_position

Naming variables: Content
Data names describe domain, not computer

Describe what, not just how
CustomerName better than PrimaryIndex

Booleans should have obvious truth values
ErrorFound better than Status

Indicate which variables are related
CustName, CustAddress, CustPhone

Identify globals, types & constants (in C)
e.g. g_wholeApplet, T_mousePos

Even temporary variables have meaning
Index, not Foo
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More construction

object interaction & data processing

UML Sequence diagram
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UML Sequence diagram
Interaction again

same content as 
collaboration
emphasises time 
dimension

Object lifeline
objects across page
time down page

Shows focus of control

Pioneers – Michael Jackson
Jackson Structured Programming

1975, independent consultant, London
Describe program structure according to the 
structure of input and output streams

Mostly used for COBOL file processing
Still relevant to stream processing in Perl
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Data structure vs. code structure
Data records (items in collection, elements in 
array) require a code loop
Variant cases (subtypes, categories, 
enumerations) require conditional execution
Switching between code and data 
perspectives helps to learn about design 
complexity and to check correctness.

“Guard” is a data condition that should hold before 
entering some section of code.
“Invariant” is a data condition that should be the 
same both before and after some section of code.

(ideas originally from Hoare – see later)

Data in a while loop

checkDataOrder();

while ( dataIncomplete() ) {
reorderDataStructure();
restoreDataOrder();

} 

checkDataOrder();

Invariant holds here

Restore invariant

Invariant and not
guard holds here

Guard holds here
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Structural roles of variables
Classification of what variables do in a routine

Don’t confuse with data types (e.g. int, char, float)
Almost all variables in simple programs do one of:

fixed value 
stepper 
most-recent holder 
most-wanted holder 
gatherer 
transformation 
one-way flag 
follower 
temporary 
organizer 

Most common (70 % of variables) are fixed value, 
stepper or most-recent holder.

Fixed value
Value is never changed after initialization
Example: input radius of a circle, then print area

variable r is a fixed value, gets its value once, 
never changes after that.

Useful to declare “final” in Java.

public class AreaOfCircle { 

public static void main(String[] args) { 

final float PII = 3.14F; 

float r; 

System.out.print("Enter circle radius: "); 

r = UserInputReader.readFloat(); 

System.out.println(“Circle area is " + PII * r * r); 

} 

}
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Stepper
Goes through a succession of values in some 
systematic way

E.g. counting items, moving through array index
Example: loop where multiplier is used as a stepper.

outputs multiplication table, stepper goes through values 
from one to ten. 

public class MultiplicationTable {

public static void main(String[] args) {
int multiplier;
for (multiplier = 1; multiplier <= 10; multiplier++)

System.out.println(multiplier + " * 3 = " 
+ multiplier * 3);

}
}

Most-recent holder
Most recent member of a group, or simply latest input 
value
Example: ask the user for input until valid.

Variable s is a most-recent holder since it holds the latest 
input value. 

public class AreaOfSquare {

public static void main(String[] args) {
float s = 0f;
while (s <= 0) {

System.out.print("Enter side of square: ");
s = UserInputReader.readFloat();

}
System.out.println(“Area of square is " + s * s);

}
}
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Most-wanted holder
The "best" (biggest, smallest, closest) of values seen.
Example: find smallest of ten integers.

Variable smallest is a most-wanted holder since it is given 
the most recent value if it is smaller than the smallest one so 
far. 
(i is a stepper and number is a most-recent holder.) 

public class SearchSmallest {
public static void main(String[] args) {

int i, smallest, number;
System.out.print("Enter the 1. number: ");
smallest = UserInputReader.readInt();
for (i = 2; i <= 10; i++) {

System.out.print("Enter the " + i + ". number: ");
number = UserInputReader.readInt();
if (number < smallest) smallest = number;

}
System.out.println("The smallest was " + smallest);

}
}

Gatherer
Accumulates values seen so far.
Example: accepts integers, then calculates mean.

