Implementations:

Building a Quantum Computer

Why build a quantum computer?

• Grover's algorithm
 - Provides a quadratic speed-up over best possible classical algorithms
• Shor's algorithm
 - Provides an exponential speed-up over best known classical algorithms
• Quantum simulations
• Moore's law
 - Shrinking transistors will eventually mean quantum effects will dominate classical devices

Why NOT build a quantum computer?

• Extremely difficult
• Impossible?
 - Does not contradict any law of physics

Implications of building a quantum computer

• Most of the world's sensitive data is encrypted using public-key encryption systems such as RSA
• A quantum computer gives the owner the ability to crack these encryption systems
• We need to know if a quantum computer can be built, and who could build a quantum computer
• A quantum computer in the hands of terrorists could cause anarchy

Why is building a quantum computer so difficult?

• Intuitively: the world appears classical
 - We need excellent control in order to prepare qubits, apply exactly the right sequence of operations and then measure the qubits.
 - However, the second postulate of quantum mechanics states that only closed quantum systems evolve unitarily.

DiVincenzo’s criteria

1. A scalable physical system with well characterized qubits.
2. The ability to initialize the state of the qubits to a simple basis state.
3. Long (relative) decoherence times, much longer than the gate-operation time.
5. A qubit-specific measurement capability.

QC Networkability

6. The ability to interconvert stationary and flying qubits.
7. The ability to faithfully transmit flying qubits between specific locations.
Decoherence

• We say that a quantum system decoheres when it starts acting in a classical fashion rather than as predicted by quantum mechanics.
• Decoherence is due to unwanted and uncontrolled interactions of a system with its environment.
• The ket formalism is ideal for the study of completely quantum systems.
• When classical probabilities are involved we need to use the density matrix formalism.

Decoherence

• We have seen that an arbitrary pure state of a qubit can be written as $$\alpha |0\rangle + \beta |1\rangle$$
• What if we want to describe a system which is either in the state |0⟩ or |1⟩?
• We write pure states as matrices of the form $$|\psi\rangle\langle\psi|$$
• We write mixed states as convex combinations of pure states, for example

$$0.7|\psi\rangle\langle\psi| + 0.3|\phi\rangle\langle\phi|$$

Decoherence

• Imagine we have the pure state

$$\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$
• If we measure the second qubit and obtain the result 0, then we know the first qubit is in the pure state $$|0\rangle$$
• If “somebody else” measures the second qubit, and doesn’t tell us the result, then we have the mixed state

$$0.5|0\rangle\langle0| + 0.5|1\rangle\langle1|$$
• Which is quite different from the state

$$\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$

Schemes for implementing a quantum computer

- Nuclear Magnetic Resonance
- Spectral hole burning
- Trapped Ion
- Neutral Atom
- Optical
- Quantum dots
- Superconducting
- Gated qubits
- Doped silicon

Ion trap quantum computer

- Consider a hydrogen atom
 - Composed of a proton and an electron
 - The energy levels of the electron are quantized
 - The electron can move down an energy level by releasing a photon
 - Or up an energy level by absorbing a photon
 - If we called the ground state (lowest energy level) |0⟩, and the first excited state |1⟩, we’d have a qubit
 - There are many reasons why using hydrogen as a qubit would be impractical
- Instead, we use elements such as beryllium.
- Ionize the atoms.
- Contain the ions in an electromagnetic field, such as a linear Paul trap
Ion trap quantum computer
- Lasers
- Electrodes

Silicon based quantum computer
- Electrodes for single qubit operations
- Electrode for two qubit operations

Optical quantum computer
- Uses the presence or absence of a single photon to represent a $|0\rangle$ or $|1\rangle$.
- Carry out single qubit operations using beam splitters and polarizers

\[
|0\rangle \rightarrow \alpha |0\rangle + e^{i\theta}|1\rangle
\]

Optical quantum computer
- In order to do two-qubit operations it is necessary to combine non-deterministic measurements with a quantum phenomenon known as quantum teleportation.
- Has many hurdles associated with it such as:
 - Need for single photon sources
 - Need for single photon detectors
 - Need for a means of storing photons

NMR quantum computer
- Uses the nuclear spin of the atoms in certain molecules as qubits
- Performs operations by applying radio-frequency pulses to the liquid
- Acts on millions of molecules at the same time, effectively perform "ensemble" computing

Summary
- Currently many different schemes are being pursued to implement a quantum computer.
- All of these methods are in the very early stages of development.
- Each scheme tends to have its own specific "problem" area, which is insurmountable using current technology.
- Not possible to give an accurate estimate of when (or even if) a large scale quantum computer will be built.