ARM ${ }^{\circledR}$ Instruction Set Quick Reference Card

Key to Tables	
\{cond $\}$	Refer to Table Condition Field \{cond\}. Omit for unconditional execution.
<Operand2>	Refer to Table Flexible Operand 2. Shift and rotate are only available as part of Operand2.
<fields>	Refer to Table PSR fields.
<PSR>	Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register)
$\{$ S $\}$	Updates condition flags if S present.
C $*, ~ V *$	Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later.
Q	Sticky flag. Always updates on overflow (no S option). Read and reset using MRS and MSR.
x, y	B meaning half-register [15:0], or T meaning [31:16].
$<$ immed_8r>	A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.
<immed_ $8 * 4>$	A 10-bit constant, formed by left-shifting an 8-bit value by two bits.

<a_mode2>	Refer to Table Addressing Mode 2.
<a_mode2P>	Refer to Table Addressing Mode 2 (Post-indexed only).
<a_mode3>	Refer to Table Addressing Mode 3.
<a_mode4L>	Refer to Table Addressing Mode 4 (Block load or Stack pop).
<a_mode4S>	Refer to Table Addressing Mode 4 (Block store or Stack push).
<a_mode5>	Refer to Table Addressing Mode 5.
$<$ reglist>	A comma-separated list of registers, enclosed in braces, \{ and \}.
$\{!\}$	Updates base register after data transfer if ! present.
$+/-$	+or.- (+ may be omitted.)
	Refer to Table ARM architecture versions.

