Provable Intractability

Our aim now is to show that there are languages (or, equivalently, decision problems) that we can prove are not in \(P \).

This is done by showing that, for every reasonable function \(f \), there is a language that is not in \(\text{TIME}(f(n)) \).

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.

Constructible Functions

A complexity class such as \(\text{TIME}(f(n)) \) can be very unnatural, if \(f(n) \) is.

From now on, we restrict our bounding functions \(f(n) \) to be proper functions:

Definition

A function \(f : \mathbb{N} \to \mathbb{N} \) is constructible if:

- \(f \) is non-decreasing, i.e. \(f(n+1) \geq f(n) \) for all \(n \); and
- there is a deterministic machine \(M \) which, on any input of length \(n \), replaces the input with the string \(0^{f(n)} \), and \(M \) runs in time \(O(n + f(n)) \) and uses \(O(f(n)) \) work space.

Examples

All of the following functions are constructible:

- \(\lfloor \log n \rfloor \);
- \(n^2 \);
- \(n \);
- \(2^n \).

If \(f \) and \(g \) are constructible functions, then so are \(f + g, f \cdot g, 2^f \) and \(f(g) \) (this last, provided that \(f(n) > n \)).

Using Constructible Functions

Recall \(\text{NTIME}(f(n)) \) is defined as the class of those languages \(L \) accepted by a nondeterministic Turing machine \(M \), such that for every \(x \in L \), there is an accepting computation of \(M \) on \(x \) of length at most \(O(f(n)) \).

If \(f \) is a constructible function then any language in \(\text{NTIME}(f(n)) \) is accepted by a machine for which all computations are of length at most \(O(f(n)) \).

Also, given a Turing machine \(M \) and a constructible function \(f \), we can define a machine that simulates \(M \) for \(f(n) \) steps.
Time Hierarchy Theorem

For any constructible function f, with $f(n) \geq n$, define the f-bounded *halting language* to be:

$$H_f = \{ [M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$$

where $[M]$ is a description of M in some fixed encoding scheme.

Then, we can show

$H_f \in \text{TIME}(f(n)^3)$ and $H_f \not\in \text{TIME}(f(|n|/2))$

Time Hierarchy Theorem

For any constructible function $f(n) \geq n$, $\text{TIME}(f(n))$ is properly contained in $\text{TIME}(f(2n+1)^3)$.

Strong Hierarchy Theorems

For any constructible function $f(n) \geq n$, $\text{TIME}(f(n))$ is properly contained in $\text{TIME}(f(n)(\log f(n)))$.

Space Hierarchy Theorem

For any pair of constructible functions f and g, with $f = O(g)$ and $g \neq O(f)$, there is a language in $\text{SPACE}(g(n))$ that is not in $\text{SPACE}(f(n))$.

Similar results can be established for nondeterministic time and space classes.

Consequences

- For each k, $\text{TIME}(n^k) \neq \text{TIME}(n^{k+1})$.
- $P \neq \text{EXP}$.
- $L \neq \text{PSPACE}$.
- Any language that is EXP-complete is not in P.
- There are no problems in P that are complete under linear time reductions.

P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P.

There are problems that are complete for P with respect to logarithmic space reductions \leq_L.

One example is CVP—the circuit value problem.

- If $\text{CVP} \in L$ then $L = P$.
- If $\text{CVP} \in NL$ then $\text{NL} = P$.