
Solving problems by search

We now look at how an agent might achieve its goals using search.

Aims:

� to show how problem-solving can be modelled as the process of
searching for a sequence of actions that achieves a goal;

� to introduce some basic algorithms for conducting the necessary
search for a sequence of actions.

Reading: Russell and Norvig, chapter 3.

Copyright c Sean Holden 2002-2005.



Problem solving by basic search

As usual: an agent exists within an environment and must act within
this environment to achieve some desirable goal. It has some means
of knowing the state of its environment.

For example:

� the agent is a robotic vacuum cleaner;

� the environment is a rectangular room with no obstacles, contain-
ing the cleaner and some dirt;

� the available actions are movement in four directions, switch on
sucker, and switch off sucker;

� the cleaner can sense the presence or otherwise of dirt and knows
it’s own location;

� the goal is to have no dirt in the room.



Problem solving by basic search

The situation looks something like this:

DIRT DIRT

DIRT

DIRTDIRT

Even this simple description hides a number of ambiguities and sub-
tleties.



Problem solving by basic search

The example given admits a simple solution strategy that is applica-
ble to many simple problems in AI.

Initial state: the cleaner is at some position within the room and
there is dirt in various locations.

Actions: the cleaner can alter the state of the environment by acting.
In this case either by moving or using its sucker. By performing a
sequence of actions it can move from state to state.

Aim: the cleaner wants to find a sequence of actions that achieves
the goal state of having a dirt-free room.

Other applications that can be addressed: route-finding, tour-finding,
layout of VLSI systems, navigation systems for robots, sequencing
for automatic assembly, searching the internet, design of proteins
etc.



Problem solving by basic search

D

D

D

D

D

C

D

D

D

D

D

D

D

D

D

D

D

D

D

D
C

C

C

D

D

D

D

D

C

Move down

Move up

Suck

Move right



Problem solving by basic search

So what’s ambiguous and subtle here?

1. Can the agent know it’s current state in full?

� It may only be able to sense dirt within a given radius.

� It may not have a completely accurate position sensor.

� It may not be able to distinguish between dirt and a stain on
the carpet, and so on...

2. Can the agent know the outcome of its actions in full?

� The sucker may not be completely reliable.

� The sucker may occasionally deposit a little dirt.

� The next door neighbour’s child may sneak in and move it from
one place to another while it thinks it’s only moved a short way
in one direction, and so on...



Problem solving by basic search

Depending on the answers to these questions we can identify four
basic kinds of problem:

Single-state problems: the state is always known precisely, as is
the effect of any action. There is therefore a single outcome state.

Multiple-state problems: The effect of any action is known, but the
current state can not reliably be inferred. Hence we must reason
about the set of states that we could be in. A similar situation arises
if we know the current state but not necessarily the outcomes of the
actions.

Single and multiple state problems can be handled using the search
techniques to be discussed next.



Problem solving by basic search

Contingency problems:

In some situations it is necessary to perform sensing while the ac-
tions are being carried out in order to guarantee reaching a goal.

(It’s good to keep your eyes open while you cross the road!)

This kind of problem requires planning and acting.

Sometimes it is actively beneficial to act and see what happens,
rather than to try to consider all possibilities in advance in order to
obtain a perfect plan.



Problem solving by basic search

Exploration problems:

Sometimes you have no knowledge of the effect that your actions
have on the environment.

Babies in particular have this experience.

This means you need to experiment to find out what happens when
you act.

This kind of problem requires reinforcement learning for a solution.
We will not cover reinforcement learning in this course.



Problem solving by basic search

Question: How much detail should the state description include?

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

10

2

To use a different example: considering your lecturer as an intelligent
agent who wants to get from the Computer Lab to Trinity College
before the bar closes.



Problem solving by basic search

The state of my environment could be said to include:

� the number and temperature of each hair on my head;

� the composition of the roads on all the potential routes;

� the current position of Saturn etc.

However for this problem a much simpler state description seems
appropriate: “at the computer lab”, “in the computer lab bike stands”
and so on.