Variable sum is a gatherer the total of the inputs is gathered 
in it. 
(count is a stepper and number is a most-recent holder.) 

public class MeanValue {

public static void main(String[] argv) {
int count=0;
float sum=0, number=0;
while (number != -999) {

System.out.print("Enter a number, -999 to quit: ");
number = UserInputReader.readFloat();
if (number != -999) { sum += number; count++; }

}
if (count>0) System.out.println("The mean is " +

sum / count);
}

}
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Transformation
Gets every value by calculation from the value of other 
variable(s).
Example: ask the user for capital amount, calculate interest and
total capital for ten years.

Variable interest is a transformation and is always calculated from 
the capital. 
(capital is a gatherer and i is a counter.) 

public class Growth {
public static void main(String[] args) {

float capital, interest;   int i;
System.out.print("Enter capital (positive or negative): ");
capital = UserInputReader.readFloat();
for (i = 1; i <=10; i++) {

interest = 0.05F * capital;
capital += interest;
System.out.println("After "+i+" years interest is " 

+ interest + " and capital is " + capital);
}

}
}

One-way flag
Boolean variable which, once changed, never returns to its 
original value.
Example: sum input numbers and report if any negatives.

The one-way flag neg monitors whether there are negative 
numbers among the inputs. If a negative value is found, it will never 
return to false. 
(number is a most-recent holder and sum is a gatherer.) 

public class SumTotal {
public static void main(String[] argv) {

int number=1, sum=0;
boolean neg = false;
while (number != 0) {

System.out.print("Enter a number, 0 to quit: ");
number = UserInputReader.readInt();  sum += number;
if (number < 0) neg = true;

}
System.out.println("The sum is " + sum);
if (neg) System.out.println(“There were negative numbers.");

}
}
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Follower
Gets old value of another variable as its new value.
Example: input twelve integers and find biggest difference 
between successive inputs.

Variable previous is a follower, following current. 

public class BiggestDifference {
public static void main(String[] args) {

int month, current, previous, biggestDiff;
System.out.print("1st: "); previous = UserInputReader.readInt();
System.out.print("2nd: "); current = UserInputReader.readInt();
biggestDiff = current - previous;
for (month = 3; month <= 12; month++) {
previous = current;
System.out.print(month + “th: ");
current = UserInputReader.readInt();
if (current - previous > biggestDiff)

biggestDiff = current - previous;
}
System.out.println(“Biggest difference was " + biggestDiff);

}
}

Temporary
Needed only for very short period (e.g. between two lines).
Example: output two numbers in size order, swapping if 
necessary.

Values are swapped using a temporary variable tmp whose value is 
later meaningless (no matter how long the program would run). 

public class Swap {
public static void main(String[] args) {

int number1, number2, tmp;
System.out.print("Enter num: ");
number1 = UserInputReader.readInt();
System.out.print("Enter num: ");
number2 = UserInputReader.readInt();
if (number1 > number2) {

tmp = number1;
number1 = number2;
number2 = tmp;

}
System.out.println(“Order is " + number1 + “," + number2 + ".");

}
}
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Organizer
An array for rearranging elements
Example: input ten characters and output in reverse order.

The reversal is performed in organizer variable word. 
tmp is a temporary and i is a stepper.) 

public class Reverse {
public static void main(String[] args) {

char[] word = new char[10];
char tmp; int i;
System.out.print("Enter ten letters: ");
for (i = 0; i < 10; i++) word[i] = UserInputReader.readChar();
for (i = 0; i < 5; i++) {

tmp = word[i];
word[i] = word[9-i];
word[9-i] = tmp;

}
for (i = 0; i < 10; i++) System.out.print(word[i]);
System.out.println();

}
}

Verifying variables by role
Many student program errors result from 
swapping variables between roles.

Identify role of each variable during design
Many opportunities to check correct operation 
according to constraints on role

Check stepper within range
Check most-wanted meets selection criterion
De-allocate temporary value
Confirm size of organizer array is invariant
Use compiler to guarantee final fixed value

Either do runtime safety checks (noting 
efficiency tradeoff), or use language features.



49

Type-checking as modeling tool
Refine types to reflect meaning, not just to 
satisfy the compiler.
Valid (to compiler), but incorrect, code:

float totalHeight, myHeight, yourHeight;
float totalWeight, myWeight, yourWeight;
totalHeight = myHeight + yourHeight + myWeight;

Type-safe version:
type t_height, t_weight: float;
t_height totalHeight, myHeight, yourHeight;
t_weight totalWeight, myWeight, yourWeight;
totalHeight = myHeight + yourHeight + myWeight;

Compile error!

