Quantum Computing: Exercise Sheet 1

Anuj Dawar and Ben Travaglione

January 29, 2004

Bits and Qubits

- 1. Which of the following are possible states of a qubit?
 - (a) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
 - (b) $\frac{\sqrt{3}}{2}|1\rangle \frac{1}{2}|0\rangle$
 - (c) $0.7|0\rangle + 0.3|1\rangle$
 - (d) $0.8|0\rangle + 0.6|1\rangle$
 - (e) $\cos \theta |0\rangle + i \sin \theta |1\rangle$
 - (f) $\cos^2 \theta |0\rangle \sin^2 \theta |1\rangle$

For each valid state among the above, give the probabilities of observing $|0\rangle$ and $|1\rangle$ when the system is measured in the standard computational basis.

What are the probabilities of the two outcomes when the state is measured in the basis $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$?

2. A two-qubit system is in the following state

$$\frac{1}{\sqrt{30}}(|00\rangle + 2i|01\rangle - 3|10\rangle - 4i|11\rangle)$$

The first qubit is measured and observed to be 1. What is the state of the system after the measurement? What is the probability that a subsequent measurement of the second qubit will observe a 1?

Linear Algebra

- 3. Show that the operations of addition and scalar multiplication defined on slide 4 satisfy the axioms of a vector space given on slide 3.
- 4. **Uniqueness of dimension**. This exercise asks you to prove the assertion on slide 5, namely that the size of the basis is uniquely determined by the vector space V. Suppose that $|v_1\rangle, \ldots, |v_n\rangle$ is a basis for V. Let $|u_1\rangle, \ldots, |u_{n+1}\rangle$ be any collection of n+1 vectors. Show that they cannot all be linearly independent, i.e. one of them must be expressible as a linear combination of the others.

- 5. For each of the two example linear operators on slide 9, express them in the basis $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$.
- 6. Verify that the inner product on \mathbb{C}^n defined on slide 11 satisfies the axioms on slide 10.
- 7. Express the two linear operators on slide 9 as a linear combination of outer products.
- 8. Find the eigenvalues and associated eigenvectors of the two linear operators on slide 9.
- 9. For each of the four matrices on slide 7 of Lecture 4, show that they are unitary.
- 10. If I is the 2-dimensional identity matrix and H is the Hadamard operator (Lecture 4, slide 7), give matrix representations of the operators $I \otimes H$ and $H \otimes I$. Work out, by multiplying these matrices with the corresponding vectors the eight vectors

$$(I \otimes H)|00\rangle, (I \otimes H)|01\rangle, (I \otimes H)|10\rangle, (I \otimes H)|11\rangle,$$
and $(H \otimes I)|00\rangle, (H \otimes I)|01\rangle, (H \otimes I)|10\rangle, (H \otimes I)|11\rangle$

Quantum Mechanics

- 11. (The exercise on slide 12) Prove that unitary evolution preserves normalisation.
- 12. (Exercises on slide 14) Prove that XY = iZ. Show that $X^2 = Y^2 = Z^2 = I$
- 13. (Exercise on slide 28) Suppose a two-qubit system is in the state $0.8|00\rangle + 0.6|11\rangle$. A NOT gate is applied to the second qubit and a measurement performed in the computational basis. What are the probabilities of the possible measurement outcomes?

Quantum Circuits

- 14. The exercise on slide 6 asks you to descibe a unitary operation that implements the Boolean *And* operation. In fact, the unitary operation is not uniquely determined by the description given on that slide. Describe *two* different unitary operations that satisfy the definition of the Boolean And in the sense of slide 6.
- 15. Describe, in matrix form, the action of the controlled-H gate, where H is the Hadamard gate.
- 16. Show how the controlled-Not gate can be constructed from Hadamard gates and the controlled-Z. Demonstrate that the construction is correct by multiplying the corresponding matrices.

- 17. Write the Toffolli gate in matrix form.
- 18. The circuit on slide 13 is formed as the composition of 13 unitary operations, each of them obtained as the tensor product of one and two-qubit operations. Write each of these operators in matrix form and verify that their product is the same as your answer to Question 17.
- 19. **No-cloning theorem**. The no-cloning theorem states that a quantum state $|\psi\rangle$ cannot be duplicated. That is, there is no quantum operation that will map an arbitrary state $|\psi0\rangle$ to $|\psi\psi\rangle$. Show this by considering any unitary map U that maps $|00\rangle$ to $|00\rangle$ and $|10\rangle$ to $|11\rangle$ and exhibiting a state $|\psi\rangle$ for which $U|\psi0\rangle \neq |\psi\psi\rangle$.
- 20. **Deutsch-Josza Algorithm**. This exercise is aimed at proving the correctness of the circuit described on slide 16. Consider the operator U_f on slide 15 and show that:
 - (a) if $|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$, then $U_f|xy\rangle = (-1)^{f(x)}|xy\rangle$;
 - (b) if, in addition, $|x\rangle = H|0\rangle$, then $U_f|xy\rangle = ((-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle)|y\rangle$;
 - (c) the final output of the circuit is $(H \otimes I)U_f|xy\rangle$ where $|x\rangle$ and $|y\rangle$ are as above. Show that this is (up to global phase and normalisation) $|0y\rangle$ if f is constant and $|1y\rangle$ if f is balanced.