
Digital Communications II

— The Internet —

Jon Crowcroft (thanks to Steve
Hand)

Michaelmas Term

http://www.cl.cam.ac.uk/users/jac22/

1

Recommended Reading

• Srinivsan Keshav. (1997). An Engineering
Approach to Computer Networking.
Addison-Wesley Pub Co; (1st ed.); ISBN:
0201634422

• Alternative to Keshav: Bruce S. Davie & Larry L.
Peterson & David Clark (1999). Computer
Networks: A Systems Approach. Morgan
Kaufmann Publishers (2nd ed.); ISBN:
1558605142

• W. Richard Stevenes (1994) TCP/IP Illustrated,
Volume 1: The Protocols. Addison-Wesley Pub
Co, (1st ed.); ISBN: 0201633469

• Alternative to Stevens: Douglas Comer (2000).
Internetworking with TCP/IP Vol. I: Principles,
Protocols, and Architecture Prentice Hall (4th
ed.); ISBN: 0130183806

• Backround: Balachander Krishnamurthy &
Jennifer Rexford (2001) Web Protocols and
Practice: HTTP/1.1, Networking Protocols,
Caching, and Traffic Measurement.
Addison-Wesley Pub Co (1st ed.); ISBN:
0201710889

• Leffler S.J. et al.

2

The Design and Implementation of the 4.3BSD
UNIX Operating System
Wokingham, 1986.

• FreeBSD source code (BSD Net 2)

• Linux source code (not so good) but see also Jon
Crowcroft’s forthcoming book:-)

• Internet RFCs, FYIs and drafts.

• The web (e.g. http://freesoft.org/CIE/index.htm)

Quick Recap
Background from Operating Systems Courses

• Interrupts

• Scheduling

• Processes

• Concurrency

• Software Interrupts

Background from Digital Communications I

• Layering, Channels, Multiplexing

• TCP/IP Stack (UDP, TCP, IP, ICMP)

• IP on Ethernet (ARP)

• Addresses and Routing

• TCP (windows, flow control, ACKs etc)

3

General Organisation of IP
How the protocols fit together

APPLICATION

UDPTCP

IP

Network Interface

ICMP

What the protocol headers look like

32bits 32bits

source

destination

ver hlenservice length

identification

hdr checksumttl

flags offset

proto

destination

address

source

type / lengthaddress

source port destination port

udp length checksum

source port destination port

sequence number

acknowledgement number

hlen code window

checksum urgent pointer

IP HEADER

ETHERNET HEADER

UDP HEADER

TCP HEADER

source

destination

lengthproto

PSEUDO HEADER

MBZ

RSV

4

Communications Units

Communications uses S.I. units.

• For example a network clocked at 8MHz moving 1
bit per clock period is a 8Mb/s network.

• To transfer one “megabyte” of information will
take 1.048576 seconds.

• K=103, M=106, G=109

• In computer science, K only equals 210 where
address lines are involved.

People often get this wrong – be careful. Use “octet”.

Data Representation

• Endian

• Size of “integer”

• Compression vs. ease of access

• Floating point

• Complex data. . .

5

What’s different about
networking?

• Failures are different

• Binding model is different

• Interrupts can be unexpected

• Security model is different

– Must protect against corrupt data

– Must protect against malevolent packets

6

Outline

• Introduction and Recap.

• BSD Unix: sockets, buffering, interfaces.

• IP: addressing, forwarding, checksum, fragments

• Connectionless protocols: ICMP, UDP, NFS.

• TCP/IP: basic operation, congestion schemes.

• QoS and the Internet.

• Routing protocols: distance vector, link state.

• Multicast: basic model, routing.

• Conclusion.

7

Sockets Abstraction
In Unix, everything is a file [descriptor] ⇒ represent
communications endpoints as fds also:

• socket: to create a new socket

• bind: for setting or allocating local address

• listen, connect, accept: for making connections

• recv, send (and read, write): for receiving or
sending data on connection-oriented sockets

• recvfrom, sendto: for receiving or sending data on
connectionless sockets.

• select: for user-level demultiplexing.

In Unix, processes are untrusted with virtual time and
virtual memory ⇒ kernel must handle:

• demultiplexing,

• device access,

• retransmissions, and

• data buffering.

8

BSD Unix concurrency

timer network hardware

hardclock (time)

device drivers

logical interrupts - protocol code

timeouts

softclock (scheduler)

kernel

userprocess process

spl0()

splnet()

splimp()

splhigh()

splsoft()
1

2

Several points to note:

• Clock interrupts are never missed.

• Device processing is done at raised IPL, other
protocol processing is done at a lower level.

• (un)interruptible sleeps.

• How do input and output routines interact?

9

Buffering

• Buffering for networks different than for block
devices since:

– data typically variable size.

– protocols typically layered

• Want more flexible scheme: e.g. mbufs (4.3BSD).