Language support for user types
Smalltalk

All types are classes – consistent, but inefficient
C++

Class overhead very low
User-defined types have no runtime cost

Java
Unfortunately a little inefficient
But runtime inefficiency in infrequent calculations 
far better than lost development time.
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More construction

object state

UML Statechart diagram
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UML Statechart diagram
Object lifecycle

data as state machine

Harel statecharts
nested states
concurrent substates

Explicit initial/final
valuable in C++

Note inversion of 
activity diagram

Maintaining valid system state
Pioneers (e.g. Turing) talked of proving 
program correctness using mathematics
In practice, the best we can do is confirm that 
the state of the system is consistent

State of an object valid before and after operation
Parameters and local variables valid at start and 
end of routine
Guard values define state on entering & leaving 
control blocks (loops and conditionals)
Invariants define conditions to be maintained 
throughout operations, routines, loops. 
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Pioneers – Tony Hoare
Assertions and proof

1969, Queen’s University Belfast
Program element behaviour can be defined

by a post-condition that will result …
… given a known pre-condition. 

If prior and next states accurately defined:
Individual elements can be composed
Program correctness is potentially provable

Formal models: Z notation

Definitions of the BirthdayBook state space:
known is a set of NAMEs
birthday is a partial map from NAMEs to DATEs

Invariants:
known must be the domain of birthday
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Formal models: Z notation

An operation to change state
AddBirthday modifies the state of BirthdayBook
Inputs are a new name and date
Precondition is that name must not be previously known
Result of the operation, birthday’ is defined to be a new and 
enlarged domain of the birthday map function

Formal models: Z notation

An operation to inspect state of BirthdayBook
This schema does not change the state of BirthdayBook
It has an output value (a set of people to send cards to)
The output set is defined to be those people whose birthday 
is equal to the input value today.
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Advantages of formal models
Requirements can be analysed at a fine level 
of detail.
They are declarative (specify what the code 
should do, not how), so can be used to check 
specifications from an alternative perspective.
As a mathematical notation, offer the promise 
of tools to do automated checking, or even 
proofs of correctness (“verification”).
They have been applied in some real 
development projects.

Disadvantages of formal models
Notations that have lots of Greek letters and other 
weird symbols look scary to non-specialists.

Not a good choice for communicating with clients, users, 
rank-and-file programmers and testers.

Level of detail (and thinking effort) is similar to that of 
code, so managers get impatient.

If we are working so hard, why aren’t we just writing the 
code?

Tools are available, but not hugely popular.
Applications so far in research / defence / safety critical

Pragmatic compromise from UML developers
“Object Constraint Language” (OCL).
Formal specification of some aspects of the design, so that 
preconditions, invariants etc. can be added to models.
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Language support for assertions
Eiffel: pioneering OO language supported 
pre- and post-conditions on every method.
C++ and Java support “assert” keyword

Programmer defines a statement that must 
evaluate to true at runtime.
Failure of assertion causes exception

Some languages have debug-only versions, 
turned off when system considered correct.

Dubious trade-off of efficiency for safety.
Variable roles could provide rigorous basis for 
fine-granularity assertions in future.

Defensive programming
Assertions and correctness proofs are useful 
tools, but not always available.
Defensive programming includes additional 
code to help ensure local correctness

Treat function interfaces as a contract
Each function / routine

Checks that input parameters meet assumptions
Checks output values are valid

System-wide considerations
How to report / record detected bugs
Perhaps include off-switch for efficiency
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More construction

components and reuse

UML Component diagram
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Components and design patterns
Building applications from existing 
components is a high priority.

In OO design, components are often defined by 
classes, or packages/libraries of classes

Inter-class relationships are also important, 
and can be complex.

Some relationships recur in different applications.
Design patterns help clarify relationships between 
classes, and promote reuse of standard 
approaches to those relationships.

