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Abstract

This paper introduces PIC, a practical coordinate-based
mechanism to estimate Internet network distance (i.e.,
round-trip delay or network hops). Network distance es-
timation is important in many applications, for example,
network-aware overlay construction and server selec-
tion. There are several proposals for distance estima-
tion in the Internet but they all suffer from problems that
limit their benefit. Most rely on a small set of infrastruc-
ture nodes that are a single point of failure and limit
scalability. Others use sets of peers to compute coordi-
nates but these coordinates can be arbitrarily wrong if one
of these peers is malicious. While it may be reasonable to
secure a small set of infrastructure nodes, it is unreason-
able to secure all peers. PIC addresses these problems:
it does not rely on infrastructure nodes and it can com-
pute accurate coordinates even when some peers are mali-
cious. We present PIC’s design, experimental evaluation,
and an application to network-aware overlay construc-
tion and maintenance.

1. Introduction

An efficient mechanism to estimate distance in the Inter-
net could benefit many large scale distributed applications.
For example, the performance of overlay networks can be
greatly improved by exploiting information about the un-
derlying network but the cost of sending probe messages to
estimate distances can be significant (e.g., [14, 24, 30]).

This paper introduces PIC, a practical coordinate-based
mechanism to estimate distances in the Internet. PIC assigns
a point in a d-dimensional Euclidean space to each node and
uses the distance between two points in the space as an es-
timate of the network distance between the corresponding
nodes. Nodes compute their coordinates in the Euclidean
space when they join the system. Given the coordinates for
two nodes, any node can predict the distance between them.

In the last few years there has been much interest in this
area, but previous proposals for network distance estima-
tion suffer from problems that limit their practicality. Most

proposals [9, 17, 13, 22] rely on a small set of infrastruc-
ture nodes that are a single point of failure and can limit
scalability if they become communication bottlenecks. For
example, GNP [17], which pioneered coordinate-based dis-
tance estimation, uses a set of fixed landmark nodes that are
probed whenever a node joins the system.

Other proposals [28, 19, 8] use sets of peer nodes in the
system to compute each node’s coordinates but they are vul-
nerable to malicious peers that can cause coordinates to be
arbitrarily wrong. While it may be reasonable to secure a
small set of infrastructure nodes, it is unreasonable to as-
sume that no peers will behave maliciously.

PIC addresses these problems. It scales well because it
does not rely on infrastructure nodes; any node whose coor-
dinates have already been computed can act as a landmark.
Therefore, it can distribute communication and computa-
tion load evenly over all the nodes in a system. Addition-
ally, it computes coordinates efficiently and we describe a
technique for choosing landmark nodes that can predict dis-
tances as accurately as GNP. Finally, PIC can compute ac-
curate coordinates even when some peers are malicious.

The rest of the paper is organised as follows. Section 2
describes PIC and presents some results. Section 3 describes
how to implement PIC efficiently. Section 4 describes and
evaluates the PIC approach to security and Section 5 dis-
cusses an application of PIC in proximity-aware overlays.
Section 6 presents related work and Section 7 concludes.

2. PIC coordinate computation

PIC maps each node to a point in a d-dimensional Eu-
clidean space. When a node n joins the system, it com-
putes the coordinates of its corresponding point. It probes
the network distance to each element of a set of landmarks,
L, where L must have at least d + 1 members. Then it ob-
tains the coordinates of each landmark, and uses a multi-
dimensional global optimization algorithm (e.g., Simplex
Downhill [16]) to compute its coordinates such that the er-
rors in the |L| predicted distances between n and each node
in L are minimized. The errors are computed using the mea-
sured and estimated distances. The probe could use ICMP,
application-level round-trip time, or number of IP hops.



This is similar to GNP [17] but GNP uses a fixed set L for
all the nodes that join the system.

In PIC, the joining node can pick any node whose coor-
dinates have already been computed to be a landmark. Let
N be the set of nodes whose coordinates have already been
computed. When a node n joins the system, it can select
any set L that is a subset of N with size |L| > d. We exper-
imented with three different strategies to choose L:

• random: pick the elements of L randomly with uni-
form probability from N ;

• closest: pick the elements of L to be the elements of N

closest to n in the network topology;

• hybrid: pick some elements as in random and others as
in closest.

We define L for a node n to be the union of two sets Lr

and Lc. The elements in Lr are chosen randomly from N ,
whilst the elements in Lc are the |Lc| members of N which
are closest to node n in the network.

