
Digital Electronics (Part 2)

Computer Laboratory

Part Ia, Part II (General) and Diploma in Computer Science

Copyright c© Simon Moore, University of Cambridge, Computer Laboratory, 2003



Contents

Lecture notes:

9 LSI components and memories

10 Programmable logic devices

11 Asynchronous state machines

Datasheets:

• HCMOS family characteristics

• 74HC193 (counter)

• HT6166-70 (SRAM)

• GAL16V8 (PAL)



Lecture 9 — LSI components and memories
Contents:

� 74HC series chips

� SRAM

� address, data and control signals

� tristate

Example: 74HC193 counter chip
� referring to 74HC193 datasheet, note:
� general description
� pin out & pin definitions
� function table
� timing information
� parallel load function

HCMOS family characteristics
� referring to HCMOS family datasheet pages 2 & 4:
� power supply tolerances
� valid input/output voltages and noise margins

Noise Margins

supply voltage
worst case

output voltage worst case
input voltage

noise margin

ground

worst case
output voltage

worst case
input voltagenoise margin

logic-1

logic-0

Memories
� store data in a volatile way (e.g. SRAM) or non

volatile (e.g. FLASH, EEPROM, ROM)
� signals:
� address bus — n bits which specify which

location in memory is being referred to
� data bus — m bits of bidirectional tristate bus

transmitting data to be read/written
� WE — not write enable — determines whether

data is to be read (1) or written (0)
� OE — not output enable — determines if data is

to be output (0) or not (1)
� CS — not chip select — determines if the chip is

to be activated (0) or not (1).

Tristate drivers

outputOE

data_in

� when OE (output enable) is low the output is tristate

Datasheet: HT6116 SRAM
� referring to the HT6116 datasheet:
� address and data buses
� control signals
� timing

Supervision Work
� design a 3–of–8 address decoder (i.e. 3 bits of

address which decode to 8 word lines)

� design the state machine for workshop 4



Lecture 10 – Programmable Logic Devices
Contents:

� ROMs

� PALs

� FPGAs

ROMs – Overview
� ROM = Read Only Memory

� implements a table lookup where an address
specifies a row in the table which holds the data

� for n bits of address we need 2n rows in our table

� the n bits of address are decoded to 2n word lines

� for m bit wide data the, size of a ROM =O(m× 2n)

ROMs – array structure

address
decoder

pull-ups

word line = 1000

word line = 1100

word line = 0010

word line = 0100

amplifiers (buffers)

bit line outputs (data)

address
bits Notes:

2 address bits
4 data bits
so 2^2x4 = 16 bits

PALs – basic structure

da
ta

 o
ut

two input bits

fuse link
intact

fuse link
blown

AND plane

OR plane

PALs – notes on datasheet
� page 1 shows the top level functionality and chip pin

layout
� page 3 describes the Output Logic Macrocell which

can emulate a wide range of old PAL devices
� page 4 shows the fixed OR plane, with our without

DFF
� page 5 shows the extensive AND array structure

which means that the fixed OR structure does not
limit functionality

� pages 6–9 describe other modes (removed from
handout)

� pages 11–13 contain the timing information
(removed from handout)

PALs vs ROMs
� scaling issues:
� ROM size is proportional to O(2address−bits)

� PALs size is proportional to the number of terms
that can be defined

FPGAs
� FPGA = Field Programmable Gate Array

� contains a sea of programmable wiring and function
units controlled by memory bits which hold the
program

� function units are typically 4 input, 1 output lookup
tables with an optional DFF on the output

� more in Structured Hardware Design and ECAD

Supervision Work
� design determine the PAL equations for the state

machines in workshops 2 & 3



Lecture 11 — Asynchronous Logic
Contents:

� asynchronous FIFO buffer design

� signal transition graphs

� C-elements

Synchronous vs asynchronous circuits
� Synchronous (clocked) circuits
� discrete time provided by the clock
� state is usually held in clocked flip-flops
� typically no loops in combinational logic (no

feedback)
� easy to design in the small but can be problematic

in the large
� Asynchronous circuits
� continuous time
� state is held in none clocked flip-flops
� state holding elements often formed from

combinational logic with loops (logic with
feedback)

� complex to design in the small but composes
simply in the large

Fairbanks Scale: timing assumptions

more timing assuptions

delay insensitive (DI)
no timing assumptions

speed independent (SI)
assumes no wire delays

clocked
assumes that time
can be simultaneously
distributed

bundled data (BD)
assumes data and
associated control signals
travel together

mesochronous
plesiochronous
hetrochronous
assume multiple clocks
with a range of phase &
frequency relationships

quasi delay insensitive (QDI)
assumes forked wires have
the same delay (are isochronous)