• Two level hierarchy of linked structures:

– m next links mbufs into a chain.

– m act links chains into lists or queues.

• Fixed size (128 or 256 bytes) ⇒ alloc/free is easy.

• Use m off and m len to “top and tail”: handy for
nested protocol data.

• Large data is held elsewhere: both cluster mbufs
and nasty “loaned mbuf” kludge.

• Problems: copying (socket level, transport level,
(device driver?)).

• Is zero-copy possible?

10

Mbufs

to next mbuf
in chain (if any)

to next mbuf
in queue (if any)

128
bytes

112
bytes

m_off

m_len

m_next

m_off

m_len

m_type

m_act

m_data

A "standard" mbuf

m_next

m_off

m_len

m_type

m_act

m_ext

A "cluster" mbuf

unused (some OSes
keep misc. info

in here)

ext_buf

ext_size

kernel private
page pool

• Alloc/free through m get(), m free().

• Variable size management with m adj().

• Copy with m copy() : can use remap in case of
clusters.

11

Implementation: Higher Levels

Type,Domain,Protocol
User Request

Input/Output
Initialise, Drain

}

Fast,Slow Timeouts

struct protosw {

Socket
Layer

Socket Type
Socket Queues

Protocol Block

Receive Sockbuf
Send Sockbuf

}

struct socket {

Protocol
Layer(s)

Type,Domain,Protocol
User Request

Input/Output
Initialise, Drain

}

Fast,Slow Timeouts

struct protosw {

Network Interface

User

Kernel

Protocol Switch

• Library provides socket interface to applications.

• Syscalls trap to kernel socket layer.

• “Object-oriented” : each protocol represented by
a protocol switch structure.

• Network interfaces represented by own structure.

12

Implementation: INPCB

For all internet sockets have an INPCB (protocol
control block):

Previous
Next

Socket
Layer

Internet Protocol
Control Blocks

Local Port
Local Address

Cached Route
Foreign Address

}

Foreign Port

struct inpcb {

Protocol Block

Previous
Next

Local Port
Local Address

Cached Route
Foreign Address

}

Foreign Port

struct inpcb {

Protocol Block

Previous
Next

Socket Type
Socket Queues

Protocol Switch

Receive Sockbuf
Send Sockbuf

}

struct socket {

Protocol Block

Socket Type
Socket Queues

Protocol Switch

Receive Sockbuf
Send Sockbuf

}

struct socket {

Protocol Block

Protocol Specific Control Blocks

• Stored as a doubly linked list per protocol.

• Lists searched on every packet arrival ⇒ keeps a
single “cache” entry at the front of the list.

13

Implementation: Network Interface

Network device drivers have an output routine:

• Called at splimp

• Given an mbuf chain to send

• Responsible for encapsulation

• May have to deal with loop-back and/or broadcast

• May upcall for address resolution (ARP)

On receive interrupt, device drivers:

1. demux packet to find protocol stack input queue

2. add packet to queue

3. request a software interrupt for the appropriate
protocol input handling routine.

Q: how does protocol output identify interface to use?

14

IP Addresses

• In IPv4, addresses are 32-bits.

• An address identifies a network or an IP host.

• Addresses separated into 5 “classes”, A–E.

0 Network

1 0

1 1 0

Host(7 bits) (24 bits)

(14 bits) (16 bits)

(21 bits) (8 bits)

Network

Network

Host

Host

A

B

C

1 1 1 0 (28 bits)Multicast address

1 1 1 1 Reserved for future use0

D

E

• Also have magic addresses:

– host all zeros ⇒ refers to network itself.

– host all ones ⇒ broadcast address for a
(specified) network.

– network all zeros ⇒ “this network”.

15

– network 127(= 011111112)⇒ loopback.

– all bits ones ⇒ ‘limited’ broadcast

– all bits zeros ⇒ “this host”.

IP Forwarding (I)

• Forwarding (and routing) based on prefixes.

• Keep a table mapping IP addresses to next hop:

– IP address is usually a network. . .

– Next hop includes outgoing interface and next
IP address (if applicable).

– Can use default route to keep table small.

• To forward an IP datagram:

1. compute network prefix (using class info).

2. if directly connected, send datagram directly.

3. if any host or network route matches, send to
next hop via outgoing interface.

4. else use default route.

• Hosts must forward every outgoing IP packet
(why?) ⇒ want it to be fast.

IP Forwarding (II): Subnetting

• Original IP addressing (as just described) has
three fixed ’IP network’ sizes ⇒ fragmentation.

• Subnetting improves this by relaxing the 1-to-1
physical address ↔ IP network mapping, e.g:

1. Allocate organisation class-B address

2. Inside org have multiple physical networks
distinguished by subnet, e.g.

10 Network Subnet Host

14 bits k bits 16-k bits

3. Forward between these using subnet routing.

4. Outside world oblivious.

• To implement use subnet masks: e.g. (16 + k) 1’s
followed by (16− k) 0’s.

