Diploma and Part II(General)

Introduction to Algorithms

by Martin Richards

mr@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr/

University Computer Laboratory New Museum Site Pembroke Street Cambridge, CB2 3QG

The Course

- This course covers some of the material that the Part 1b students were given in their Discrete Mathematics course of last year.
- These student will be joining you for the course Data Structures and Algorithms that I will be giving later this term.
- The notes were originally written by Arthur Norman and slightly modified by Alan Mycroft.
- The course is not directly examinable, but the material it contains is fundamental to many other courses in Computer Science, particularly Data Structures and Algorithms.

Content

- Proof by induction
- Sets, functions
- Relations, graphs
- Reasoning about programs
- O(f) and $\Theta(f)$ notation
- Solution of recurrence formulae

Induction Proofs

To prove a proposition about integer n

- 1) Prove it true for the base case, eg for n = 0
- 2) On the assumption it is true for n-1 prove it true for n

Simple Example

To prove (by induction) that

$$\sum_{i=0}^{n} i = n(n+1)/2$$

1) Prove, for n = 0

$$\sum_{i=0}^{0} i = 0(0+1)/2$$

2) Prove, on the assumption

$$\sum_{i=0}^{n-1} i = (n-1)n/2$$

that

$$\sum_{i=0}^{n} i = n(n+1)/2$$

More General Induction Proofs

To prove a proposition about integer n

- 1) Prove it true for the base case, eg for n = 0
- 2) On the assumption it is true for all k such that
- $0 \le k < n$ prove it true for n

Structural Induction

Well Founded Induction

Orderings

No infinite downward chains

Examples

More Example Proofs

Prove Ackermann's function is total

$$ack(0, y) = y+1$$

 $ack(x, 0) = ack(x-1, 1)$
 $ack(x, y) = ack(x-1, ack(x, y-1))$

Defined in ML

Lexicographic Ordering

Treat the two arguments of ack as a 2-tuple.

Use lexicographic ordering

```
(0,0) < (0,1) < (0,2) < ...
< (1,0) < (1,1) < (1,2) < ...
< (2,0) < ...
< ...
```

Proof

To prove ack(x,y) terminates

```
Base case: x=0, y=0
  ack(x,y) = ack(0,0) = 1
Induction:
Prove ack(x,y) terminates assuming
ack(p,q) terminates for all (p,q) < (x,y)
case: x=0
  ack(x,y) = ack(0, y) = y+1
case: y=0
  ack(x,y) = ack(x, 0) = ack(x-1,1)
general case:
  ack(x,y) = ack(x-1, ack(x, y-1))
So ack(x,y) terminates for all positive (x,y)
```

Another Example

Consider expressions composed of only

- Even integers
- ullet The operators + and *

Prove that the value of any such expression is even.

Proof

Induction on n, the number of operators in the expression

Base case: n=0

The expression is an even number

Induction: n > 0

Prove for n, assuming true for smaller values of n

case 1: The leading operator is +

The operands have fewer operator so can be assumed to yield even integer. The sum of two even numbers is even.

case 2: The leading operator is *

The product of two even numbers is even.

So all such expressions yield even numbers

Eval in ML

Sets

A set is a collection of zero or more distinct elements.

Examples

```
\{1,2,3\} \{1,\texttt{"string"},\{\{\},\{2\}\},x\} \{x^2|x\epsilon\{0,1,\ldots\}\}
```

Sets Operations

- Intersection
- Union
- Cartesian Product
- Power Sets
- Infinite Sets
- Set Construction
- Cardinality

Relations

A binary relation is some property that may or may not hold between elements of two sets A and B, say.

Notation

xRy where x is an element of A, y is and element of B, and R is the name of the relation.

Examples

Relations

Kinds of relation

Reflexive

xRx

E.g. =

Symmetric

$$xRy \Rightarrow yRx$$

E.g. \neq or "married to"

Transitive

 $xRy \wedge yRz \Rightarrow xRz$

E.g. <

Relations

Equivalence Relations

Reflexive, Symmetric and Transitive

E.g. "same colour as" or "related to"

Partial Order

Reflexive, Anti-symmetric and Transitive

E.g. \leq or "subset of"

Closures

Reflexive Closure

Symmetric Closure

Transitive Closure

Relations as Graphs

Adjacency List

Boolean Matrix

Warshall's Algorithm

Transitive Closure on a Boolean Matrix

Cost of Algorithms

What does it cost in time/space to solve a problem of size n by a given algorithm.

Examples

- Sort *n* integers
- Find the shortest path between 2 vertices of a graph with n vertices
- Determine whether a propositional expression of length n is true for all settings of its variables
- Factorise an *n*-digit decimal number
- Given x, calculate x^n

Example

Cost of computing x^n

```
LET exp(x, n) = VALOF
{ LET res = 1
   FOR i = 1 TO n DO res := res * x
   RESULTIS res
}

Cost = a + f + (m+a+f)n + r = K<sub>1</sub> + K<sub>2</sub>n
where
a = cost of assignment
f = cost of FOR loop test
m = cost of multiply
r = cost of returning from a function
```

Cost functions

 $C_{max}(n) = \text{maximum cost for problem size } n$

 $C_{mean}(n) = \text{mean cost for problem size } n$

 $C_{min}(n) = \text{minimum cost for problem size } n$

O(f(n)) Notation

 $C_{max}(n) = \text{maximum cost for problem size } n$

 $C_{mean}(n) = \text{mean cost for problem size } n$

 $C_{min}(n) = \text{minimum cost for problem size } n$

Cost = O(f(n)) means Cost $\leq kf(n)$, for all n > N

i.e. except for a finite number of exceptions

Why the exceptions?

$\Theta(f(n))$ Notation

$$Cost = \Theta(f(n))$$
 means

$$k_1 f(n) \leq \text{Cost} \leq k_2 f(n)$$
, for all $n > N$

i.e. except for a finite number of exceptions

More formal notation:

$$\exists k_1 \quad \exists k_2 \quad \exists K \quad \forall n$$

$$(n > K \land k_1 > 0 \land k_2 > 0) \Rightarrow$$

$$(k_1 f(n) \le C_{min}(n) \land (C_{max}(n) \le k_2 f(n))$$

or

$$\exists k_1 > 0 \quad \exists k_2 > 0 \quad \exists K \quad \forall n > K$$

$$(k_1 f(n) \le C_{min}(n) \land (C_{max}(n) \le k_2 f(n))$$

Logarithms

$$\log_2 x = \lg x$$

$$2^y = x$$

$$2^{\lg x} = x$$

$$\lg 1024 = 10$$

$$\lg 1000000 \simeq 20$$

$$\lg 10000000000 \simeq 30$$

The base does not matter (much)!

$$a^y = x$$
 $y = \log_a x$

$$a = b^z$$
 $z = \log_b a$

$$b^{zy} = x \quad zy = \log_b x$$

$$y = \frac{\log_b x}{\log_b a}$$