Data signalling
� communication often required between a producer

and a consumer which may be run from the same
clock but produce/consume data at different rates

� signalling required for flow control to avoid data loss

� delay insensitive signalling guarantees that the
consumer has consumed data before the producer
produces more data
� i.e. the producer waits until it has been

acknowledged by the consumer
� useful for synchronous design
� vital for asynchronous design since there is no

other mechanism (e.g. a clock) to ensure data
ordering

Example problem: Synchronous FIFO
� FIFO (First In First Out) buffers are often used to

provide decoupled communication

� assume we have the following basic one place buffer
arrangement:

control logic
(state machine)

n n

request_in (Rin)

acknowledge_in (Ain)

request_out (Rout)

acknowledge_out (Aout)

full (f)

enable

clock

data_in data_out

Sync. FIFO: Environment rules
� we will use 4-phase level signalling on the input:
� if Ain=0 then at some point Rin may go high
� when Rin=1 then we expect Ain to go high

eventually
� if Ain=1 then at some point Rin may go low
� when Rin=0 then we expect Ain to go low

eventually

� storage assumption: when Ain=1 we assume that
the data has been latched

� similarly on the output side

Signal Transition Graph Snippets
� STGs specify the signal ordering rather than

particular states

� STG snippets can specify requirements

input rule output rule storage rules

Rin+

Ain+

Rin-

Ain-

Aout-

Rout+

Aout+

Rout-

Rin+

f+

Aout+

f+ f-

f+

circuit response
environment response

key

Sync. FIFO: State transition graph

f=0 f=1 Rin + AoutRin + Aout

Rin.Aout

Rin.Aout

� note that Ain=Rout=f in this example



Sync. FIFO: State table
current state next state
f Rin Aout f’=Ain=Rout
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Sync. FIFO: K-map for f

Rin=1
Aout=1

f=1 1 1

00

1

01

0

f’=

� f ′ = Rin.Aout + f.Rin + f.Rout

� note:
� glitch free function of f’ if just one input changes

at a time
� the environment rules specify that just one input

changes at a time
� so do we need a DFF between f’ and f?

Sync to Async
� the signal transition graph for our f asynchronous

state machine is below

� this satisfies the STG snippets

input outputstorage

Rin+

Ain+

Rin-

Ain-

Aout-

Rout+

Aout+

Rout-

f+

f-

Gate level implementation

Rin

Aout

f

feedback wire

Muller C-element
� the function f we’ve just created is actually a Muller

C-element with one input inverted

� the C-element is a little known latch designed by
Muller in the 1950s

� truth table:
inputs output
a b c’
0 0 0
0 1 c
1 0 c
1 1 1

RS latch implementations
� we could have implemented f using an RS latch with

the following input functions:
S = Rin.Aout
R = Rin.Aout

� the S input function determines the input
combinations in the on-set

� the R input function determines the input
combinations in the off-set

� for a valid asynchronous state machine:
� the input transitions must only respond when the

state is appropriate
� the on-set and off-set should be disjoint and be

implemented with glitch free functions

Timing assumptions for async. FIFO
� the data must arrive before the request

� delay-lines (e.g. chains of inverters) are typically
added in the request (Rout to Rin)

asynchronous
control logic

n

Rin

Ain

f

data_in

asynchronous
control logic

n n

Rout

Aout

f

data_out

delay line

Supervision Work
� if n asynchronous FIFO storage elements from this

lecture were connected together, how many data
items could we store?

� hard problem: how could we improve the FIFO
storage?

� suggested exam. questions useful for a revision
supervision:
2001 Paper 2 Questions 2 and 3
2001 Paper 10 Question 1 parts a to e
2002 Paper 2 Question 2
2002 Paper 10 Question 1
2003 Paper 2 Questions 2 and 3
2003 Paper 10 Question 1


	Lecture 9 --- LSI components and memories
	Example: 74HC193 counter chip
	HCMOS family characteristics
	Noise Margins
	Memories
	Tristate drivers
	Datasheet: HT6116 SRAM
	Supervision Work
	Lecture 10 -- Programmable Logic Devices
	ROMs -- Overview
	ROMs -- array structure
	PALs -- basic structure
	PALs -- notes on datasheet
	PALs vs ROMs
	FPGAs
	Supervision Work
	Lecture 11 --- Asynchronous Logic
	Synchronous vs asynchronous circuits
	Fairbanks Scale: timing assumptions
	Data signalling
	Example problem: Synchronous FIFO
	Sync.~FIFO: Environment rules
	Signal Transition Graph Snippets
	Sync.~FIFO: State transition graph
	Sync.~FIFO: State table
	Sync.~FIFO: K-map for f
	Sync to Async
	Gate level implementation
	Muller C-element
	RS latch implementations
	Timing assumptions for async.~FIFO
	Supervision Work