Operation		§	Assembler	S updates	Q	Action
Move	Move NOT PSR to register register to PSR immediate to PSR 40-bit accumulator to register register to 40-bit accumulator	$\begin{array}{\|c} 3 \\ 3 \\ 3 \\ \text { XS } \\ \text { XS } \\ \hline \end{array}$	$\operatorname{MOV}\{$ cond $\}\{S\}$ Rd, <Operand2> $\operatorname{MVN}\{$ cond $\}$ \{S $\}$ Rd, <Operand2> $\operatorname{MRS}\{$ cond $\}$ Rd, <PSR> $\operatorname{MSR}\{$ cond $\}<$ PSR>_<fields>, Rm $\operatorname{MSR}\{$ cond $\}$ <PSR>_<fields>, \#<immed_8r> $\operatorname{MRA\{ cond\} }$ RdLo, RdHi, Ac $\operatorname{MAR}\{$ cond $\}$ Ac, RdLo, RdHi	$\begin{array}{lll} \mathrm{N} & \mathrm{Z} & \mathrm{C} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} \end{array}$		```Rd := Operand2 Rd := 0xFFFFFFFF EOR Operand2 Rd := PSR PSR := Rm (selected bytes only) PSR := immed_8r (selected bytes only) RdLo := Ac[31:0], RdHi := Ac[39:32] \(\operatorname{Ac}[31: 0]:=\mathrm{RdLo}, \mathrm{Ac}[39: 32]:=\mathrm{RdHi}\)```
Arithmetic	Add with carry saturating double saturating Subtract with carry reverse subtract reverse subtract with carry saturating double saturating Multiply accumulate unsigned long unsigned accumulate long signed long signed accumulate long signed $16 * 16$ bit signed $32 * 16$ bit signed accumulate $16 * 16$ bit signed accumulate $32 * 16$ bit signed accumulate long $16 * 16$ bit Multiply with internal 40-bit accumulate packed halfword halfword Count leading zeroes	$\begin{array}{\|c} \hline 5 \mathrm{E} \\ 5 \mathrm{E} \\ \\ \\ 5 \mathrm{E} \\ 5 \mathrm{E} \\ \hline \end{array}$	ADD \{ cond\} \{S \} Rd, Rn, <Operand2> $\mathrm{ADC}\{$ cond $\}\{\mathrm{S}\} \mathrm{Rd}, \mathrm{Rn}$, <Operand2> QADD\{cond\} Rd, Rm, Rn QDADD \{cond\} Rd, Rm, Rn SUB $\{$ cond $\}\{S\}$ Rd, Rn, <Operand2> $\operatorname{SBC}\{$ cond $\}\{\mathrm{S}\} \mathrm{Rd}, \mathrm{Rn}$, <Operand2> $\operatorname{RSB}\{$ cond $\}\{\mathrm{S}\} \mathrm{Rd}, \mathrm{Rn}$, <Operand2> RSC \{cond\} \{S \} Rd, Rn, <Operand2> QSUB $\{$ cond $\}$ Rd, Rm, Rn QDSUB $\{$ cond $\}$ Rd, Rm, Rn MUL $\{$ cond $\}\{\mathrm{S}\} \mathrm{Rd}, \mathrm{Rm}, \mathrm{Rs}$ $\operatorname{MLA}\{$ cond $\}\{\mathrm{S}\} \mathrm{Rd}, \mathrm{Rm}, \mathrm{Rs}, \mathrm{Rn}$ UMULL \{cond\} \{S \} RdLo, RdHi, Rm, Rs UMLAL \{cond\} \{S \} RdLo, RdHi, Rm, Rs SMULL \{cond\}\{S\} RdLo, RdHi, Rm, Rs SMLAL \{cond\} \{S \} RdLo, RdHi, Rm, Rs SMULxy\{cond\} Rd, Rm, Rs SMULWy\{cond\} Rd, Rm, Rs SMLAxy\{cond\} Rd, Rm, Rs, Rn SMLAWy\{cond\} Rd, Rm, Rs, Rn SMLALxy\{cond\} RdLo, RdHi, Rm, Rs MIA $\{$ cond $\}$ Ac, Rm, Rs MIAPH $\{$ cond $\}$ Ac, Rm, Rs MIAxy\{cond\} Ac, Rm, Rs $\operatorname{CLZ}\{$ cond $\}$ Rd, Rm	N Z C V N Z C V N Z C V N Z C^{*} N Z C^{*} N Z C^{*} $\mathrm{~V}^{*}$ N Z C^{*} $\mathrm{~V}^{*}$ N Z C^{*} $\mathrm{~V}^{*}$ N Z C^{*} $\mathrm{~V}^{*}$	Q Q Q Q	```\(\mathrm{Rd}:=\mathrm{Rn}+\) Operand2 \(\mathrm{Rd}:=\mathrm{Rn}+\) Operand \(2+\) Carry Rd := SAT(Rm + Rn) \(\operatorname{Rd}:=\operatorname{SAT}(\operatorname{Rm}+\operatorname{SAT}(\operatorname{Rn} * 2))\) \(\mathrm{Rd}:=\mathrm{Rn}-\) Operand 2 \(\mathrm{Rd}:=\mathrm{Rn}-\) Operand \(2-\) NOT(Carry) Rd := Operand \(2-\mathrm{Rn}\) Rd := Operand \(2-\mathrm{Rn}-\) NOT(Carry) Rd := SAT(Rm - Rn) \(\operatorname{Rd}:=\operatorname{SAT}(\operatorname{Rm}-\operatorname{SAT}(\operatorname{Rn} * 2))\) \(\mathrm{Rd}:=(\mathrm{Rm} * \mathrm{Rs})[31: 0]\) \(\mathrm{Rd}:=((\mathrm{Rm} * \mathrm{Rs})+\mathrm{Rn})[31: 0]\) RdHi,RdLo := unsigned(Rm * Rs) RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs) RdHi,RdLo := signed(Rm * Rs) RdHi,RdLo := signed(RdHi,RdLo + Rm *Rs) \(\operatorname{Rd}:=\operatorname{Rm}[\mathrm{x}] * \operatorname{Rs}[\mathrm{y}]\) \(\operatorname{Rd}:=(\operatorname{Rm} * \operatorname{Rs}[y])[47: 16]\) \(\mathrm{Rd}:=\mathrm{Rn}+\mathrm{Rm}[\mathrm{x}] * \mathrm{Rs}[\mathrm{y}]\) \(\operatorname{Rd}:=\operatorname{Rn}+(\mathrm{Rm} * \operatorname{Rs}[\mathrm{y}])[47: 16]\) RdHi,RdLo :=RdHi,RdLo \(+\mathrm{Rm}[\mathrm{x}]\) * Rs[y] \(\mathrm{Ac}:=\mathrm{Ac}+\mathrm{Rm} * \mathrm{Rs}\) \(\mathrm{Ac}:=\mathrm{Ac}+\operatorname{Rm}[15: 0] * \operatorname{Rs}[15: 0]+\operatorname{Rm}[31: 16] * \operatorname{Rs}[31: 16]\) \(\mathrm{Ac}:=\mathrm{Ac}+\mathrm{Rm}[\mathrm{x}] * \mathrm{Rs}[\mathrm{y}]\) \(\mathrm{Rd}:=\) number of leading zeroes in Rm```
Logical	Test Test equivalence AND EOR ORR Bit Clear			$\begin{array}{lll} \hline N & Z & C \\ \hline \end{array}$		Update CPSR flags on Rn AND Operand2 Update CPSR flags on Rn EOR Operand2 Rd := Rn AND Operand2 Rd :=Rn EOR Operand2 $\mathrm{Rd}:=\mathrm{Rn}$ OR Operand2 $\mathrm{Rd}:=\mathrm{Rn}$ AND NOT Operand2
Compare	Compare negative		$\begin{array}{\|ll} \hline \text { CMP }\{\text { cond }\} & R n, \\ \text { CMN }\{\text { cond }\} & R n, \\ \text { <Operand2> } \end{array}$	$\begin{array}{\|llll} \hline \mathrm{N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \hline \end{array}$		Update CPSR flags on Rn - Operand2 Update CPSR flags on $\mathrm{Rn}+$ Operand2
No Op	No operation		NOP			None