• Routing table now holds mask for each entry.

• When checking a route first AND destination IP
addresses with associated subnet mask.

16

Subnetting Example

R1

R2

R4

R5

R3

128.232.17.1

128.232.17.3128.232.17.2

128.232.17.4

128.232.0.1

128.232.6.1128.232.25.1

128.232.25.2

128.232.140.1

128.232.140.2

A

128.232.17.34

C 128.232.140.45B128.232.140.23

D 128.232.6.113

Routing table at host B:

Network Netmask Next Hop I/f
128.232.140.0 255.255.255.0 Direct eth0
128.232.17.34 255.255.255.255 128.232.140.1 eth0
128.232.25.0 255.255.255.0 128.232.140.1 eth0
127.0.0.0 255.0.0.0 Direct lo
0.0.0.0 0.0.0.0 128.232.140.2 eth0

17

IP Header Checksum
IP datagrams have a checksum over the header:

• every incoming packet must be validated

• every outgoing packet must have checksum
recomputed

⇒ must be fast.

Q: Why don’t we checksum data?

Checksum algorithm
Defined in RFC1071:

1. split the input into 16-bit words

2. add them together using 1s complement math

3. complement the result.

To implement need to consider carefully:

• the difference between 1s and 2s complement
arithmetic

• host endian

• what the target CPU is capable of

18

What is 2s complemement sum?

• Top bit has value −2n. (e.g. -32768).

• Problem is loss of carry out of the top bit.
Consider:

0x4000 0x8000
0x4000 0x8000
0x4000 0x8000
0x4000 0x8000
0x0000 0x0000

What is 1s complement sum?

• Top bit has value −(2n − 1) (e.g. -32767)

• Two values for zero: initial and computed.

• E.g.

0xffff
0x0001

• Carry is not lost.

19

Endian Independence

Big Endian Little Endian

Hi Lo HiLo
07815 81507

• Hence to compute:

2s complement 1s complement
Big Little Big Little
sum swap sum sum

sum carry carry

• Example:

0x4510 0x1045
0x0050 0x5000
0xB0DB 0xDBB0
0x4000 0x0040
0x363B + 1 0x3C35 + 1

• NB: initial checksum computation assumes header
checksum field zero ⇒ “full” checksum MBZ
(since store complement in header).

20

Checksum Implementation (I)

Here’s how Richard Black implemented it for ARM:

sub r3, r3, #16
loop:

ldmia r2!, {r6-r9}
adds r4, r4, r6
adcs r4, r4, r7
adcs r4, r4, r8
adcs r4, r4, r9
adcs r4, r4, #0
adc r4, r4, #0
subs r3, r3, #16
bxx loop
add r3, r3, #16

Draw your own conclusions.

Exercises for the reader:

1. What should the xx be in “bxx loop”?

2. Why does he add zero twice?

3. What do you need to do to the result before
comparing it with the checksum field in the packet
header?

21

Checksum Implementation (II)

And for x86 (from linux):

static inline unsigned short
ip_fast_csum(unsigned char * iph, unsigned int ihl) {

unsigned int sum;

__asm__ __volatile__("
movl (%1), %0
subl $4, %2
jbe 2f
addl 4(%1), %0
adcl 8(%1), %0
adcl 12(%1), %0

1: adcl 16(%1), %0
lea 4(%1), %1
decl %2
jne 1b
adcl $0, %0
movl %0, %2
shrl $16, %0
addw %w2, %w0
adcl $0, %0
notl %0

2:
"

/* Since the input registers which are loaded with iph and ipl
are modified, we must also specify them as outputs, or gcc
will assume they contain their original values. */

: "=r" (sum), "=r" (iph), "=r" (ihl)
: "1" (iph), "2" (ihl));
return(sum);

}

Lots more examples in linux source, BSD source, or
RFC 1071. . .

22

IP Fragmentation

Datagram
Header

Fragment1
Header

Fragment 2
Header

Fragment 3
Header

Fragment1 (MF=1, offset 0, ID=<id>)

Fragment 2 (MF=1, offset 512, ID=<id>)

Fragment 3 (MF=0. offset 1024, ID=<id>)

512 octets 512 octets 372 octets

512 octets

512 octets

372 octets

1400 octets

IP Packets may be up to 216− 1 bytes in length. To fit
over networks with smaller MTUs they can be
fragmented on eight byte boundaries. Header contains:

• “More Fragments” bit (to let you know that you
need to reassemble)

• Fragment Offset field (multiples of 8) says where
this IP fragment comes in the IP packet.

• ID field (so can put fragments together again).

• Length in header refers to the length of the
fragment (unfortunately. . .).

• Optional “Don’t fragment” bit.

23

IP Reassembly
If receive an ‘incomplete’ IP packet then:

1. Lookup (ID, . . .) in the frag map.

2. If no match found:

• create a new frag list

• map (ID, . . .) to this new list

• start the reassembly timer.