Pioneers – Erich Gamma
Design Patterns

1995 with the “Gang of Four”

Don’t reinvent the wheel: educate 
designers to use known solutions
Inspired by architect Christopher 
Alexander

A pattern language is a vocabulary of 
good design.
Good design is presented in a “literary” 
style
The most important patterns are 
internalized.
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Pattern structure
A pattern name.
The problem addressed by it.
How it provides a solution:

Structures, participants, collaborations.
Its consequences.

Results, trade-offs.

Decorator
Augments the functionality of an object.
Decorator object wraps another object.

The Decorator has a similar interface.
Calls are relayed to the wrapped object ...
... but the Decorator can interpolate additional actions.

Example: java.io.BufferedReader
Wraps and augments an unbuffered Reader object.
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Singleton
Ensures only a single instance of a class 
exists.

All clients use the same object.
Constructor is private to prevent external 
instantiation.
Single instance obtained via a static 
getInstance method.

Factory method

A creational pattern.
Clients require an object of a particular interface 
type or superclass type.
A factory method is free to return an implementing-
class object or subclass object.
Exact type returned depends on context.
Example: iterator methods of the Collection 
classes.
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Composite
Class to manage a group of instances that 
must change state or act together.
Contains a collection of instances that share 
a common interface.
The composite implements the same 
interface as the individual members.
Each method implementation in the 
composite class simply iterates over the 
contents collection, invoking that method for 
each member.

Observer
Separates internal model from views of that model 
(one-to-many relationship).
The object-observed notifies all Observers of any 
state change.
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Transition

testing and optimisation

UML Deployment diagram
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Pioneers – Michael Fagan
Software Inspections

1976, IBM 
Approach to design checking, including 
planning, control and checkpoints.
Try to find errors in design and code by 
systematic walkthrough
Work in teams including designer, coder, 
tester and moderator.

Learning through testing
A bug is a system’s way of telling you that 
you don’t know something (P. Armour)

Testing searches for the presence of errors.
Debugging searches for the source of errors.

The manifestation of an error may well occur 
some ‘distance’ from its source.
Need code-reading skills (debugging will often be 
performed on others’ code).

Techniques and tools exist to support the 
testing and debugging process.
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Test automation
Good testing is a creative process, but ...
... thorough testing is time consuming and 
repetitive.
Regression testing involves re-running tests.
Use of a test rig or test harness can relieve 
some of the burden.

Classes are written to perform the testing.
Creativity is then focused in creating these.

Unit testing
Each unit of an application may be tested.

Method, class, module (package in Java).
Can (should) be done during development.

Finding and fixing early lowers development costs 
(e.g. programmer time).
A test suite is built up.

JUnit helps manage and run tests
www.junit.org
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Testing fundamentals
Understand what the unit should do – its 
contract.

You look for violations of the contract.
Use positive tests (expected to pass) to see 
whether they don’t pass.
Use negative tests (expected to fail) to see 
whether they don’t fail.

Try to test boundaries.
Zero, one, overflow.
Search an empty collection.
Add to a full collection.

Manual walkthroughs
A low-tech approach, relatively underused, 
but more powerful than appreciated.
Get away from the computer and ‘run’ a 
program by hand.

High-level (step) or low-level (step-into) views.
Monitor and predict object state

Object’s behaviour is determined by its state.
Incorrect behaviour from incorrect state.
Tabulate values of all fields.
Document state changes after each method call.
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Verbal walkthroughs
Explain to someone else what the code is 
doing.

They might spot the error.
The process of explaining might help you to spot it 
for yourself.

Group-based processes exist for conducting 
formal walkthroughs or inspections.

Debuggers
Debuggers are both language- and 
environment-specific.
Support breakpoints.
Step and Step-into controlled execution.
Call sequence (stack) inspectors.
Object state – “watch” windows.
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Print statements
The most popular technique.
No special tools required.
All programming languages support them.
Only effective if the right methods are documented.
Output may be voluminous!
Turning off and on requires forethought.

Iterative Development

within any design phase or any 
combination of phases
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Prototyping
Supports early investigation of a system.

Early problem identification.
Incomplete components can be simulated.

E.g. always returning a fixed result.
Avoid random behavior which is difficult to 
reproduce.

Frequent interaction with clients
Especially (if feasible) with actual users!

Software changes (or dies)
There are only two options for software:

Either it is continuously maintained
or it dies.