ARM Instruction Set Quick Reference Card

\begin{tabular}{|c|c|c|c|c|c|}
\hline Operation \& \& § \& Assembler \& Action \& Notes \\
\hline Branch \& \begin{tabular}{l}
Branch \\
with link \\
and exchange \\
with link and exchange (1) \\
with link and exchange (2)
\end{tabular} \& \[
\begin{gathered}
4 \mathrm{~T}, 5 \\
5 \mathrm{~T} \\
5
\end{gathered}
\] \& B\{cond\} label
BL \{cond \(\}\) label
\(\operatorname{BX}\{\) cond \(\}\) Rm
\(\operatorname{BLX}\) label
BLX\{cond \(\}\) Rm \& \[
\begin{aligned}
\& \mathrm{R} 15:=\text { label } \\
\& \mathrm{R} 14:=\mathrm{R} 15-4, \mathrm{R} 15:=\text { label } \\
\& \mathrm{R} 15:=\mathrm{Rm}, \text { Change to Thumb if Rm}[0] \text { is } 1 \\
\& \mathrm{R} 14:=\mathrm{R} 15-4, \mathrm{R} 15:=\text { label, Change to Thumb } \\
\& \mathrm{R} 14:=\mathrm{R} 15-4, \mathrm{R} 15:=\mathrm{Rm}[31: 1] \\
\& \text { Change to Thumb if } \mathrm{Rm}[0] \text { is } 1
\end{aligned}
\] \& \begin{tabular}{l}
label must be within \(\pm 32 \mathrm{Mb}\) of current instruction. \\
label must be within \(\pm 32 \mathrm{Mb}\) of current instruction. \\
Cannot be conditional. label must be within \(\pm 32 \mathrm{Mb}\) of current instruction.
\end{tabular} \\
\hline Load

Load multiple

Soft preload \& \begin{tabular}{l}
Word

User mode privilege branch (§ 5T: and exchange)

Byte

User mode privilege signed

Halfword

signed

Doubleword

Pop, or Block data load return (and exchange)