3. Add packet to the relevant fragment list.

4. If all fragments now present, cancel timer, unmap
frag list and present it to upper layer.

5. If timer expires, discard fragment list (and
fragments), and send back an ICMP.

Some questions:

• Why do we leave reassembly to final receiver?

• What value should the reassembly timeout have?

• If two fragments overlap, which bits do you throw
away? Why is this important?

• Which is the best order to transmit fragments?

24

Internet Control Message Protocol

• Internet version of “exceptions”

• Delivered to source of datagram

• Many types, some are:

– echo request / echo reply

– destination unreachable (protocol, port host)

– redirect (only to directly connected host)

– time to live exceeded (to stop infinite cycle)

– cannot fragment

– reassembly failed

– source quench

• Note: ICMP is an example of a layering violation
(although one which is probably justified)

25

UDP
When a packet arrives:

• check header.

• check checksum.

• Search INPCB to get socket(s).

• Add data to socket (may be dropped by socket
buffer code)

• Prod socket (in case of select(), etc.)

To transmit a packet:

• Optionally does a bind()

• Optionally does a connect()

• Builds a UDP header, links on new mbuf.

• Calculates UDP checksum including “pseudo
header” of IP source and destination. Why?

• Optionally disconnects

• Optionally unbinds

Last two stages can cause problems for ICMP delivery.

26

Pseudo Headers
IP checksum field is for the header only.

4 Routers only have to check a little bit.

4 Protocols are free to use whatever check they like.

8 Higher level packets may be indistinguishable from
their headers.

The “end-to end-argument” applies here; higher level
protocol wants to know where the ends are.

• UDP and TCP checksum fields include the
addition of a pseudo header which is never
actually sent in the data.

• Consists of four fields: source, destination, length
and protocol.

• Protects against data and headers being switched
in some bogus router.

• Causes problems for some multi-homed hosts. . .

27

NFS
The Network File System. Is built over Sun RPC and
XDR. One of the “arguments” to the RPC call is disk
data of up to 8K.

⇒ Lots of fragmentation

⇒ Timing retransmissions is a problem

⇒ Only sensible in the local area

⇒ Stateless servers and idempotent requests (at
least once semantics)

⇒ Maps file names to file handles (which contains
device and inode number)

⇒ Locking and coherency is a problem (not done
mostly)

⇒ File handles are frequently guessable — security
concerns.

⇒ Need multiple outstanding requests per client for
performance.

28

Routing
Routing in the Internet is difficult:

• Potentially 221 + 214 + 27 ≈ 221 networks

• No geographical organisation of numbers or
networks (to be fixed in IPv6)

• Rich interconnection

• Policy, security, . . . considerations.

In the beginning it was very simple.

• Single backbone “arpanet”

• Manual control of routing tables at individual sites.

• Default route towards the backbone

• Backbone knows where all the sites are.

• Backbone uses GGP (or equivalent).

29

The ROADS Problem
• Subnetting meant class-B nets being used up

rapidly ⇒ introduced supernetting: allow n
contiguous class-C nets to be handled as one.

• Once done this, trivial extension to deal with
arbitrary length network prefixes.

• This is called classless routing (or CIDR).

Hence routers have routing tables which deal with
networks with variable length prefixes.

Route lookup now involves longest prefix match.

Management Complexity
Individual “sites” became too complex for static
management ⇒ development of autonomous system:

• Set of routers in same organisation, under same
management.

• No policy or security considerations internally. . .

Thus two stage routing is possible:

1. determine the “next AS-hop” (and the relevant
gateway which connects to it)

2. determine how to get there within your own AS.

30

31

The Big Picture

R1

R2

R4

R3

R5

R6 R7

Autonomous System 1
Autonomous System 2

Exterior
Gateways

R8
R9

Autonomous
System 3

R0

Today pretty much everyone uses BGP-4:

• Nominated exterior gateways talk E-BGP with a
peer in another AS.

• Interior gateways talk I-BGP to handle AS route
info (e.g. updates from peers)

• All gateways also talk some interior gateway
protocol (IGP).

• (this is required to underpin BGP)

32

Distance Vector
• Every router discovers which other routers are on

the same networks as it.

• Tells each of them the networks which it knows
how to reach and the distance (in hops) to get
there.

• Listens for updates from them to add to its tables.

• Sends regularly

• If it doesn’t hear for a while then assumes that
router is dead and removes all associated routes
from its table.

• Lots of subtleties in practice . . .

• Respond slowly to change

• Messages can get large.

Converges to correct state (bit like a big distributed
Dijkstra’s algorithm)

Examples:

• RIP

• HELLO

33

RIP
Suppose d(i, j) represents the “distance” (or “metric”)
from i to j. When a message arrives at A from B
advertising a route to C. A calculates d(A,B) +d(B,C).
If this is less than the current d(A,C) or B is the
current next hop for C, then d(A,C) is updated to that
value and B is set up be the next hop for C.