Similarly for potential actions: although “remove wax from ears” is
a perfectly valid action in state “at the computer lab” it’s clearly not
very helpful.



Problem solving by basic search

Question: Are there conflicting goals or goals of varying impor-
tance?

Apart from getting to the College bar I might want to stop by the book
signing at Waterstones, or drop by the language school to improve
my Italian.

However we need to identify one specific goal.

Always in computer science, we need to do some abstraction to
make a solution feasible—we need to remove all extraneous detail.

Note that in this example, if I have no internal map of Cambridge
town centre I am stuck - I am doomed to try random actions. How-
ever if I have such a map I can try to search for a sequence of actions
that achieves my goal.



Problem solving by basic search

We begin with (arguably) the simplest kind of scenario in which some
form of computationally intelligent behaviour can be achieved. Namely,
the single-state scenario.

To summarise, we have:

� an initial state: what is the agent’s situation to start with;

� a set of actions: and we know what state will result on perform-
ing any available action from any known state;

� a goal test: we can tell whether or not the state we’re in corre-
sponds to the goal.

Note that the goal may be described by a property rather than an
explicit state or set of states, for example ”checkmate”.



Problem solving by basic search

In addition, a path is a sequence of actions that lead from state to
state.

We may also be interested in the path cost as some solutions might
be better than others. Path cost is generally denoted by �.

A solution is a path beginning with the initial state and ending in a
goal state.

All of the search techniques to be presented can also be applied to
multiple-state problems.

� In this case we have an initial set of states.

� Each action leads to a further set of states.

� The goal is a set of states all of which are valid goals.



Search trees

The basic method is familiar from your algorithms course.

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A

B

Trinity bar

Trinity bar

Trinity bar

C D

E

10

2

We form a search tree with the initial state as the root node.



Search trees

Test the root to see if it is a goal.

If not then expand it by generating all possible successor states ac-
cording to the available actions.

If there is only one outcome state then move to it. Otherwise choose
one of the outcomes and expand it. The way in which this choice is
made defines a search strategy.

If a choice turns out to be no good then you can go back and try a
different alternative.

The collection of unexpanded states is called the fringe or frontier
and is generally stored as a queue.



The performance of search techniques

We are interested in:

� whether a solution is found;

� whether the solution found is a good one in terms of path cost;

� the cost of the search in terms of time and memory.

the total cost � path cost 	 search cost

If a problem is highly complex it may be worth settling for a sub-
optimal solution obtained in a short time.

Other characteristics of the problem may also be relevant. For ex-
ample I may not want to spend a huge amount of time working out
how to get to Trinity.



Evaluation of search strategies

We are also interested in:

Completeness: does the strategy guarantee a solution is found?

Time complexity

Space complexity

Optimality: does the strategy guarantee that the best solution is
found?



Search trees

Two types of search:


 Uninformed or blind search is applicable when we only distin-
guish goal states from non-goal states.
Methods are distinguished by the order in which nodes in the
search tree are expanded. These methods include: breadth-first,
uniform cost, depth-first, depth-limited, iterative deepening, bidi-
rectional.


 Informed or heuristic search is applied if we have some knowl-
edge of the path cost or the number of steps between the current
state and a goal.
These methods include: best first, greedy, A*, iterative deepening
A* (IDA*), SMA*.



Breadth-first search

Breadth-first search:

1

2 3 4

5 6 7

This is familiar from your algorithms courses.



Breadth-first search

Note:

� the procedure is complete: it is guaranteed to find a solution if
one exists;

� the procedure is optimal under a simple condition: if the path cost
is a non-decreasing function of node-depth;

� the procedure has exponential complexity for both memory and
time. A branching factor � requires

 � � � � � � � � ��� � � � � �

nodes if the shortest path has depth �.

In practice: the memory requirement tends to outweigh the time
requirement.



Uniform-cost search

Breadth-first search finds the shallowest solution, but this is not nec-
essarily the best one.

Uniform-cost search differs in that it always expands the node with
the lowest path-cost � ��� �

first.

