Putting things together

• Spoken dialogue systems
 – Types of SDS
 – Dialogue management

• Email query answering
 – Processing stages with sample email
 – Email response vs spoken dialogue

• Wrapping up
Spoken dialogue systems

1. Single initiative systems (also known as system initiative systems): system controls what happens when.

 System: Do you have your customer reference number? Please say yes or no.
 User: Yes

Limited mixed-initiative:

 System: When do you want to leave?
 User: the twenty-third
 OR
 User: the morning of the twenty-third

2. Mixed initiative dialogue. Both participants can control the dialogue to some extent.

 System: Which station do you want to leave from?
 User: I don’t know, tell me which station I need for Cambridge.
Approaches to SDS

- Custom grammars: e.g. Nuance toolkit. FSAs or simple CFGs (compiled to FSAs) at each point in a dialogue controlled by an FSA. VoiceXML
- Statistical language modelling plus robust customised grammars or keyword spotting
- Statistical language modelling plus grammar induction
- Statistical language modelling plus general purpose grammar
Spoken dialogue system architecture

- **DIALOGUE MANAGER**
 - DB
 - slot filling
 - string with filled slots
 - recorded speech

- **PARSING**: turn-specific grammars
 - grammar constraints

- **SPEECH RECOGNITION**
 - user input

- **TEXT-TO-SPEECH**
 - speech output
Dialogue management in single-initiative SDS

• Finite-state dialogue manager
• Tightly controls the dialogue: prompts user for specific information
• Separate recognition grammar for every state
• DB may help specify the grammars: e.g.,
 1. prompt for post code
 2. get 100 items on n-best list from recogniser
 3. use first line of addresses from these to build a FS grammar
 4. prompt for ‘first line’ of address
 5. disambiguate post code
• Confirmation strategy is important
Email response

- more difficult to make limitations apparent to user in email response than in spoken dialogue systems
- no immediate feedback
- no speech recognition problem
- human fallback without delay or obvious transfer
- high precision needed

So:

- Broad coverage required
- Broad coverage possible, because no speech
- Deep grammars to get precision and meaning representation
- Relatively domain-independent grammars, otherwise too expensive
Ordering electronic goods

From amel Mon Jan 27 22:37:34 PST 2003
From: amel@yy.com
Subject: OrderCancellation # 53000
MIME-Version: 1.0
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 8bit
Message-ID: <1043735854@foo.yy.com>

I talked with one of your CSR’s and she said that she would cancel my order. I am writing to check if it has in fact been cancelled.

0. Data collection.

1. Process email headers, tokenise email body. (i.e., separate words, detect non-words), run automatic spelling correction (maybe).

2. Morphology and lexical lookup

4. DB query extracted from semantics
Morphology and lexical lookup

I talk+PAST VERB with one of your CSR+SING NOUN ’s and she say+PAST VERB that she would cancel+BSE VERB my order+SING NOUN. I am writing+PRP VERB to check+BSE VERB if it has in fact been cancelled+PASSIVE.

spelling rule

prp_verb_infl_rule := %suffix (!t!v!c !t!v!c!cing) (* ing) (e ing) (ee eeing) (ie ying)
lex_rule_infl_affixed & [ND-AFF +,
 SYNSEM.LOCAL prp_verb].

irregular entry

said PAST VERB say

multiword entry

in_fact_adv1 := adv_vp_aux_le & [STEM < "in", "fact" >,
 SYNSEM [LKEYS.KEYREL.PRED "_in+fact_a_rel",
 PHON.ONSET voc]].
Your order was cancelled.

<mrs>
<var vid='h1'/>
<ep><pred>prop_m_rel</pred><var vid='h1'/>
<fvpair><rargname>MARG</rargname><var vid='h3'/></fvpair>
<fvpair><rargname>PSV</rargname><var vid='x4'/></fvpair>
<fvpair><rargname>TPC</rargname><var vid='u5'/></fvpair>
<ep><pred>def_explicit_q_rel</pred><var vid='h6'/>
<fvpair><rargname>ARG0</rargname><var vid='x4'/></fvpair>
<fvpair><rargname>RSTR</rargname><var vid='h8'/></fvpair>
<fvpair><rargname>BODY</rargname><var vid='h7'/></fvpair>
<ep><pred>pro_poss_rel</pred><var vid='h9'/>
<fvpair><rargname>ARG0</rargname><var vid='i11'/></fvpair>
<fvpair><rargname>ARG1</rargname><var vid='x10'/></fvpair>
<fvpair><rargname>ARG2</rargname><var vid='x4'/></fvpair>
<ep><pred>pronoun_q_rel</pred><var vid='h12'/>
<fvpair><rargname>ARG0</rargname><var vid='x10'/></fvpair>
<fvpair><rargname>RSTR</rargname><var vid='h13'/></fvpair>
<fvpair><rargname>BODY</rargname><var vid='h14'/></fvpair>
<ep><pred>pron_rel</pred><var vid='h15'/>
<fvpair><rargname>ARG0</rargname><var vid='x10'/></fvpair>
<ep><pred>_order_n_rel</pred><var vid='h9'/>
<fvpair><rargname>ARG0</rargname><var vid='x4'/></fvpair>
<fvpair><rargname>ARG1</rargname><var vid='i16'/></fvpair>
<ep><pred>_cancel_v_rel</pred><var vid='h17'/>
<fvpair><rargname>ARG0</rargname><var vid='e2'/></fvpair>
<fvpair><rargname>ARG1</rargname><var vid='i18'/></fvpair>
<fvpair><rargname>ARG2</rargname><var vid='x4'/></fvpair>
<hcons hreln='qeq'><hi><var vid='h3'/></hi>
<lo><var vid='h17'/></lo></hcons>
<hcons hreln='qeq'><hi><var vid='h8'/></hi>
<lo><var vid='h9'/></lo></hcons>
<hcons hreln='qeq'><hi><var vid='h13'/></hi>
<lo><var vid='h15'/></lo></hcons>
</mrs>
Generation

Generating from this semantics gives:

your order was cancelled.
your order was canceled.

- Bidirectional grammar, but want to recognise multiple dialects and generate consistently in an appropriate one
- Full generation not actually used in e-commerce application
- Needs further work on speed, selection of realisation (i.e., the generated string) and implementation in a runtime system
Porting to new domains

- new lexical entries
- new uses, senses
- adjusting preferences
- connecting semantic representation to underlying KB/DB
Conclusion

- different processing modules
- different applications blend modules differently
- many different styles of algorithm:
 1. FSAa and FSTs
 2. Markov models and HMMs
 3. CFG (and probabilistic CFGs)
 4. constraint-based frameworks
 5. inheritance hierarchies (WordNet), decision trees (WSD)
 6. mixing hard and soft constraints (Lappin and Leass)
- evaluation
CSTIT MPhil course

http://www.cl.cam.ac.uk/Teaching/CSTIT/

Natural Language and Information Processing (NLIP) group in the Lab and Speech, Vision and Robotics (SVR) in Engineering.

Taught component (Term 1 and 2):

- Speech Processing (1 and 2)
- Language Processing (1 and 2)
- Computing and the Web
- Internet Applications
- Dialogue Systems
- Speech or Language Reading Club
- Speech and Language practicals

Project:

- 12-week research project (May – end July)

Application deadline: March 31st