and restore CPSR

User mode registers

Memory system hint

 \&

$$
\begin{array}{|c}
4 \\
4 \\
4 \\
5 E^{*}
\end{array}
$$

5E*
\end{tabular} \& ```

LDR{cond} Rd, <a_mode2>
LDR{cond}T Rd, <a_mode2P>
LDR{cond} R15, <a_mode2>
LDR{cond}B Rd, <a_mode2>
LDR{cond}BT Rd, <a_mode2P>
LDR{cond}SB Rd, <a_mode3>
LDR{cond}H Rd, <a_mode3>
LDR{cond}SH Rd, <a_mode3>
LDR{cond}D Rd, <a_mode3>
LDM{cond}<a_mode4L> Rn{!}, <reglist-pc>
LDM{cond}<a_mode4L> Rn{!}, <reglist+pc>
LDM{cond}<a_mode4L> Rn{!}, <reglist+pc>^
LDM{cond}<a_mode4L> Rn, <reglist-pc>^
PLD <a mode2>

``` & \[
\begin{aligned}
& \text { Rd }:=\text { [address] } \\
& \text { R15 := [address][31:1] } \\
& (\S 5 \mathrm{~T}: \text { Change to Thumb if [address][0] is } 1) \\
& \mathrm{Rd}:=\text { ZeroExtend[byte from address] } \\
& \\
& \mathrm{Rd}:=\text { SignExtend[byte from address] } \\
& \mathrm{Rd}:=\text { ZeroExtent[halfword from address] } \\
& \mathrm{Rd}:=\text { SignExtend[halfword from address] } \\
& \mathrm{Rd}:=\text { [address], R(d+1) := [address + 4] } \\
& \text { Load list of registers from [Rn] } \\
& \text { Load registers, R15 := [address][31:1] } \\
& \text { (§ 5T: Change to Thumb if [address][0] is } 1) \\
& \text { Load registers, branch (§ 5T: and exchange), } \\
& \text { CPSR := SPSR } \\
& \text { Load list of User mode registers from [Rn] } \\
& \text { Memory may prepare to load from address }
\end{aligned}
\] & \begin{tabular}{l}
Rd must not be R15. \\
Rd must be even, and not R14. \\
Use from exception modes only. \\
Use from privileged modes only. Cannot be conditional.
\end{tabular} \\
\hline Store & \begin{tabular}{l}
Word \\
User mode privilege Byte \\
User mode privilege \\
Halfword \\
Doubleword \\
Push, or Block data store User mode registers
\end{tabular} & \[
\begin{gathered}
4 \\
5 E^{*}
\end{gathered}
\] & ```
STR\{cond\} Rd, <a_mode2>
\(\operatorname{STR}\{\) cond \(\} T\) Rd, <a_mode2P>
STR\{cond\}B Rd, <a_mode2>
STR\{cond\}BT Rd, <a_mode2P>
STR\{cond\}H Rd, <a_mode3>
STR\{cond\}D Rd, <a_mode3>
STM \(\{\) cond\}<a_mode4S> Rn\{!\}, <reglist>
STM \{cond\}<a_mode4S> Rn\{!\}, <reglist>^
``` & ```
[address] := Rd
[address] := Rd
[address][7:0] := Rd[7:0]
[address][7:0] := Rd[7:0]
[address][15:0] := Rd[15:0]
[address] := Rd, [address +4\(]:=\mathrm{R}(\mathrm{d}+1)\)
Store list of registers to [Rn]
Store list of User mode registers to [Rn]
``` & \begin{tabular}{l}
Rd must be even, and not R14. \\
Use from privileged modes only.
\end{tabular} \\
\hline Swap & Word Byte & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{SWP}\{\text { cond }\} \text { Rd, } R m, \quad[\mathrm{Rn}] \\
& \operatorname{SWP}\{\text { cond }\} \mathrm{BR}, \mathrm{Rm}, \quad[\mathrm{Rn}]
\end{aligned}
\] & \[
\begin{aligned}
& \text { temp }:=[\mathrm{Rn}],[\operatorname{Rn}]:=\mathrm{Rm}, \operatorname{Rd}:=\text { temp } \\
& \text { temp }:=\text { ZeroExtend }([\operatorname{Rn}][7: 0]) \\
& {[\operatorname{Rn}][7: 0]:=\operatorname{Rm}[7: 0], \operatorname{Rd}:=\text { temp }}
\end{aligned}
\] & \\
\hline Coprocessors & \begin{tabular}{l}
Data operations \\
Alternative operations \\
Move to ARM reg from coproc \\
Alternative moves \\
Two ARM register move \\
Move to coproc from ARM reg \\
Alternative moves \\
Two ARM register move \\
Load \\
Alternative loads \\
Store \\
Alternative stores
\end{tabular} & 2
5
2
5
\(5 \mathrm{E}^{*}\)
2
5
\(5 \mathrm{E}^{*}\)
2
5
2