Consider this diagram. What happens when the link
from C to D breaks?

DCBA

DCBA

C must time out the route to D and set the cost to
infinity. It will then believe an advertisement for D
from B.

Packets go round in circles. B and C metrics increase.
This is called “counting to infinity”. How does this get
terminated?

34

Split Horizon

• Never send an advertisement on the same
interface as the current route.

• This would stop B advertising D to C, but doesn’t
solve the problem in general topology.

. . . with poisoned reverse.

• Do send an advertisement but with infinite cost

• Puts packet sizes up again.

• Better, but still get loops.

Triggered updates

• When changing a metric send updates
immediately rather than waiting for next cycle.

• Need to be careful to avoid broadcast storms.

• Has an effect on other routing behaviour

Still get counting to infinity sometimes.

Not a very efficient protocol, but Berkeley made code
available in routed so used quite a bit. Early versions
could only deal with networks, but newer (RIP v2) can
deal with subnets too.

35

Link State

• Every router knows complete topology.

• Every router knows all its peers.

• Each router monitors the aliveness of its
links/peers.

• Routers send information about change in
aliveness of links/peers.

• Messages are small

• Responds quickly to change in working-ness.

• Manual change in configuration

Everyone calculates correct state.

Everyone calculates their own Dijkstra’s algorithm.

Examples:

• Open Shortest Path First (OSPF), developed by
the IETF (see RFC 1247).

• Intermediate-System to Intermediate-System
(IS-IS), originally from the OSI routing suite.

36

BGP-4: Model and Terminology

Backbone service provider

Peering

point

Peering

point

Large corporation

Large corporation

Small

corporation

“Consumer” ISP

“Consumer” ISP

“Consumer” ISP

Define:

• local traffic as traffic that originates or terminates
on nodes within an AS, and

• transit traffic as traffic that passes through an AS.

Then can define the following AS types:

• stub AS: has a single connection to one other AS;
carries local traffic only

• multihomed AS: has connections to more than
one AS but refuses to carry transit traffic

• transit AS: has connections to more than one AS;
carries both transit and local traffic

37

BGP-4: Operation
Each AS has one or more exterior gateways (or border
routers), and at least one BGP speaker.

BGP speakers communicate by sending messages over
TCP; there are four different message types:

• OPEN: this is used to initialise a BGP session
between peers

• KEEPALIVE: a simple ‘ping’ to check if the BGP
session is alive

• NOTIFICATION: used for error reporting.

• UPDATE: used to advertise or withdraw prefixes

Algorithm is path vector : essentially distance vector,
but deals with complete paths rather than single hops.
That is, advertisements look a bit like:

128.232.2/18 is reachable via {AS1203, AS20, AS42}
In general the shortest AS-path advertised for a prefix
will be used.

Each path can also include attributes such as:

• LOCAL-PREF: a locally valid metric,

• MULTI-EXIT-DISCRIMINATOR (MED): which
exterior gateway to use to get to the first AS.

38

Routing: Summary

In the modern world, IP addresses are essentially
classless: i.e. networks are represented by a prefix.

At least three different kinds of ‘routing’ take place:

1. End-systems use subnetting, default routes and
(perhaps) ICMP redirection and/or RIP snooping

2. Interior gateways use an IGP (typically RIP or
OSPF) for intra-domain routes:

• typically concerned with efficient use of
network capacity

• policies/metrics reflect internal load ⇒ routes
are typically symmetric.

• unaware of other ASs.

3. Exterior gateways use an EGP (typically BGP-4)
for inter-domain routes:

• (almost) unaware of interior structure

• concerned with loop-free paths.

• policies/metrics reflect economic cost ⇒
routes tend to be asymmetric.

Key to performance is building efficient forwarding
information bases (FIBs) from routing tables.

39

TCP
TCP is the most important of the internet protocols.
Sufficiently so that most “suits” don’t realise there’s a
difference between TCP and IP.

Why?

• Only standard protocol with built in error-recovery

• Only standard protocol with built in flow-control

• Only standard protocol with built in
congestion-control

• Used for email.

• Used for telnet and rlogin.

• Used for ftp.

• Used for the web.

A connection is identified by the pair of endpoints.
Servers may accept multiple connections from different
clients to the same port number. This leads to well
known service ports for various purposes. See
/etc/services.

A connection is full duplex with ACKs and control
potentially piggy-backed on data messages flowing in
the other direction.

It measures the network to determine how fast to
send, flow control is simplex.

