Desirable features in CAD
+ Need to handle any surface
+ Need guaranteed continuity
 - Continuity of slope (C1)
 - Smooth surfaces
 - Continuity of curvature (C2)
 - Smoothly reflecting surfaces
 - Required for some aerodynamics
+ Need to allow for discontinuities
 - Edges, creases and holes
+ Needs to be easy to use

Traditional tools
+ Bezier patches
+ B-spline patches
+ NURBS patches

Bezier & B-spline patches
+ A rectangular array of control points
+ A mathematical function determines where the surface goes based on those points
+ Move a control point to change the surface

The first problem
+ Very few objects are made up of a single rectangular patch, so we need to join patches together

The mathematics of joins
+ We want to preserve certain types of mathematical continuity across joins
 - C0: continuity of position
 - Prevents holes at the join
 - C1: continuity of slope
 - Prevents a sharp edge at the join
 - C2: continuity of curvature
 - Strongly related to aesthetics
 - Most often visible in reflections
 - Prevents sharp edges in reflected lines
 - These are continuity of the zeroth, first and second derivatives

Joining two Bezier patches
+ C0 but not C1
 - Four edge points are the same
+ C0 and C1
 - Four edge points are the same
 - Next four points out in either direction are constrained
Part II
Advanced Graphics 2004
Neil Dodgson nad@cl.cam.ac.uk

Slide 13
An example: the car’s roof
+ The car
+ Curvature plot of its roof

Slide 14
Definition of the car’s roof
+ 5x2 grid of biquintic Bezier patches
 - 36 control points per patch
 - 286 control points overall
 - Moving one point also moves several others to maintain C2 continuity

Slide 15
B-spline patches
+ A rectangular array of points define a rectangular array of automatically joined patches
+ Example
 - The black points control the central patch
 - All points together define a surface of many joined patches

Slide 16
The second problem
+ What do we do at special points where other than four patches meet?
 - Either we cannot get C2, which means that curvature is not continuous
 - Or we get C2 by forcing curvature to be zero, which produces a flat spot
 - Or we get C2 using very high degree patches, which are very hard for a designer to control

Slide 17
Subdivision surfaces
- Developed in the 1970s, adopted in computer animation in 1990s
- Replace the patch-based representation of B-splines and Beziers
- Base a curve or surface solely on its control points and their connectivity
- A simple mechanism produces a larger, more refined set of control points from the current set
- Iterate refinement until the appropriate level of detail is achieved

Slide 18
Subdivision
+ Advantages
 - Reproduces everything which can be done by B-splines
 - Handles extraordinary points much more easily
+ Disadvantages
 - Cannot get C2 unless you produce a flat spot
 - Generates other visual artefacts, not seen in B-spline surfaces
+ Commercial position
 - Subdivision is replacing B-splines in computer animation
 - Subdivision is not replacing B-splines in CAD