
N-105
Programmer’s Reference Manual

Rosemary Francis
Computer Laboratory

University of Cambridge

August 2004

Sponsored by:



N-105
1 Introduction
The N-105 is a 16-bit embedded soft core processor with a two stage pipeline and a RISC
instruction set. It was designed by Rosemary Francis, Daniel Hulme and Simon Moore as a
teaching resource. Its is loosely based on Altera’s Nios, but contains no derived code. It is
designed to be used with Altera’s Avalon bus as it has no memory management. It assumes
logically separate data and instruction memories and has two independent interfaces to the
bus. The two stage pipeline consists of instruction fetch and everything else.

2 Overview
2.1 Registers
There are 16 16-bit general purpose registers and one reserved register called the pc (program
counter). The general purpose registers are named r0 to r15. R15 may be read or written to
in the same way others are. During a branch to subroutine(BSR) the pc+2 is written to r15
and then r15 is written to pc on a return (RET). You can therefore manually write to the pc
using the RET instruction. It is up to the programmer to ensure the contents of r15 is valid
during a return. The pc contains the address of the next instruction to execute. It is half word
aligned.

2.2 Condition Flags
The condition flags are set by selected alu operations. Some set all flags, others set only a
few flags. In the case where only a few are set, the value of those not set will be undefined.
If an instruction does not set any flags then they are unaffected and retain the value at which
they were last set.

Condition Flags
N Negative
V Arithmetic overflow
Z Zero
C Carry for unsigned arithmetic

2



2.3 Condition codes
There is only one condition instruction : IFS. This allows the instruction following to be
executed only if the condition is true. A skipped instruction is still fetched from memory
and so there is no time advantage unless the skipped instruction was a load or store.

Condition Codes
code value symbols meaning
0000 C cc nc Carry not set
0001 C cs c Carry set
0010 Z ne nz Not equal, zero not set
0011 Z eq z Equal, zero set
0100 N p pl Negative not set, positive
0101 N n mi Negitive set
0110 N ⊕ V lt Less than
0111 N ⊕ V gt Greater than or equal
0110 Z ∨ (N ⊕ V ) gt Greater than
0111 Z ∨ (N ⊕ V ) le Less than or equal
0100 V vc nv Overflow not set
0101 V vs v Overflow set
0100 C ∨ Z hi unsigned higher
0101 C ∨ Z la unsigned lower

2.4 Program Flow
There are three branch instructions: BR, BSR and RET. These all update the pc. However the
pc contains the value of the the next instruction to execute which is the instruction currently
being fetched. This means the the instruction following a branch will be executed as the
pipeline is not flushed. Returns therefore return to the instruction after so that not instruc-
tions are executed twice. For example in the code below 8 will be moved to r4 before the pc
will point to instruction at three. Also 4 will be moved to r1 before the return takes place.
The return sets the pc to the instruction at two. Here nop is a “no op” which is equivalent to
“or r0 r0” which does nothing.

one movi r2 4
bsr three
movi r4 8

two movi r4 6
movi r9 7
br end
nop

three ret
movi r1 4

end nop

3



2.5 Memory Access
Memory access is via Altera’s Avalon bus used for their NIOS soft processor. The Avalon
bus can handle 16 bit transfers only so addresses must be word aligned. Apart from that
there is no memory management. Transfers may only take place when the bus is ready the
processor may have to wait indefinitely. Loads and stores typically take only a few clock
cycles longer. Instruction fetch works similarly. It typically takes 2 clock cycles to fetch an
instruction.

2.6 Instruction Fields
A Index of source and destination register
B Index of source register
imm4 4-bit unsigned immediate
imm7 7-bit signed or unsigned immediate
imm11 11-bit signed immediate
Instruction formats
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