5 & \(\operatorname{CDP}\{\) cond \(\}\) <copr>, <op1>, CRd, CRn, CRm\{, <op2>\} CDP2 <copr>, <op1>, CRd, CRn, CRm\{, <op2>\} \(\operatorname{MRC}\{\) cond \(\}<c o p r>,<o p 1>, \operatorname{Rd}, \operatorname{CRn}, \operatorname{CRm}\{,<o p 2>\}\) MRC2 <copr>, <op1>, Rd, CRn, CRm\{, <op2>\} \(\operatorname{MRRC}\{c o n d\}\) <copr>, <op1>, Rd, Rn, CRm MCR\{cond\} <copr>, <op1>, Rd, CRn, CRm\{, <op2>\} MCR2 <copr>, <op1>, Rd, CRn, CRm\{, <op2>\} MCRR\{cond\} <copr>, <op1>, Rd, Rn, CRm LDC\{cond\} <copr>, CRd, <a_mode5> LDC2 <copr>, CRd, <a_mode5> STC\{cond\} <copr>, CRd, <a_mode5> STC2 <copr>, CRd, <a_mode5> & Coprocessor defined & \begin{tabular}{l}
Cannot be conditional. \\
Cannot be conditional. \\
Cannot be conditional. \\
Cannot be conditional. \\
Cannot be conditional.
\end{tabular} \\
\hline Software interrupt & & & SWI \{cond\} <immed_24> & Software interrupt processor exception & 24-bit value encoded in instruction. \\
\hline Breakpoint & & 5 & BKPT <immed_16> & Prefetch abort or enter debug state & Cannot be conditional. \\
\hline
\end{tabular}

\section*{ARM Addressing Modes Quick Reference Card}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Addressing Mode 2 - Word and Unsigned Byte Data Transfer} \\
\hline Pre-indexed & Immediate offset & [Rn, \#+/-<immed_12>] \{ ! \} & \\
\hline \multirow{13}{*}{Post-indexed} & Zero offset & [Rn] & Equivalent to [Rn,\#0] \\
\hline & Register offset & [Rn, +/-Rm] \{ ! \} & \\
\hline & Scaled register offset & [Rn, +/-Rm, LSL \#<immed_5>] \{! \} & Allowed shifts 0-31 \\
\hline & & [Rn, +/-Rm, LSR \#<immed_5>] \{! \} & Allowed shifts 1-32 \\
\hline & & [Rn, +/-Rm, ASR \#<immed_5>] \{! \} & Allowed shifts 1-32 \\
\hline & & [Rn, +/-Rm, ROR \#<immed_5>] \{ ! \} & Allowed shifts 1-31 \\
\hline & & [Rn, +/-Rm, RRX] \{ ! \} & \\
\hline & Immediate offset Register offset & \[
\begin{aligned}
& \text { [Rn], \#+/-<immed_12> } \\
& \text { [Rn], +/-Rm }
\end{aligned}
\] & \\
\hline & Scaled register offset & [Rn], +/-Rm, LSL \#<immed_5> & Allowed shifts 0-31 \\
\hline & & [Rn], +/-Rm, LSR \#<immed_5> & Allowed shifts 1-32 \\
\hline & & [Rn], +/-Rm, ASR \#<immed_5> & Allowed shifts 1-32 \\
\hline & & [Rn], +/-Rm, ROR \#<immed_5> & Allowed shifts 1-31 \\
\hline & & [Rn], +/-Rm, RRX & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Addressing Mode 2 (Post-indexed only)} \\
\hline Post-indexed & Immediate offset & [Rn], \#+/-<immed_12> & \\
\hline & Zero offset & [Rn] & Equivalent to [Rn],\#0 \\
\hline & Register offset & [Rn], +/-Rm & \\
\hline & Scaled register offset & [Rn], +/-Rm, LSL \#<immed_5> & Allowed shifts 0-31 \\
\hline & & [Rn], +/-Rm, LSR \#<immed_5> & Allowed shifts 1-32 \\
\hline & & [Rn], +/-Rm, ASR \#<immed_5> & Allowed shifts 1-32 \\
\hline & & [Rn], +/-Rm, ROR \#<immed_5> & Allowed shifts 1-31 \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|l|}
\hline \multicolumn{4}{|c|}{ Addressing Mode 3 - Halfword, Signed Byte, and Doubleword Data Transfer } \\
\hline Pre-indexed & Immediate offset & {\([\mathrm{Rn}, \#+/-<\) immed_8>] \(\{!\}\)} & Equivalent to \([\mathrm{Rn}, \# 0]\) \\
& Zero offset & {\([\mathrm{Rn}]\)} & \\
& Register & {\([\mathrm{Rn},+/-\mathrm{Rm}]\{!\}\)} & \\
Post-indexed & Immediate offset & {\([\mathrm{Rn}], \#+/-<\) immed_8> } & \\
& Register & {\([\mathrm{Rn}],+/-\mathrm{Rm}\)} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Addressing Mode 4-Multiple Data Transfer } \\