Software that cannot be maintained will be 
thrown away.
Not like a novel (written then finished).
Software is extended, corrected, maintained, 
ported, adapted…
The work is done by different people over 
time (often decades).
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Localizing change
One aim of reducing coupling and 
responsibility-driven design is to localize 
change.
When a change is needed, as few classes as 
possible should be affected.
Thinking ahead

When designing a class, think what changes are 
likely to be made in the future.
Aim to make those changes easy.

Refactoring
When classes are maintained, often code is 
added.
Classes and methods tend to become longer.
Every now and then, classes and methods 
should be refactored to maintain cohesion 
and low coupling.
Code duplication

is an indicator of bad design,
makes maintenance harder,
can lead to introduction of errors during 
maintenance.
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Refactoring and testing
When refactoring code, separate the 
refactoring from making other changes.
First do the refactoring only, without changing 
the functionality.
Run regression tests before and after 
refactoring to ensure that nothing has been 
broken.

Xtreme Programming’ (XP)
Described in various books by Kent Beck
An example of an agile design methodology

Increasingly popular alternative to more 
“corporate” waterfall/spiral models. 

Reduce uncertainty by getting client/user 
feedback as soon as possible.

Typical team size = two (pair programming).
Constant series of updates, maybe even daily.
Respond to changing requirements and 
understanding of design by refactoring.

When used on large projects, some evidence 
of XD (Xtreme Danger)!
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Efficiency & Optimisation
The worst mistakes come from using the 
wrong algorithm

e.g. lab graduate reduced 48 hours to 2 minutes
Hardware now fast enough to run most code 
fast enough (assuming sensible algorithms)

Optimisation is a waste of your time
Optimisation is required

For some parts of extreme applications
When pushing hardware envelope

Cost-effective techniques
Check out compiler optimisation flags
Profile and hand-optimise bottlenecks

UML review: Modelling for uncertainty
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What do engineers know?
Engineers learn from research, but also invention, 
design practice, production, and testing. 

Engineers must know fundamental concepts; criteria and 
specifications; theoretical tools; quantitative data; practical 
considerations & design techniques.

Engineering deals with how things ought to be, 
science deals with how they are. 

In science, knowledge is what we produce
Does it help me understand something?

In engineering, knowledge is what we use
Does it solve a problem?

Engineers are seldom able to optimize, instead they 
satisfice.

They make simplifying models and use these to iterate 
design, until they achieve a good (not the best) solution.

“To engineer is human” (Petroski)

The requirements for design conflict and cannot be 
reconciled. All designs for devices are in some 
degree failures, either because they flout one or 
another of the requirements or because they are 
compromises, and compromise implies a degree of 
failure ... quite specific conflicts are inevitable once 
requirements for economy are admitted; and conflicts 
even among the requirements of use are not 
unknown. It follows that all designs for use are 
arbitrary. The designer or his client has to choose in 
what degree and where there shall be failure. … It is 
quite impossible for any design to be the “logical 
outcome of the requirements” simple because, the 
requirements being in conflict, their logical outcome is 
an impossibility.

David Pye, The Nature and Aesthetics of Design (1978).
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Technical knowledge is uncertain
Was the Patriot missile successful in the Gulf war?

Even after scientific evaluation of effectiveness in destroying 
Scuds, the fog of war pervaded technical findings – nobody 
knows what the “kill ratio” was.

Who was to blame for the Challenger explosion?
NASA were well aware of the effect of cold on O-rings, and 
debated it (among other risk factors) for years before
Challenger launch.
Technology is never free of risk – systems like the space 
shuttle should be admired for their complexity, not argued 
over as if perfectible.

What did Chernobyl do to Cumbrian sheep?
Scientists neglected domain expertise of farmers, who had 
observed previous contamination from Sellafield, and 
understood effects of analysis delay on agricultural markets.
Public did not recognise uncertainty of science. Instead, 
when certainty retreats, scientists are accused of political 
conspiracy.

What do software engineers know?
Learning by building design models

e.g. UML and the unified process
Inception

Usage scenarios, analysis, interaction
Elaboration

Decomposition, modularisation, interfaces
Construction

Structure, coupling, validation
Transition

Testing, optimising, prototyping, iterating