When bootstrapping the behaviour of the system is
slightly different. If |N | < |L|, n selects all the nodes in N .
Then it obtains the measured distances between all pairs of
nodes in N (a |N |× |N | matrix). In this case, the global op-
timization algorithm computes new coordinates for all the
nodes in N by minimizing the error in the predicted dis-
tances between all pairs of nodes in N ∪ {n}.

We use the Simplex Downhill [16] algorithm to compute
coordinates as in [17]. We experimented with several tar-
get error functions to minimize. The one that performed the
best was the sum of the squares of the relative errors:

|L|
∑

i=1

(
dm

i − d
p
i

dm
i

)2

where, dm
i is the distance measured between node n and the

ith node in L and d
p
i is the distance predicted between node

n and the ith node in L.
The intuition behind the different strategies to choose L

in PIC is the following. The closest strategy should pro-
vide the Simplex algorithm with better information to po-
sition the joining node correctly in the Euclidean space rel-
ative to nearby nodes in the network. The random strategy
should provide the Simplex algorithm with better informa-
tion to position the joining node correctly in the Euclidean
space relative to distant nodes in the network. Therefore,
the closest strategy should achieve lower relative errors
when predicting short distances whereas the random strat-
egy should achieve lower relative errors when predicting
long distances. The hybrid strategy should achieve some-
thing in the middle. The experimental results in the next
section confirm this intuition and show that the hybrid strat-
egy achieves lower relative errors than the other strategies.

The current version of Lighthouses [19] uses the random
strategy to select L. The closest strategy is similar to the ap-
proach used in Mithos [28].

The closest and hybrid strategies require a mechanism to
find the closest nodes to a node in the network. This can
be done in several ways, e.g., using expanding ring multi-
cast or the algorithms described in [15, 28, 2, 3, 12]. In Sec-
tion 3, we describe an efficient closest node discovery algo-
rithm. The algorithm to find the closest nodes in Mithos is
significantly more expensive than ours.

2.1. Experimental evaluation

We ran a number of experiments to evaluate the differ-
ent strategies to pick landmarks in PIC and to compare them
with GNP.

2.1.1. Experimental setup The experiments used net-
work distance data from the following three network
topologies. In each topology, there is a core set of routers
and we ran PIC on 40,000 end nodes that were ran-
domly assigned to routers in the core with uniform proba-
bility. Each end node was directly attached by a LAN link
with a 1ms delay to its assigned router.
GATech is a transit-stub topology generated with the Geor-
gia Tech [29] random graph generator. This network topol-
ogy has 5050 routers arranged hierarchically. There are 10
transit domains at the top level with an average of 5 routers
in each. Each transit router has an average of 10 stub do-
mains attached, and each stub has an average of 10 routers.
The network distance in this topology is round-trip delay.
The delay between routers is computed by the graph gen-
erator and routing is performed using the routing policy
weights of the graph generator. As in the real Internet, the
triangle inequality does not hold for all round trip times
among end nodes in this topology.
Mercator is a topology with 102,639 routers and it was ob-
tained from real measurements of the Internet using the
Mercator system [10]. The authors of [27] used real data
and some simple heuristics to assign an autonomous system
to each router. The resulting AS overlay has 2,662 nodes.
Routing is performed hierarchically as in the Internet. A
route follows the shortest path in the AS overlay between
the AS of the source and the AS of the destination. The
routes within each AS follow the shortest path to a router
in the next AS of the AS overlay path. The network dis-
tance in this topology is the number of hops in the route.
CorpNet is a topology with 298 routers and is generated us-
ing real measurements of the World-Wide Microsoft Cor-
porate network. The network distance in this topology is
the minimum round-trip delay.

We experimented with different values for the number
of landmarks and dimensions. Increasing the number of di-
mensions improves accuracy for GNP and all PIC strate-
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Figure 1. Cumulative distribution of relative
errors over random distances in GATech.

gies but we did not observe any benefit above 12 dimen-
sions. Increasing |L| also improves accuracy for GNP and
the random strategy but has little effect for closest and hy-
brid. The experiments described here used d = 8 dimen-
sions and |L| = 16 landmarks.

GNP relies on a fixed set of landmarks so its accuracy
is very sensitive to their placement in the network. To pro-
vide a fair comparison between PIC and GNP, we ran an op-
timization procedure to determine the best landmark place-
ment for GNP on each topology. We ran 100 different GNP
experiments with 1,000 nodes, 1,000 test distances, and dif-
ferent randomly picked sets of landmarks L. The mean rela-
tive error in these experiments varied significantly: it varied
between 0.17 and 0.29 in GATech, between 0.17 and 0.23
in Mercator, and between 0.11 and 0.32 in CorpNet. The re-
sults that we present for GNP were obtained using the land-
marks that produced the minimum average relative error.
The average relative error obtained using PIC did not vary
significantly across these experiments, which is a desirable
property.

