
Agents

We now look at a simple unifying concept for the construction of AI
systems: the idea of an agent. Aims:

� to introduce agents as a way of speaking about a wide range of
AI systems;

� to look at some ways in which agents might be structured;

� to connect these structures to standard fields of study within AI
as a subject;

� to look briefly at ways in which an agent’s environment is signifi-
cant.

Reading: Russell and Norvig, chapter 2.
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Agents

There are many different definitions for the term agent within AI. (Be
aware of this when reading beyond the course textbook.)

MUST DESTROY EARTH!!!

ENVIRONMENT

Sense

Act

We will use the following simple definition: an agent is any device
that can sense and act upon its environment.



Agents

This definition can be very widely applied: to humans, robots, pieces
of software, and so on. It is only one of many.

Questions:

� How can we judge an agent’s performance?

� How can we begin successfully to design an agent?

� How can an agent’s environment affect its design?

Recall that we are interested in devices that act rationally, where
‘rational’ means doing the correct thing under given circumstances.



Measuring performance

Clearly any performance measure we apply will need to be domain-
dependent, so we will have to design one appropriate for a given
problem.

Example: for a chess playing agent, we might use its rating.

Example: for a mail-filtering agent, we might devise a measure of
how well it blocks spam, but allows interesting email to be read.

Example: for a car cleaning robot, we might want maximum removal
of dirt in minimum time. Being more sophisticated, perhaps we don’t
want the car to get damaged, or to use too much water or energy,
and we might want the robot to have spare time at the weekend to
write its novel...

So: the choice of a performance measure can be tricky.



Measuring performance

Two further points:

� In general, we will be interested in success over the long term.
For example, we might not want to favour a car-cleaner that’s
extremely fast in the first hour and then sits around reading, over
one that works consistently.

� We are generally interested in expected performance because
usually agents are not omniscient—they don’t infallibly know the
outcome of their actions.

It is rational for you to enter this lecture theatre even if the roof falls
in today.



Measuring performance

So rational behaviour requires us to know:

� A well-defined measure of performance.

� What our agent has already perceived. The percept sequence.

� What our agent knows about the environment it lives in.

� What actions our agent is capable of performing.

An ideal rational agent acts as follows: for any percept sequence it
acts so as to expect to maximise performance, given what it knows
about the world via the percept sequence and its own knowledge.

So: an agent capable of detecting and protecting itself from a falling
roof might be more successful than you, but not more rational.



Environments

Some common attributes of an environment have a considerable in-
fluence on agent design.

� Accessible/inaccessible: do percepts tell you everything you
need to know about the world?

� Deterministic/non-deterministic: does the future depend pre-
dictably on the present and your actions?

� Episodic/non-episodic is the agent run in independent episodes.

� Static/dynamic: can the world change while the agent is decid-
ing what to do?

� Discrete/continuous: an environment is discrete if the sets of
allowable percepts and actions are finite.

� Single-agent/multi-agent: is the agent acting individually or in
the presence of other agents. In the latter case is the situation
competitive or cooperative, and is communication required?



Basic structures for intelligent agents

Example: email spam filter.

Percepts: the textual content of individual email messages. (A more
sophisticated program might also take images or other attachments
as percepts.)

Actions: send to the inbox, delete, or ask for advice.

Goals: remove spam while allowing valid email to be read.

Environment: an email program.



Basic structures for intelligent agents

Example: aircraft pilot.

Percepts: sensor information regarding height, speed, engines etc,
audio and video inputs, and so on.

Actions: manipulation of the aircraft’s controls. Also, perhaps talk-
ing to the passengers etc.

Goals: get to the current destination as quickly as possible with min-
imal use of fuel, without crashing etc.

Environment: aircraft cabin.



Mapping percepts to actions

In principle, we could simply enumerate what actions an ideal agent
should take given any percept sequence.

� We could produce a table and store it.

� Or we could produce a program capable of reproducing such a
table.

For example: a square-root agent.

This seems simplistic and potentially trivial, but the basic idea can
be expanded considerably.



Programming agents

A basic agent program is as follows:

action agent(percept)
{

static memory; // the agent’s memory.

memory = update_memory(memory,percept);
next_action = choose_action(memory);
memory = update_memory(memory,next_action);

return next_action;
}

It is up to the agent how long a list of past percepts it stores, and the
measure of performance is not known to the agent.



Programming agents

The simplest approach would be to use a table to map percept se-
quences to actions, but this can quickly be rejected.

� The table will be huge for any problem of interest. About

�� 	
 


entries for a chess player.

� We don’t usually know how to fill the table.

� Even if we allow table entries to be learned it will take too long.

� The system would have no autonomy.

We can overcome these problems by allowing agents to reason.



Autonomy

If an agent’s behaviour depends in some manner on its own experi-
ence of the world via its percept sequence, we say it is autonomous.

� An agent using only built-in knowledge would seem not to be suc-
cessful at AI in any meaningful sense: its behaviour is predefined
by its designer.

� On the other hand some built-in knowledge seems essential, even
to humans.

Not all actual animals are entirely autonomous. For example: dung
beetles.



Reflex agents

We can’t base our example spam filter on a table: there are too many
character sequences to consider.

But we might try extracting pertinent information and using rules
based on this.

Condition-action rules:

if a certain state is observed then perform some action

Example:

if message contains ‘gambling’ and ‘online’ then delete



Reflex agents

action agent(percept)
{

static rules; // A collection of
// condition-action rules.

state = interpret(percept);
rule = match(state,rules);
next_action = find_action(rule);

return next_action;
}



Keeping track of the environment

Some points immediately present themselves regarding reflex agents:

� we can’t always decide what to do based on the current percept;

� however storing all past percepts might be undesirable (for ex-
ample requiring too much memory) or just unnecessary;

� reflex agents don’t maintain a description of the state of their en-
vironment;

� however this seems necessary for any meaningful AI. (Consider
automating the task of driving.)

This is all the more important as usually percepts don’t tell you ev-
erything about the state.



Keeping track of the environment

An agent should maintain:

 a description of the current state of its environment;

 knowledge of how the environment changes independently of the
agent;

 knowledge of how the agent’s actions affect its environment.

This requires us to do knowledge representation and reasoning.



Keeping track of the environment

action agent (percept)
{

static state;
static rules;

state = update(state,percept);
rule = match(state,rules);
next_action = find_action(rule);
state = update(state,action);

return next_action;
}



Goal-based agents

Sometimes, choosing a rational course of action depends on your
goal.

� We need to consider goal-based agents.

� As agents include knowledge of how their actions affect the envi-
ronment, they have a basis for choosing actions to achieve goals.

� To obtain a sequence of actions we need to be able to search
and to plan.

This is fundamentally different from a reflex agent. For example, by
changing the goal you can change the entire behaviour.



Utility-based agents

Introducing goals is still not the end of the story.

There may be many sequences of actions that lead to a given goal,
and some may be preferable to others.

A utility function maps a state to a number representing the desir-
ability of that state.

� We can trade-off conflicting goals, for example speed and safety.

� If an agent has several goals and is not certain of achieving any
of them, then it can trade-off likelihood of reaching a goal against
the desirability of getting there.



Learning agents

Feedback Learner

Percepts

Actions

Standard

Agent

Learning Agent

Here, the learner needs some form of feedback on the agent’s per-
formance. This can come in several different forms. In general, we
also need a means of generating new behaviour in order to find out
about the world.
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