40

TCP State Diagram

CLOSED

LISTEN

SYN
SENT

CLOSE
WAIT

LAST
ACK

ESTAB-
LISHED

SYN
RCVD

FIN-
WAIT1

FIN-
WAIT2

TIME
WAIT

CLOSE

fin/ack

fin/ack

fin/ack

close()/fin

close(),
timeout()

/ reset

listen()/
close()/

connect()
/syn

send()/syn

syn/
syn+ack

close()
/fin

rst/ syn/
syn+ack

ack/

syn+ack
/ack

ack /

ack/ ack/
fin+ack
/ ack

close()
/fin

timeout()/

41

Arcs show input causing transition and generated
output. See RFC (or – better – books) for full details.

(Note that TCP supports bidirectional connect. This
is never used in practice.)

Connection tear-down is subtle:

Host A Host B

Send FIN seq=x

Receive FIN
Send ACK x+1
(tell application)

Receive ACK

Receive FIN|ACK

Send ack y+1

(app invokes close()
Send FIN seq=y, ACK x+1

Receive ACK

A TCB (TCP Control Block) is kept as well as a
INPCB for management of all the TCP specific states,
retransmissions, and timers etc, etc, etc.

INPCB and TCPCB allocated as soon as SYN arrives
– problem?

42

Maximum Segment Size
You want to send data in packets as large as possible
to amortise per-packet overheads, but a very large
packet may get fragmented.

If a TCP packet gets fragmented and one of the
fragments gets lost then the whole packet will have to
be sent again - a waste of bandwidth (because TCP
retransmits data for reliability on a per-packet basis).

So, to be efficient, TCP needs to know the MSS it can
use without causing fragmentation. Worse, this can
change because packet routes can change.

So it guesses. Looks at underlying network likely to be
used, looks at routing information. Tries to predict if
remote machine is on same net or not. If so uses MTU
of interface, if not uses 576. Typically signal MSS to
peer during connection setup.

This is an example of where layering must be violated
for sensible implementation reasons.

Various techniques for determining the “current” MTU
across the network exist. See RFCs for details.

43

Acknowledgements
Acknowledgements:

• Are cumulative. Specify next byte in entire stream.

• May be lost without causing retransmissions

• May arrive out of order

• Do not indicate additional data arrived — i.e.
holes.

Sender must decide how much data to re-transmit.

• All data from indicated point?

• Just one packet worth?

Which does TCP use?

When does it do it?

44

Retransmission
Deciding when to retransmit a segment of data is
crucial to the operation of TCP.

How long do you wait for the absence of an ACK
before transmitting again? Need to know an estimate
for round trip time. Can vary from < 1ms in the LAN
to > 1s in the WAN. Factors:

• Physical distance

• Bandwidth delays

• Congestion delays

• Routing changes

• Congestion changes

Some examples from bescot.cl.cam.ac.uk:

• labes.cl.cam.ac.uk: 0% packet loss.
round-trip (ms) min/avg/max = 0/0/0

• anugpo.anu.edu.au: 53% packet loss.
round-trip (ms) min/avg/max = 473/491/546

TCP operates by using an adaptive retransmission
algorithm.

45

Adaptive Retransmission (I)
Initial Algorithm

• Monitor the RTT using weighting:

EstimatedRTT = α×EstimatedRTT +
(1− α)×SampleRTT

• Timeout based on this:

Timeout = β×EstimatedRTT

How to associate ACKs with Packets? An ACK states
where in the stream receiver has got to, not which
packet put it there. For a retransmitted packet which
time interval do you take t1 or t2 ?

t1
t2

Answer?

This is the Karn/Partridge Algorithm: update RTT
only with ACKs for unambiguous segments; in the
absence of RTT samples:

Timeout = γ×Timeout
What values to use for α, β and γ?
Common choices are α = 0.9, β = 2, γ = 2.

46

Adaptive Retransmission (II)
Problems with high variance due to load.
E.g. queueing theory suggests that

σ ∝ 1

1− L
where σ is the variation in round trip time and L,
0 ≤ L ≤ 1, is the load on the network.

⇒ using β = 2 means can only handle situations where
most packets arrive within a factor of 2 of the RTT.
This corresponds to a load of only 30%. . .

So a new algorithm (Jacobson/Karels):

Difference = SampleRTT - EstimatedRTT
EstimatedRTT = EstimatedRTT +δ×Difference
Deviation = Deviation +ρ× (|DIFF|−DEV)
Timeout = EsimatedRTT +η×Deviation.

What is the relation between α and δ ?

Choose values of delta = 2−3, ρ = 2−2 and η = 2,3,4

The above algorithm can then be executed very
efficiently using scaled integer arithmetic.

47

Push
For an idle session, don’t normally send data until a
full packet’s worth is waiting.

• Good for bandwidth

• Bad for telnet

Push operation allows sender to override this
behaviour.

Silly Window Syndrome
Consider code like this:

do read(fd, &c, 1); while(f(c));

What will this do on the network?

Three ways to avoid this:

1. Delayed window advertisements. When opening
the window from zero, don’t advertise until the
minimum of one MSS or 1

2
of buffer space.

