Solving problems by search II

We now look at how an agent might achieve its goals using more sophisticated search techniques.

Aims:

- to introduce the concept of a *heuristic* in the context of search problems;
- to introduce some further algorithms for conducting the necessary search for a sequence of actions, which are able to make use of a heuristic.

Reading: Russell and Norvig, chapter 4.
Problem solving by informed search

Basic search methods make limited use of any problem-specific knowledge we might have.

- Use of the available knowledge is limited to the formulation of the problem as a search problem.
- We have already seen the concept of path cost $g(n)$
 $$g(n) = \text{cost of any path (sequence of actions) in a state space}$$
- We can now introduce an evaluation function. This is a function that attempts to measure the desirability of each node.

The evaluation function will clearly not be perfect. (If it is, there is no need to search!)
Best-first search and greedy search

Best-first search simply expands nodes using the ordering given by the evaluation function.

- We could just use path cost, but this is misguided as path cost is not in general *directed* in any sense *toward the goal*.
- A *heuristic function*, usually denoted $h(n)$ is one that estimates the cost of the best path from any node n to a goal.
- If n is a goal then $h(n) = 0$.

Using a heuristic function along with best-first search gives us the *greedy search* algorithm.
Example: route-finding

A reasonable heuristic function here is

\[h(n) = \text{straight line distance from } n \text{ to the nearest goal} \]

Example:

\[h(n_1) = \sqrt{5} \]
\[h(n_2) = \sqrt{2} \]
\[h(n_3) = 1 \]

Goal

\[n_1 \quad 1 \quad n_2 \quad 1 \quad n_3 \]
Example: route-finding

Greedy search suffers from some problems:

- its time complexity is $O(\text{branching}^{\text{depth}})$;
- it is not optimal or complete;
- its space-complexity is $O(\text{branching}^{\text{depth}})$.

BUT: greedy search is often very effective, provided we have a good $h(n)$.
\(A^* \) search

\(A^* \) search combines the good points of:

- greedy search—by making use of \(h(n) \);
- uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path cost \(g(n) \) and also the heuristic function \(h(n) \) by forming

\[
f(n) = g(n) + h(n)
\]

where

\[
g(n) = \text{cost of path to } n
\]

and

\[
h(n) = \text{estimated cost of best path from } n
\]

So: \(f(n) \) is the estimated cost of a path through \(n \).
A\(^*\) search

A\(^*\) search:

- a best-first search using \(f(n) \);
- it is both complete and optimal...
- ...provided that \(h \) is an *admissible heuristic*.

Definition: an admissible heuristic \(h(n) \) is one that *never overestimates* the cost of the best path from \(n \) to a goal.
Monotonicity

Assume h is admissible. Remember that $f(n) = g(n) + h(n)$ so if n' follows n

$$g(n') \geq g(n)$$

and we expect that

$$h(n') \leq h(n)$$

although this does not have to be the case. The possibility remains that $f(n')$ might be less than $f(n)$.

- if it is always the case that $f(n') \geq f(n)$ then $h(n)$ is called monotonic;
- $h(n)$ is monotonic if and only if it obeys the triangle inequality.

If $h(n)$ is not monotonic we can make a simple alteration and use

$$f(n') = \max\{f(n), g(n') + h(n')\}$$

This is called the pathmax equation.
The pathmax equation

Why does the pathmax equation make sense?

So here $f(n) = 9$ and $f(n') = 7$.

The fact that $f(n) = 9$ tells us the cost of a path through n is at least 9 (because $h(n)$ is admissible).

But n' is on a path through n. So to say that $f(n') = 7$ makes no sense.
To see that A^* search is optimal we reason as follows.

Let Goal_{opt} be an optimal goal state with

$$f(\text{Goal}_{\text{opt}}) = g(\text{Goal}_{\text{opt}}) = f_{\text{opt}}$$

Let Goal_2 be a suboptimal goal state with

$$f(\text{Goal}_2) = g(\text{Goal}_2) = f_2 > f_{\text{opt}}$$

We need to demonstrate that the search can never select Goal_2.
A* search is optimal

Let \(n \) be a leaf node on an optimal path to \(\text{Goal}_{opt} \). So

\[
f_{opt} \geq f(n)
\]

because \(h \) is admissible and we’re assuming it’s also monotonic.

Now say \(\text{Goal}_2 \) is chosen for expansion before \(n \). This means that

\[
f(n) \geq f_2
\]

so we’ve established that

\[
f_{opt} \geq f_2 = g(\text{Goal}_2)
\]

But this means that \(\text{Goal}_{opt} \) is not optimal! A contradiction.
A^* search is complete

A^* search is complete provided:

1. the graph has finite branching factor;
2. there is a finite, positive constant c such that each operator has cost at least c.

Why is this?
The search expands nodes according to increasing $f(n)$. So: the only way it can fail to find a goal is if there are infinitely many nodes with $f(n) < f(\text{Goal})$.

There are two ways this can happen:

1. there is a node with an infinite number of descendants;
2. there is a path with an infinite number of nodes but a finite path cost.
Complexity

- A^* search has a further desirable property: it is *optimally efficient*.
- This means that no other optimal algorithm that works by constructing paths from the root can guarantee to examine fewer nodes.
- **BUT:** despite its good properties we’re not done yet!
- A^* search unfortunately still has exponential time complexity in most cases unless $h(n)$ satisfies a very stringent condition that is generally unrealistic:

$$|h(n) - h'(n)| \leq O(\log h'(n))$$

where $h'(n)$ denotes the *real* cost from n to the goal.
- As A^* search also stores all the nodes it generates, once again it is generally memory that becomes a problem before time.
IDA* - iterative deepening A^* search

Iterative deepening search used depth-first search with a limit on depth that gradually increased.

- IDA^* does the same thing with a limit on f cost.
- It is complete and optimal under the same conditions as A^*.
- It only requires space proportional to the longest path.
- The time taken depends on the number of values h can take.

If h takes enough values to be problematic we can increase f by a fixed ϵ at each stage, guaranteeing a solution at most ϵ worse than the optimum.
IDA* - iterative deepening A^* search

Action_sequence ida()
{
 float f_limit = f(root);
 Node root = root node for problem;

 while(true)
 {
 (sequence,f_limit) = contour(root,f_limit);
 if (sequence != empty_sequence)
 return sequence;
 if (f_limit == infinity)
 return empty_sequence;
 }
}
IDA* - iterative deepening A^* search

(Action_sequence, float) contour(Node node, float f_limit)
{
 float next_f = infinity;
 if (f(node) > f_limit)
 return (empty_sequence, f(node));
 if (goaltest(node))
 return (node, f_limit);
 for (each successor s of node)
 {
 (sequence, new_f) = contour(s, f_limit);
 if (sequence != empty_sequence)
 return (sequence, f_limit);
 next_f = minimum(next_f, new_f);
 }
 return (empty_sequence, next_f);
}