Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine it from a slightly different perspective.

Aims:

- To introduce the idea of a constraint satisfaction problem (CSP) as a general means of representing and solving problems by search.
- To look at the basic backtracking algorithm for solving CSPs.
- To look at some basic heuristics for solving CSPs.

Reading: Russell and Norvig, chapter 5.

Copyright © Sean Holden 2004-2005.
Constraint satisfaction problems

The search scenarios examined so far seem in some ways unsatisfactory.

- States were represented using an *arbitrary* and *problem-specific* data structure.
- Heuristics, similarly, were problem-specific.
Constraint satisfaction problems

CSPs *standardise* the manner in which states and goal tests are represented.

- As a result we can devise *general purpose* algorithms and heuristics.
- The form of the goal test can tell us about the structure of the problem.
- Consequently it is possible to introduce techniques for decomposing problems.
- We can also try to understand the relationship between the *structure* of a problem and the *difficulty of solving it*.
Constraint satisfaction problems

We have:

- A set of n variables V_1, V_2, \ldots, V_n.
- For each V_i, and domain D_i specifying the values that V_i can take.
- A set of m constraints C_1, C_2, \ldots, C_m.

Each constraint C_i involves a set of variables and specifies an allowable collection of values.

- A state is an assignment of specific values to some or all of the variables.
- An assignment is consistent if it violates no constraints.
- An assignment is complete if it gives a value to every variable.

A solution is a consistent and complete assignment.
Formulation of CSPs as standard search problems

Clearly a CSP can be formulated as a search problem in the familiar sense:

- **Initial state**: \{\}—no variables are assigned.
- **Successor function**: assigns value(s) to currently unassigned variable(s) provided constraints are not violated.
- **Goal**: reached if all variables are assigned.
- **Path cost**: constant \(c\) per step.

In addition:

- The tree is limited to depth \(n\) so depth-first search is usable.
- We don’t mind what path is used to get to a solution, so it is feasible to allow every state to be a complete assignment whether consistent or not. (Local search is a possibility.)
Varieties of CSP

The simplest possible CSP will be discrete with finite domains and we will concentrate on these.

1. Discrete CSPs with infinite domains:
 - will need a constraint language. For example
 \[V_3 \leq V_{10} + 5 \]
 - Algorithms are available for integer variables and linear constraints.
 - There is no algorithm for integer variables and nonlinear constraints.

2. Continuous domains:
 - Using linear constraints defining convex regions we have linear programming.
 - This is solvable in polynomial time in \(n \).
Types of constraint

We will concentrate on *binary constraints*.

- *Unary constraints* can be removed by adjusting the domains.
- *Higher-order constraints* applying to three or more variables can certainly be considered, but...
- ...when dealing with finite domains they can always be converted to sets of binary constraints by introducing extra *auxiliary variables*.

It is also possible to introduce *preference constraints* in addition to *absolute constraints*.

We may sometimes also introduce an *objective function*.
Example

We will use the problem of colouring the nodes of a graph as an example.

We have three colours and directly connected nodes should have different colours.
Example

This translates easily to a CSP formulation:

- The variables are the nodes
 \[V_i = \text{node } i \]

- The domain for each variable contains the values black, white and green (or grey on the printed handout)
 \[D_i = \{B, W, G\} \]

- The constraints enforce the idea that directly connected nodes must have different colours. For example, for 1 and 2 the constraints specify
 \[(B, W), (B, G), (W, B), (W, G), (G, B), (G, W)\]
Backtracking search

Consider what happens if we try to solve a CSP using a simple technique such as *breadth-first search*.

The branching factor is nd at the first step, for n variables each with d possible values.

\[
\begin{align*}
\text{Step 2:} & \quad (n - 1)d \\
\text{Step 3:} & \quad (n - 2)d \\ & \vdots \\
\text{Step } n: & \quad 1 \\
\end{align*}
\]

Number of leaves \(= nd \times (n - 1)d \times \cdots \times 1\)

\(= n!d^n\)

BUT: only d^n assignments are possible.

The order of assignment doesn’t matter, and we should assign to one variable at a time.
Backtracking search

The search now looks something like this...

...and new possibilities appear.
Backtracking search searches depth-first, assigning a single variable at a time, and backtracking if no valid assignment is available.