2.1.2. Results Figures 1, 2, and 3 show the cumulative
distribution of relative errors in 100,000 random test dis-
tances for the GATech, Mercator, and CorpNet topologies.
Each figure has lines for GNP and each of the PIC strategies.
The hybrid strategy used 4 nearby landmarks and 12 ran-
domly selected ones. The results show that PIC can match
the accuracy of GNP with the hybrid strategy but performs
significantly worse using either the random or closest strate-
gies. It is interesting to note that GNP is using an optimized
landmark placement; PIC with hybrid provided better accu-
racy than GNP before we optimized landmark placement.

Figure 4 provides some intuition to explain the previ-
ous results. It shows the cumulative distribution of rela-
tive errors for short test distances. For this experiment, we
randomly selected 2,000 nodes and for each node we gen-
erated test distances between the node and the 50 closest
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Figure 2. Cumulative distribution of relative
errors over random distances in Mercator.
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Figure 3. Cumulative distribution of relative
errors over random distances in CorpNet.

nodes in the network. This generated a test set of 100,000
test distances. The results show that closest performs signif-
icantly better than GNP in this range whereas random per-
forms badly. They support the intuition that picking land-
marks that are close on the network reduces relative errors
in the prediction of short distances. Since closest does worse
than GNP over random test distances, this also shows that
using distant random landmarks reduces relative errors in
the prediction of long distances. It is unclear why the GNP
curve has a discontinuity around 100%. We suspect that this
is due to the delay discontinuity between LAN and inter-
router links.

The results also show that hybrid performs similarly to
closest over short distances. Therefore, using 4 nearby land-
marks appears to be a good configuration; it achieves the
benefits of closest over short distances and matches the per-
formance of GNP over random test distances.

Table 1 shows summary metrics for the relative error dis-
tributions of 100,000 random test distances in all topologies
for GNP and all PIC strategies. The results are qualitatively
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Figure 4. Cumulative distribution of relative
errors over short distances in GATech.

similar across all topologies. They are even quantitatively
very similar for the mean and 90-th percentile of GNP and
hybrid on the GATech and Mercator topologies.

GNP random closest hybrid
GATech Max 19.11 391.60 1.62 2.13

90-th 0.37 0.75 0.51 0.38
Mean 0.17 0.41 0.26 0.17

Mercator Max 2.50 8.63 1.55 1.64
90-th 0.37 0.58 0.57 0.37
Mean 0.17 0.28 0.36 0.17

CorpNet Max 13.34 404.92 1.00 1.33
90-th 0.23 0.60 0.47 0.23
Mean 0.11 0.61 0.20 0.09

Table 1. Relative error distribution sum-
maries.

The results also show that the closest and hybrid strate-
gies reduce the maximum relative error significantly rela-
tive to the random strategy and GNP, which is not surpris-
ing given that this is likely to correspond to a short distance
and they perform well over short distances.

3. Finding close nodes

The previous section shows that PIC performs best using
the hybrid strategy but this strategy requires some mecha-
nism to find the closest nodes in the network. In the pre-
vious section, we used an oracle to find the closest nodes
with global knowledge. This section describes algorithms
that can be used to implement this oracle efficiently in a dis-
tributed system. We also evaluate the impact on PIC’s accu-
racy of replacing the oracle by one of these algorithms.

PIC can replace the oracle by one of several algorithms
that have been proposed to find the closest node to a par-
ticular node in a network, for example, [15, 2]. These al-

gorithms all share a similar overlay structure. Each node in
the overlay maintains a set of pointers to other nodes in the
overlay that we call its neighbors. These algorithms pre-
scribe a particular mix of near and far away neighbors to
ensure that a node n can find the closest node in the over-
lay in O(logN) steps provided the topology satisfies cer-
tain conditions. To find the closest node, n starts by setting
its estimate of the closest node in the overlay, c, to a random
overlay node. Then it probes the distance to all of c’s neigh-
bors and picks the closest neighbor. If this closest neigh-
bor is closest than the current value of c, c is updated to
point to this neighbor and the process is repeated. Other-
wise, the algorithm stops and c is an approximation to the
closest node to n in the overlay. These algorithms can also
find the k closest nodes to n by keeping track of the k clos-
est nodes visited.

PIC could use one of these algorithms but they require
a significant number of probes to estimate the distance be-
tween nodes.