2. Delayed ACKs. When receiving data, delay an
ACK for at most one clock if the window is “too
small”.

3. Nagle’s algorithm: When sending, don’t send less
than a full MSS if there is data outstanding.

48

Congestion Collapse
Until now we’ve assumed packet loss was “random”
(e.g. transmission errors) ⇒ retransmitting packets as
soon as possible is a good idea.

But suppose there is congestion in the network?

⇒ packets will be queued at some router

⇒ ACKs will take longer to come back

⇒ sender will timeout and retransmit

⇒ additional packets added to queue

⇒ congestion is worsened

This is a positive feedback loop ⇒ a BAD thing.

Hence need to manage congestion. This can be done
at one or both of the following:

1. in hosts at edge of network (transport protocol)

2. at routers within the network (queueing discipline)

49

Queueing Disciplines (I)
Each router in the network implements a queueing
discipline. This comprises two parts:

1. a scheduling discipline: determines the order in
which packets are transmitted.

2. a drop policy: chooses which packets are dropped.

Most widely used discipline is FIFO with drop-tail,
which implements a best-effort service. In this case,
congestion control must take place at the edges.

Can add differentiation by using priorities, e.g.

• use TOS field in the IP header to distinguish
between e.g. high and low priority packets.

• have one FIFO queue per priority level

• serve queues in strict priority order.

Problems:

• starvation of low priority packets

• (and no well defined incentive to use them)

• no guarantees about behaviour ⇒ doesn’t help us
with managing congestion.

50

Queueing Disciplines (II)
A better scheme might be fair queueing (FQ):

• have one FIFO queue per flow (' set of packets
comprising single connection)

• service queues in a round-robin fashion

⇒ not possible for a single (ab)user to steal more
than 1/nth of the link.

Points to note:

• doesn’t specify a particular drop policy, but can
assume drop-tail per (fixed-sized) queue.

• cost of classifying flows may be non-trivial
(although can apply to traffic classes instead)

• still need to do end-to-end congestion control
(since n varies with time and location) but at least
not worried about ‘driller-killers’ or ‘turbo TCP’

• trivial extension to weighted fair queueing (WFQ)
also allows flow differentiation.

WFQ coming soon to a router near you. . .

51

TCP Congestion Control
Basic idea:

• assume as little as possible (i.e. best-effort
network with FIFO or FQ)

• require each source to detect congestion, and to
adjust its transmission rate accordingly.

Can be split into two sub-problems:

1. determining the available capacity in the first place

2. adjusting to changes in the capacity.

For the latter, introduce idea of a congestion window :
an upper bound on utilised advertised window, i.e.

swin = MIN(awin, cwin)

Then if congestion increases, reduce cwin; if
congestion decreases, increase cwin.

For the former, assume that any packet loss signals
congestion. Hence if lose a packet, reduce cwin.

This will prevent the positive feedback problem.

52

Additive Increase,
Multiplicative Decrease

Source

Destination

By how much should we increase/reduce cwin? TCP
uses additive increase, multiplicative decrease (AIMD):

• Increment cwin by one packet per RTT; or, in
practice, increment cwin a little for every ACK
received, e.g. cwin = cwin + (MSS * (MSS/cwin));

• Divide cwin by two whenever a timeout occurs

This gives us the characteristic “sawtooth” of TCP:

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

10.0

53

Slow Start
Additive increase is fine when we’re near the correct
operating point. But it takes too long to ramp up a
connection starting from scratch.

Hence TCP uses (badly named) slow start:

• When starting a new connection increment the
congestion window for every received ACK.

• Only log2 n RTTs to open window to size n.

That is, increases congestion window exponentially
rather than linearly:

Source

Destination

Slow start is also used for congestion recovery :

• when timeout, set ssthresh = swin/2; cwin = MSS;

• use slow start to reopen cwin until hit ssthresh

• once hit ssthresh, move to additive increase.

54

An Example
The below plots the congestion window of a TCP connection over
time. Short bars represent packets being transmitted; long bars
represent packets which will be lost; bullets represent timeouts

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

Several points to note:

• rapid increase at the beginning (slow start).

• congestion avoidance after timeout at ∼2s, but
then more losses ⇒ moves to additive mode.

• after timeouts at ∼5.5s and ∼8s:

– ssthresh set to swin/2, cwin set to MSS,

– slow start up to ssthresh, then linear until loss

– flat until timeout

55

Fast Retransmit & Recovery
So far seem ’original’ form of TCP congestion control.
One obvious problem: coarse timeouts ⇒ idle periods.

To solve this use fast retransmit:

• observe that receiver generally emits an ACK for
every packet received.

• if loss or reordering occurs, cannot bump ACK
value ⇒ receiver will issue a duplicate ACK.