Rather than using problem-specific heuristics to try to improve searching, we can now explore heuristics applicable to general CSPs.
Backtracking search

result backtrack(problem)
{
 return bt([],problem);
}

result bt(assignment_list problem)
{
 if (assignment_list is complete)
 return assignment_list;
 next_var = get_next_var(assignment_list, problem);
 for (every value in order_variables(next_var, assignment_list, problem))
 {
 if (value is consistent with assignment_list)
 {
 add "next_var=value" to assignment_list;
 solution = bt(assignment_list, problem);
 if (solution is not "fail")
 return solution;
 remove "next_var=value" from assignment_list;
 }
 }
 return "fail";
}
Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain general CSP-based heuristics:

- In what order should we try to assign variables?
- In what order should we try to assign possible values to a variable?

Or being a little more subtle:

- What effect might the values assigned so far have on later attempted assignments?
- When forced to backtrack, is it possible to avoid the same failure later on?
Heuristics I: Choosing the order of variable assignments and values

Say we have $1 = B$ and $2 = W$

![Diagram showing variable assignments and constraints]

At this point there is only one possible assignment for 3, whereas the others have more flexibility. Assigning such variables \textit{first} is called the \textit{minimum remaining values (MRV)} heuristic. (Alternatively, the \textit{most constrained variable} or \textit{fail first} heuristic.
Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

The *degree heuristic* chooses the variable involved in the most constraints on as yet unassigned variables.

MRV is usually better but the degree heuristic is a good tie breaker.
Heuristics I: Choosing the order of variable assignments and values

Once a variable is chosen, in what order should values be assigned?

The *least constraining value* heuristic chooses first the value that leaves the maximum possible freedom in choosing assignments for the variable’s neighbours.

Choosing $1 = G$ is bad as it removes the final possibility for 3.

The heuristic prefers $1 = B$.

![Diagram](image-url)
Continuing the previous slide’s progress, now add $1 = G$.

Each time we assign a value to a variable, it makes sense to delete that value from the collection of possible assignments to its neighbours. This is called forward checking. It works nicely in conjunction with MRV.
Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 = B</td>
<td>BWG</td>
<td>BWG</td>
<td>BWG</td>
<td>BWG</td>
<td>BWG</td>
<td>BWG</td>
<td>BWG</td>
<td>BWG</td>
</tr>
<tr>
<td>3 = W</td>
<td>WG</td>
<td>= B</td>
<td>= W</td>
<td>= W</td>
<td>= W</td>
<td>= W</td>
<td>= W</td>
<td></td>
</tr>
<tr>
<td>6 = B</td>
<td>G</td>
<td>= B</td>
<td>= W</td>
<td>= W</td>
<td>= W</td>
<td>= W</td>
<td>= W</td>
<td></td>
</tr>
<tr>
<td>5 = G</td>
<td>G</td>
<td>= B</td>
<td>= W</td>
<td>= W</td>
<td>= G</td>
<td>= B</td>
<td>= B</td>
<td></td>
</tr>
</tbody>
</table>

At the fourth step, 7 has no possible assignments left.

However, we could have detected a problem a little earlier...
Heuristics II: forward checking and constraint propagation

...by looking at step three.

- At step three, 5 can be G only and 7 can be G only.
- But 5 and 7 are connected.
- So we can’t progress, and this hasn’t been detected.
- Ideally we want to do constraint propagation.

Trade-off: time to do the search, against time to explore constraints.
Constraint propagation

Arc consistency:

Consider a constraint as being directed. For example, $4 \rightarrow 5$.

In general, say we have a constraint $i \rightarrow j$ and currently the domain of i is D_i and the domain of j is D_j.

$i \rightarrow j$ is consistent if

$$\forall d \in D_i, \exists d' \in D_j \text{ such that } i \rightarrow j \text{ is valid}$$
Constraint propagation

Example:

In step three of the table, \(D_4 = \{W, G\} \) and \(D_5 = \{G\} \).

- \(5 \rightarrow 4\) in step three of the table is consistent.
- \(4 \rightarrow 5\) in step three of the table is not consistent.

\(4 \rightarrow 5\) can be made consistent by deleting \(G\) from \(D_4\).
Enforcing arc consistency

We can enforce arc consistency each time a variable i is assigned.

