Diploma and Part II(General)

Introduction to

Algorithms

by
Martin Richards

mr@Qcl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr/

University Computer Laboratory
New Museum Site

Pembroke Street

Cambridge, CB2 3QG




This course covers some of the material that
the Part 1b students were given in their
Discrete Mathematics course of last year.

These student will be joining you for the
course Data Structures and Algorithms that I

will be giving later this term.

The notes were originally written by Arthur

Norman and slightly modified by Alan
Mycroft.

The course is not directly examinable, but
the material it contains is fundamental to
many other courses in Computer Science,

particularly Data Structures and Algorithms.




Proof by induction
Sets, functions

Relations, graphs

Reasoning about programs

O(f) and ©(f) notation

Solution of recurrence formulae




Induction Proofs

To prove a proposition about integer n

1) Prove it true for the base case, eg for n = 0

2) On the assumption it is true for n — 1 prove it

true for n




Simple Example

To prove (by induction) that

n

Y i=n(n+1)/2

1=0

1) Prove, for n =0

i=0(041)/2

)

2) Prove, on the assumption

i=(n—1)n/2




More General Induction Proofs

To prove a proposition about integer n

1) Prove it true for the base case, eg for n = 0

2) On the assumption it is true for all k such that

0 < k < n prove it true for n




Structural Induction




Well Founded Induction

Orderings

No infinite downward chains

Examples




More Example Proofs

Prove Ackermann’s function is total

ack(0, y) = y+1
ack(x, 0) 1)

ack(x, y) ack(x, y-1))

Defined in ML

fun ack(0, y)

| ack(x, 0) 1)

| ack(x, y) ack(x, y-1));




Lexicographic Ordering

Treat the two arguments of ack as a 2-tuple.

Use lexicographic ordering

(0,0) < (0,1) < (0,2) < ...
< (1,0) < (1,1) < (1,2) < ...
< (2,0) < ...
< ...




To prove ack(x,y) terminates

Base case: x=0, y=0
ack(x,y) = ack(0,0) =1

Induction:

Prove ack(x,y) terminates assuming

ack(p,q) terminates for all (p,q) < (x,y)
case: x=0

ack(x,y) = ack(0, y) = y+1
case: y=0

ack(x,y) = ack(x, 0) ack(x-1,1)
general case:

ack(x,y) = ack(x-1, ack(x, y-1))

So ack(x,y) terminates for all positive (x,y)




Another Example

Consider expressions composed of only

e Even integers
e The operators + and *

Prove that the value of any such expression is

evell.




Induction on n, the number of operators in the

expression
Base case: n =20
The expression is an even number

Induction: n > 0

Prove for n, assuming true for smaller values of n

case 1: The leading operator is +

The operands have fewer operator so can be
assumed to yield even integer. The sum of two

even numbers is even.
case 2: The leading operator is *
The product of two even numbers is even.

So all such expressions yield even numbers




Eval in ML

datatype E = Num of int
| Add of E * E
| Mul of E * E;

val e = Add(Num 10, Mul (Num 4, Num 6));
eval (Num k) =k

eval (Add(x,y)) = eval x + eval y
eval (Mul(x,y)) = eval x * eval y;

eval e; (* gives the answer: 34 x)

Prove eval e always terminates.




A set i1s a collection of zero or more distinct

elements.

Examples

{1,2,3}

{1, "string", {{},{2}},z}
{2?|ze{0,1,...}}




Sets Operations

Intersection
Union

Cartesian Product
Power Sets
Infinite Sets

Set Construction

Cardinality




A binary relation is some property that may or
may not hold between elements of two sets A and
B, say.

Notation

xRy where z is an element of A, y is and element

of B, and R is the name of the relation.

Examples




Kinds of relation
Reflexive

rRx

E.g. =
Symmetric

xRy = yRx

E.g. # or “married to”

Transitive
xRy NyRz = xRz
E.g <




Equivalence Relations

Reflexive, Symmetric and Transitive

E.g. “same colour as” or “related to”

Partial Order

Reflexive, Anti-symmetric and Transitive

E.g. < or “subset of”




Closures

Reflexive Closure

Symmetric Closure

Transitive Closure




Relations as Graphs

Adjacency List

Boolean Matrix




Warshall’s Algorithm

Transitive Closure on a Boolean Matrix




Cost of Algorithms

What does it cost in time/space to solve a

problem of size n by a given algorithm.
Examples
e Sort n integers

e Find the shortest path between 2 vertices of a

graph with n vertices

Determine whether a propositional expression
of length n is true for all settings of its

variables
Factorise an n-digit decimal number

Given z, calculate z"




Cost of computing =™

LET exp(x, n) = VALQF

{ LET res = 1
FOR 1 = 1 TO n DO res := res * X
RESULTIS res

}
Cost =a + f+ (m+a+f)n + r = K; + Kon

where

a = cost of assignment
f = cost of FOR loop test
m = cost of multiply

r = cost of returning from a function




Cost functions

Cmaz(n) = maximum cost for problem size n

Cmean(n) = mean cost for problem size n

Cmin(n) = mimimum cost for problem size n




O(f(n)) Notation

C'maz(n) = maximum cost for problem size n
Cmean(n) = mean cost for problem size n

Cmin(n) = mimimum cost for problem size n

Cost = O(f(n)) means
Cost < kf(n), for all n > N

i.e. except for a finite number of exceptions

Why the exceptions?




©(f(n)) Notation

Cost = O(f(n)) means
kif(n) < Cost < kaf(n), for all n > N

i.e. except for a finite number of exceptions

More formal notation:

dky dk, dK Vn
n>KANki>0ANke>0)=>

(k1f(n) < Crin(n) A (Cmaz(n) < kaf(n))

dk1 >0 dko >0 dK Vn> K
(klf(n) S szn (n) A (Cmaa: (n) S k2f(n))




Logarithms

lg 1024 = 10

1g 1000000 ~ 20

1g 1000000000 ~ 30

The base does not matter (much)!
ay =z y=log,x
a="b° z=logya
b*Y =x 2y =log,x

__ logyx
Y= log, a