\hline \multicolumn{2}{|c|}{ Block load } & Increment After & Stack pop \\
\hline IA & FD & Full Descending \\
IB & Increment Before & ED & Empty Descending \\
DA & Decrement After & FA & Full Ascending \\
DB & Decrement Before & EA & Empty Ascending \\
\hline \multicolumn{2}{|l|}{ Block store } & & Stack push \\
\hline IA & Increment After & EA & Empty Ascending \\
IB & Increment Before & FA & Full Ascending \\
DA & Decrement After & ED & Empty Descending \\
DB & Decrement Before & FD & Full Descending \\
\hline
\end{tabular}

\section*{ARM architecture versions}
\begin{tabular}{l|l}
\hline\(n\) & ARM architecture version \(n\) and above. \\
\(n \mathrm{~T}\) & T variants of ARM architecture version \(n\) and above. \\
M & ARM architecture version 3M, and 4 and above, except xM variants. \\
\(n \mathrm{E}\) & All E variants of ARM architecture version \(n\) and above. \\
\(n \mathrm{E}^{*}\) & E variants of ARM architecture version \(n\) and above, except xP variants. \\
XS & XScale coprocessor instruction
\end{tabular}

\section*{Flexible Operand 2}

Immediate value
Logical shift left immediate
Logical shift right immediate Arithmetic shift right immediate Rotate right immediate Register
Rotate right extended
Logical shift left register Logical shift right register Arithmetic shift right register Rotate right register
\#<immed_8r>
Rm, LSL \#<immed_5>
Rm, LSR \#<immed_5>
Rm, ASR \#<immed_5>
Rm, ROR \#<immed_5>
Rm
Rm, RRX
Rm, LSL Rs
\(R m, ~ L S R ~ R s ~\)
\(R m, ~ A S R ~ R s ~\)
\(R m, ~ R O R ~ R s ~\)

Allowed shifts 0-31
Allowed shifts 1-32
Allowed shifts 1-32
Allowed shifts 1-31
\begin{tabular}{|c|l|l|}
\hline PSR fields & \multicolumn{2}{l|}{ (use at least one suffix) } \\
\hline Suffix & \multicolumn{1}{|l|}{ Meaning } \\
\hline C & Control field mask byte & PSR[7:0] \\
f & Flags field mask byte & PSR[31:24] \\
s & Status field mask byte & PSR[23:16] \\
x & Extension field mask byte & PSR[15:8] \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|l|}{ Condition Field \{cond\} } \\
\hline Mnemonic & Description & \multicolumn{1}{|l|}{ Description (VFP) } \\
\hline EQ & Equal & Equal \\
NE & Not equal & Not equal, or unordered \\
CS / HS & Carry Set / Unsigned higher or same & Greater than or equal, or unordered \\
CC / LO & Carry Clear / Unsigned lower & Less than \\
MI & Negative & Less than \\
PL & Positive or zero & Greater than or equal, or unordered \\
VS & Overflow & Unordered (at least one NaN operand) \\
VC & No overflow & Not unordered \\
HI & Unsigned higher & Greater than, or unordered \\
LS & Unsigned lower or same & Less than or equal \\
GE & Signed greater than or equal & Greater than or equal \\
LT & Signed less than & Less than, or unordered \\
GT & Signed greater than & Greater than \\
LE & Signed less than or equal & Less than or equal, or unordered \\
AL & Always (normally omitted) & Always (normally omitted) \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|l|}
\hline \multicolumn{6}{|l|}{ Addressing Mode 5-Coprocessor Data Transfer } \\
\hline Pre-indexed & Immediate offset & {\([\mathrm{Rn}, \#+/-<\) immed_ \(8 * 4>]\{!\}\)} & \\
& Zero offset & {\([\mathrm{Rn}]\)} & Equivalent to \([\mathrm{Rn}, \# 0]\) \\
Post-indexed & Immediate offset & {\([\mathrm{Rn}], \#+/-<\) immed_8*4> } & \\
Unindexed & No offset & {\([\mathrm{Rn}],\{8-\)-bit copro. option \(\}\)} & \\
\hline
\end{tabular}```