- We need to maintain a collection of arcs to be checked.
- Each time we alter a domain, we may have to include further arcs in the collection.

This is because if $i \rightarrow j$ is inconsistent, resulting in a deletion from D_i, we may as a consequence make some arc $k \rightarrow i$ inconsistent.
Enforcing arc consistency

Why is this?

- $i \rightarrow j$ inconsistent means removing a value from D_i.
- $\exists d \in D_i$ such that there is no valid $d' \in D_j$.
- So delete $d \in D_i$.

However some $d'' \in D_k$ may only previously have been pairable with d.

We need to continue until all consequences are taken care of.
Enforcing arc consistency

Complexity:

- A binary CSP with \(n \) variables can have \(O(n^2) \) directional constraints \(i \rightarrow j \).
- Any \(i \rightarrow j \) can be considered at most \(d \) times where \(d = \max_k |D_k| \) because only \(d \) things can be removed from \(D_i \).
- Checking any single arc for consistency can be done in \(O(d^2) \).

So the complexity is \(O(n^2d^3) \).

Note: this setup includes 3SAT.

Consequence: we can’t check for consistency in polynomial time. Which suggests this doesn’t guarantee to find all inconsistencies.
The AC-3 algorithm

new_domains AC-3 (problem)
{
 queue to_check = all arcs i→j;
 while (to_check is not empty)
 {
 i→j = next(to_check);
 if (remove_inconsistencies(Di,Dj))
 {
 for (each k that is a neighbour of i)
 add k→i to to_check;
 }
 }
}
The AC-3 algorithm

```cpp
bool remove_inconsistencies (domain1, domain2)
{
    bool result = false;
    for (each d in domain1)
    {
        if (no d’ in domain2 valid with d)
        {
            remove d from domain1;
            result = true;
        }
    }
    return result;
}
```
A more powerful form of consistency

We can define a stronger notion of consistency as follows:

Given:

- Any \(k - 1 \) variables and,
- any consistent assignment to these.

Then:

- We can find a consistent assignment to any \(k \)th variable.

This is known as \(k \)-consistency.
A more powerful form of consistency

Strong k-*consistency* requires the we be k-consistent, $k-1$-consistent *etc* as far down as 1-consistent.

If we can demonstrate strong n-consistency (where as usual n is the number of variables) then an assignment can be found in $O(nd)$.

Unfortunately, demonstrating strong n-consistency will be worst-case exponential.
The basic backtracking algorithm backtracks to the most recent assignment. This is known as \textit{chronological backtracking}. It is not always the best policy:

Say we’ve done $1 = B$, $3 = W$, $5 = G$ and $8 = B$ and now we want to do 7. This isn’t possible so we backtrack, however re-assigning 8 clearly doesn’t help.
Backjumping I

Backjumping backtracks to the *conflict set*, which in this case is \(\{7\} \):

\[
\text{conflict}(x) = \text{set of currently assigned variables connected to } x
\]

This can be done by accumulating the sets \(\text{conflict}(x) \) as we make assignments.
If forward checking is in operation it can be used to find conflict sets.

Say we’re assigning to x, say $x = v$:

- Forward checking removes v from the D_i of all x_i connected to x.
- Then x needs to be added to $\text{conflict}(x_i)$.
- If the last member of D_i is ever removed then we need to add all of $\text{conflict}(x_i)$ to $\text{conflict}(x)$.

In fact, use of forward checking turns out to make backjumping redundant.
In the current example, only two assignments are needed to doom the process:

Next we can assign $8, 3, 7$ and 4, but then 5 fails.

This can never work because 1 and 6 prevent us from getting an assignment for $3, 7, 4$ and 5.
Backjumping II

In this example \(\{3, 7, 4, 5\} \) as a \textit{collection} are prevented by 1 and 6 from having an assignment.

We can redefine \(\text{conflict}(x)\) to be the collection of preceding variables causing \(x \) and any subsequent variables not to have a valid set of assignments.

Using the new concept for \(\text{conflict}(x)\) gives us \textit{conflict-directed backjumping}:

When backtracking from \(x' \) to \(x \):

\[
\text{conflict}(x) = \text{conflict}(x) \cup (\text{conflict}(x') - x)
\]

so that the causes of failure \textit{after} \(x \) are maintained.