– – – – – – – – – – – – – – – –
A opcode
A B opcode
A imm4 opcode
A imm7 opcode

imm11 opcode
opcode

4



3 Instruction Set Quick Reference
N-105 Instruction Set

Opcode Mnemonic Operands Function Flags
000 00 OR ra rb ra← ra | rb n-z-
000 01 AND ra rb ra← ra & rb n-z-
000 10 XOR ra rb ra← ra ⊕ rb n-z-
000 11 NOT ra ra← !ra
001 00 MOV ra rb ra← rb
001 01 ADD ra rb ra← ra + rb nvzc
001 10 SUB ra rb ra← ra − rb nvzc
001 11 CMP ra rb ra − rb nvzc
010 00 LSLI ra imm4 ra← ra << 16-imm4
010 01 LSRI ra imm4 ra← ra >>> imm4
010 10 ASRI ra imm4 ra← ra >> imm4
010 11 ROTI ra imm4 ra← ra rotated > imm4
011 00 MOVI ra imm7 ra← imm7
011 01 ADDI ra imm7 ra← ra + imm7 nvzc
011 10 SUBI ra imm7 ra← ra − imm7 nvzc
011 11 CMPI ra imm7 ra − imm7 nvzc
100 00 LD ra rb ra← [rb]
101 00 ST ra rb [rb]← ra
110 00 BR imm11 pc← pc + imm11
110 01 BSR imm11 pc← pc + imm11

r15← pc + 2
110 10 RET pc← r15
111 11 IFS cc imm4 skip← !condition

5



ADD
ADD

Operation: rA← rA + rB

Assembler Syntax: add ra rb

Example: add r4 r5

Description: Add the values contained in rA and rB and place the result in rA

Condition codes: Flags set

Instruction Fields: Register index A, register index B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 0 0 1 0 1

6



ADDI
ADD immediate

Operation: rA← rA + imm7

Assembler Syntax: addi rA imm7

Example: addi r8 3

Description: Add the values contained in rA and imm7 and place the result
in rA

Condition codes: Flags set

Instruction Fields: register index A, unsigned 7-bit immediate imm7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A imm7 0 1 1 0 1

7



AND
Bitwise AND

Operation: rA← rA & rB

Assembler Syntax: and rA rB

Example: and r14 r0

Description: AND the bits in rA and rB and place the result in rA

Condition codes: Negitive and zero flags set, others set undefined

Instruction Fields: register index A, register index B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 0 0 0 0 1

8



ASRI
Arithmetic right shift

Operation: rA← rA >> imm4

Assembler Syntax: asri rA imm4

Example: asri r6 9

Description: shift rA right by the amount in imm4, shifting in the 15th bit to
preserve the sign

Condition codes: Flags unaffected

Instruction Fields: Register index A, 4-bit unsigned immediate imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A imm4 x 0 1 0 1 0

9



BR
Branch

Operation: pc← pc + imm11

Assembler Syntax: br addr

Example: br loopLabel

Description: Performs a branch to addr. The delay slot is then executed

Condition codes: Flags unaffected

Instruction Fields: Signed 11-bit immediate imm11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
imm11 1 1 0 0 0

10



BSR
Branch to subroutine

Operation: pc← pc + imm11
r15← pc + 2

Assembler Syntax: bsr label

Example: bsr loopLabel

Description: Branch to addr and store pc in r15. The delay slot is then exe-
cuted

Condition codes: Flags unaffected

Instruction Fields: Signed 11 bit immediate imm11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
imm11 1 1 0 0 1

11



CMP
Compare

Operation: rA − rB

Assembler Syntax: cmp rA rB

Example: cmp r9 r3

Description: Subtract rB from rA but do not store the result

Condition codes: Flags set

Instruction Fields: Register index A, register index B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 0 0 1 1 1

12



CMPI
Compare immediate

Operation: rA − imm7

Assembler Syntax: cmpi rA imm7

Example: cmpi r9 -24

Description: Subtract imm7 from the contents of rA, but do not store the result

Condition codes: Flags set

Instruction Fields: Register index A, signed 7-bit immediate imm7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A imm7 0 1 1 1 1

13



IFS
Conditionally execute next instruction

Operation: skip← !condition

Assembler Syntax: ifs cc imm4

Example: ifs cc_gt

Description: Skip the next instruction if the condition is false, execute if true

Condition codes: Flags unaffected

Instruction Fields: 4-bit condition immediate imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x imm4 x 1 1 1 1 1

14



LD
Load

Operation: rA← [rB]

Assembler Syntax: ld rA rB

Example: ld r5 r6

Description: Load the half word at address in rB into rA. Address must be
half word aligned

Condition codes: Flags unaffected

Instruction Fields: Register index A, register index B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 1 0 0 0 0