The best solution will always be found if

�

node � �node’s successor
� � � �node

�



Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A C D

10

2
4 3 1



Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A C D

10

2
4 3 1

E

2



Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A

Trinity bar

C

10

2
4 3

E
2

1
D

4



Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A

Trinity bar

Trinity bar

C

10

2
4 3 1

E
2

D

8

4



Depth-first search

Computer Lab

A

B

Trinity bar

Trinity bar

Trinity bar

C D

E

� nodes are expanded at the deepest existing part of the tree;

� for branching factor � and depth � the memory requirement is
around � � and the time

�  � ! " ;

� despite the exponential time requirement, if there are many solu-
tions this algorithm stands a chance of finding one quickly, com-
pared with breadth-first search.



Depth-first and depth-limited search

Depth-first search is clearly dangerous if the tree is either very deep
or infinite:

# if the tree is very deep we risk finding a suboptimal solution;

# if the tree is infinite we risk an infinite loop.

Depth-limited search simply imposes a limit on depth. For example
if we’re searching for a route on a map with $ cities we know that the
maximum depth will be $. However:

# we still risk finding a suboptimal solution;

# the procedure becomes problematic if we impose a depth limit
that is too small.



Iterative deepening search

Usually we do not know a reasonable depth limit in advance.

Iterative deepening search repeatedly runs depth-limited search for
increasing depth limits

%'& ( & ) &* * *

+ this essentially combines the advantages of depth-first and breadth-
first search;

+ the procedure is complete and optimal;

+ the memory requirement is similar to that of depth-first search;

Importantly, the fact that you’re repeating a search process several
times is less significant than it might seem.



Iterative deepening search

Intuitively, this is because the vast majority of the nodes in a tree are
in the bottom level :

, in a tree with branching factor - and depth . the number of nodes
is /10 2 -43 . 5 6 7 8 - 8 - 9 8 - : 8�; ; ; 8 - <

, a complete iterative deepening search of this tree generates the
final layer once, the penultimate layer twice, and so on down to
the root, which is generated . 8 7

times. The total number of
nodes generated is therefore

/ 9 2 - 3 . 5 6 2 . 8 7 5 8 . - 8 2 . = 7 5 - 9 8 2 . = > 5 - : 8; ; ; 8 > - <@? 0 8 - <



Iterative deepening search

Example:

A for B C DE

and F C G

we have

H1I J B4K F L C MK MN OK P DQ

HSR J B4K F L C MK G P GK TE N
which represents a

G

percent increase with iterative deepening
search;

A the overhead gets smaller as B increases. However the time com-
plexity is still exponential.

For problems where the search space is large and the solution depth
is not known, this is the preferred method.



Bidirectional search

We can simultaneously search:

forward from the start state

backward from the goal state

until the searches meet.

This is potentially a very good idea:

U if the search methods have complexity

V W�X Y Z

then...

U ...we are converting this to
V W[ X Y \] Z ^ V W�X Y \] Z

.

(Here, we are assuming the branching factor is X in both directions.)



Bidirectional search

_ It is not always possible to generate efficiently predecessors as
well as successors.

_ If we only have the description of a goal, not an explicit goal, then
generating predecessors can be hard. (For example, consider
the concept of checkmate.)

_ We need a way of checking whether or not a node appears in the
other search.

_ We need to decide what kind of search to use in each half. For
example, would depth-first search be sensible?

_ The figure of

` a�b c def

hides the assumption that we can do con-
stant time checking for intersection of the frontiers. Often this is
possible using a hash table.

_ To guarantee that the searches meet, we need to store all the
nodes of at least one of the searches. Consequently the memory
requirement is

` a b c def
.



Repeated states

With many problems it is easy to waste time by expanding nodes that
have appeared elsewhere in the tree. For example:

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

A

B

C

D

A

B B

C C CC



Repeated states

For example, in a problem such as finding a route in a map, where
all of the operators are reversible, this is inevitable.

There are three basic ways to avoid this, depending on how you
trade off effectiveness against overhead.

g never return to the state you came from;

g avoid cycles: never proceed to a state identical to one of your
ancestors;

g do not generate any state that has previously appeared.

35