• if receive k duplicate ACKs, assume loss and
initiate retransmit (in practice, k is 3)

Can improve even more by using ACKs still in pipe to
clock out data:

• when congestion signalled via duplicate ACKs, set
ssthresh = swin / 2; cwin = ssthresh + 3*MSS

• each time another duplicate ACK is received,
increment cwin and send another packet if allowed

• when a ‘real’ ACK arrives, set cwin = ssthresh and
resume additive increase.

This is called fast recovery.

56

Example w/ Fast Retransmit
The below plots the congestion window of a TCP connection over

time. Short bars represent packets being transmitted; long bars

represent packets which will be lost; bullets represent timeouts

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

Time (seconds)

70

30
40
50

10

Notice that most “long flat’ periods now removed.

It is not possible to avoid all timeout situations:

• if window is small (or loss large), then won’t have
3 correctly received packets!

• this particularly affects initial slow start.

57

Avoiding Congestion
TCP attempts to control congestion when it occurs.

An alternative strategy is to attempt to avoid
congestion occurring in the first place; e.g. packet
marking in DNA:

• reserve a bit (the “DECbit”) in the packet header.

• a router sets this bit if it is ‘congested’: that is, if
the average queue length is ≥ 1.

• (average queue length is measured over last
busy/idle cycle, plus current busy cycle)

• receiver copies the bit into its ACK

• sender adjusts its congestion window as follows:

– if ≥ 50% of the last window’s worth of packets
had the bit set, set cwin = 0.875 * cwin;

– otherwise, set cwin = cwin + MSS;

• (this is just AIMD again with different values)

Advantage: no loss is required to detect (and react to)
congestion. A similar scheme - “explicit congestion
notification” (ECN) - is currently proposed for TCP.

58

Random Early Detection

1.0

maxP

minLen maxLen

avgLen

P(drop)

Shceme proposed for the Internet by Floyd/Jacobson:

• like DECbit, each router monitors its queues to
detect imminent congestion

• unlike DECbit, the router by default drops packets
rather than mark them

Intuitively: hope to get TCP streams backing off
‘earlier’ than normal, and hence control load.

Decision on when to drop/mark also different:

• RED computes an average queue length using a
weighted running average:

avgLen = (1-w) * avgLen + (w * sampleLen}

• Uses 2 threshholds minLen ≤ maxLen and probability
maxP < 1 to probabilistically drop packets.

• choice of parameters non-trivial. . .

59

TCP Vegas: Intuition
Three graphs synchronised in time; top: congestion window;

middle: observed throughput; bottom: buffer space at router.

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

K
B

Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300
100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

Se
nd

in
g

K
B

ps

1100

500
700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

ue
ue

 s
iz

e
in

 r
ou

te
r

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Observe shaded area: congestion window increases,
throughput doesn’t — since a queue is building.

60

TCP Vegas: Algorithm
First define a flow’s BaseRTT to be the RTT of a
packet when the flow is not congested. Then:

ExpectedRate = CongestionWin / BaseRTT

In practice we don’t know BaseRTT, so we use the
smallest sample RTT ever observed for this flow.

We also compute ActualRate by:

• Noting when a given (distinguished) packet is sent

• Counting the number of bytes sent until the ACK
is received.

• Dividing by the sample RTT.

Compute Diff = ExpectedRate - ActualRate ; we know
that Diff is ≥ 0 by definition of BaseRTT.

Define two threshholds α < β (intuitively corresponding
to having ‘too little’ or ‘too much’ data in the network)

• if Diff < α, we linearly increase CongestionWin

• if Diff > β, we linearly decrease CongestionWin

• otherwise we leave CongestionWin alone.

Use multiplicative decrease iff a timeout occurs.

61

TCP Vegas: Behaviour
Two graphs synchronised in time; top: congestion window;

bottom: expected (blue line) and actual (black line) throughput.

The shaded area is the region between the α and β threshholds.

70
60
50
40
30
20
10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

C
A

M
 K

B
ps

240
200
160
120
80
40

Time (seconds)

Points to notice:

• Linear increase and linear decrease.

• Much smoother — no sawtooth!

62

Congestion: Summary

• One of the major problems with the Internet
today (and source of many papers):

– essentially all packet loss is due to congestion

– unless have sensible queueing disciplines, abuse
is possible (why play the game?)

• Simple AIMD scheme works to a certain extent,
but does require repeated packet loss

• Explicit marking schemes combined with policing
routers may allow us to avoid (most) packet loss.

• TCP Vegas is saner, and much more friendly —
perhaps too much so?

• Congestion pricing scheme is yet another approach
(as will be discussed later in the course)

• Still no guarantees. . .

63

Conclusion
“The Internet is a crock”:

• lots of things can go wrong:

– IP Spoofing

– SYN attacks.

– Open UDP ports.

– Ping-of-death.

– Teardrop

– . . .

• Implementation is tricky.

• QoS is pretty non-existent.

• Economics are poorly understood.

But: it’s still one of the best (only?) things going. . .

64