15



LSLI
Logical left shift

Operation: rA← rA << 16 − imm4

Assembler Syntax: lsli rA 16 − imm4

Example: lsli r11 13

Description: Logical left shift by a 4-bit immediate (shifts in 0s)
The four bit immediate is the bottom four bits of 16-imm4

Condition codes: Flags unaffected

Instruction Fields: Register index A, 4-bit immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A imm4 x 0 1 0 0 0

16



LSRI
Logical right shift

Operation: rA← rA >> imm4

Assembler Syntax: lsri rA imm4

Example: lsri r0 5

Description: Logical shift right by a 4-bit immediate imm4 (shifts in 0s)

Condition codes: Flags unaffected

Instruction Fields: Register index rA, 4-bit immediate imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A imm4 x 0 1 0 0 1

17



MOV
Move

Operation: rA← rB

Assembler Syntax: mov rA rB

Example: mov r8 r2

Description: Move the contents of rB into rA

Condition codes: Flags unaffected

Instruction Fields: Register index rA, register index rB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 0 0 1 0 0

18



MOVI
Move immediate

Operation: rA← imm7

Assembler Syntax: movi rA imm7

Example: movi r12 41

Description: Move 7-bit signed immediate imm7 into rA (with sign extension)

Condition codes: Flags unaffected

Instruction Fields: Register index A, signed 7-bit immediate imm7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A imm7 0 1 1 0 0

19



NOP
No operation

Operation: none

Assembler Syntax: nop

Example: nop

Description: Does nothing. Equivalent to “or r0 r0”

Condition codes: Negitive and zero flags set, others left undefined

Instruction Fields: none

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20



NOT
Bitwise Logical NOT

Operation: rA← !rA

Assembler Syntax: not rA

Example: not r3

Description: Logical not, bitwise inversion

Condition codes: Flags unaffected

Instruction Fields: Register index A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A x 0 0 0 1 1

21



OR
Bitwise Logical OR

Operation: rA← rA | rB

Assembler Syntax: or rA rB

Example: or r9 r2

Description: Perform bitwise logical or on bits in rA with bits in rB and place
in rA

Condition codes: Negative and zero flags set, others left undefined.

Instruction Fields: Register index A, register index B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 0 0 0 0 0

22



RET
Return from Subroutine

Operation: pc← r15

Assembler Syntax: ret

Example: ret

Description: Returns from subroutine by writing address saved in r15 to the
program counter

Condition codes: Flags unaffected

Instruction Fields: none

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 1 1 0 1 1

23



ROTI
Bitwise Rotate Right

Operation: rA← rA >> imm4 | ra << 16−imm4

Assembler Syntax: roti rA imm4

Example: roti r9 11

Description: Rotate the bits in rA right imm4 places

Condition codes: Flags unaffected

Instruction Fields: Register index A, 4-bit unsigned immediate imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x imm4 x 0 1 0 1 1

24



ST
Store

Operation: [rB]← rA

Assembler Syntax: st rA rB

Example: st r15 r8

Description: Store the value in rA at address in rB. Address must be half word
aligned

Condition codes: Flags unaffected

Instruction Fields: Register index A, register index B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 1 0 1 0 0

25



SUB
Subtract

Operation: rA← rA − rB

Assembler Syntax: sub rA rB

Example: sub r2 r0

Description: Subtract rB from rA and store the result back in rA

Condition codes: Flags set

Instruction Fields: Register index A, register index B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B x 0 0 1 1 0

26



SUBI
Subtract immediate

Operation: rA← rA − imm7

Assembler Syntax: subi rA imm7

Example: subi r9 63

Description: Subtracts unsigned 7-bit immediate imm7 from rA and stores
result back in rA

Condition codes: Flags set

Instruction Fields: Register index rA, unsigned 7-bit immediate imm7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A imm7 0 1 1 1 0

27



XOR
Bitwise Logical Exclusive OR

Operation: rA← rA ⊕ rB

Assembler Syntax: xor rA rB

Example: xor r0 r6

Description: Performs logical bitwise exclusive or on rA and rB and stores the
result back in rA

Condition codes: Negative and zero flags set, others left undefined

Instruction Fields: Register index A, register index B

28