We can reduce the overhead by using PIC to estimate
distances rather than using probes to measure the distances.
The problem is that we need to find the closest nodes to
a node that does not have coordinates yet. Our improved
algorithm solves this problem as follows. A joining node
starts by using PIC with the random strategy to generate a
rough estimate of its coordinates from a set of random over-
lay nodes. Then these rough coordinates are used to esti-
mate distances in the algorithm to find the closest k nodes.
After finding the closest k nodes, the joining node uses the
PIC hybrid strategy to refine its coordinates.

We implemented and evaluated two variants of this strat-
egy. The pseudo code for the first one is in Figure 5. In
this variant, the joining node, n, computes rough coordi-
nates from a set of random nodes and performs a series
of greedy walks in the overlay towards the closest node.
It starts each walk from a random node and uses the rough
coordinates to estimate distances to guide the walk. This
search stops when the number of walks reaches a maxi-
mum value or when the predicted distance to the closest
node found is below a threshold t. Our current implementa-
tion sets the threshold to the average distance to the closest
neighbor computed over the set of all nodes visited during
the search process. When the search stops, the node probes
the k predicted closest nodes and uses the measured dis-
tances and their coordinates to recompute its coordinates.
We use k = 4 because our previous results indicate that
PIC hybrid performs well with this value.

The second variant is in Figure 6. It incurs a higher over-
head but it achieves better accuracy because nodes refine
their coordinates at each step of the search process. More
precisely, the joining node n probes the m predicted clos-



probed = Probe(random nodes)
allVisited = probed
CalculateCoordinates(probed)
numWalks = 0
do

numWalks++
nearNode = PickRandom(allVisited)
visited = nearNode
do

currentClosest = nearNode
visited += GetNeighbors(nearNode)
nearNode = GetPredictedClosest(visited+{nearNode},1)

while(currentClosest != nearNode)
allVisited += visited

while (PredictedDistanceTo(nearNode) > t
and numWalks < maxWalks)

probed += Probe(GetPredictedClosest(allVisited, k))
CalculateCoordinates(probed)

Figure 5. Optimized close node discovery al-
gorithm.

probed = Probe(random nodes)
allVisited = probed
CalculateCoordinates(probed)
numWalks = 0
do

numWalks++
nearNode = PickRandom(allVisited)
visited = nearNode
probed += Probe(nearNode)
do

currentClosest = nearNode
visited += GetNeighbors(nearNode)
nodes = GetPredictedClosest(visited, m)
foreach node in nodes

probed += Probe(node)
nearNode = closerToMe(node,nearNode)

CalculateCoordinates(probed)
while (currentClosest != nearNode)
allVisited += visited
probed += Probe(GetPredictedClosest(allVisited,k))
CalculateCoordinates(probed)

while (DistanceTo(nearNode) > t
and numWalks < maxWalks)

Figure 6. Optimized close node discovery al-
gorithm with progressive coordinate refine-
ment.

est neighbors at each step and it uses the measured distance
to select the closest neighbor. n also recomputes its coordi-
nates using all nodes probed so far. Our current implemen-
tation uses m = 2. Additionally, n probes the k predicted
closest nodes at the end of each walk (if not probed yet) and
recomputes its coordinates.

It is also interesting to note that we can improve the ac-
curacy of the algorithms to find close nodes, and reduce
their associated cost, by multicasting discovery messages
in a range of one or two network hops. This simple mech-
anism will work very effectively when the density of PIC
nodes in the network is high. In the particular case where
all the nodes in the network are part of the PIC system, a
joining node can find the closest nodes simply by broad-
casting a discovery message over all of its physical inter-
faces.

3.1. Experimental evaluation

We ran some experiments to evaluate PIC’s accuracy
when using both algorithms described above. Our experi-
ments ran on MSPastry [1] (configured with l = 16 and
b = 4). Each MSPastry node keeps a set pointers to neigh-
bors. These pointers form the overlay that is used to locate
closest nodes. The results should be similar for the over-
lay described in [15]. The experiments ran on the GAT-
ech topology in the experimental setting described in Sec-
tion 2.1.1. We set the maximum number of walks to 5,
m = 2, and we use k = 4 to match the experiments pre-
sented in previous sections.

Figure 7 shows the cumulative distribution of relative er-
rors for PIC using the oracle and the two algorithms to find
close nodes. The line labeled PIC Simple corresponds to
the version of the algorithm in Figure 5, and the line labeled
PIC Refine Coordinates corresponds to the one in Figure 6.
The line labeled PIC Optimal corresponds to the version of
PIC that uses the oracle to find the closest node as in the pre-
vious section.

The results show that PIC’s accuracy is essentially the
same using the oracle or the algorithm with coordinate re-
finement but the accuracy drops when using the algorithm
without refinement. This drop in accuracy is explained by
the results in Figure 8. This figure shows the cumulative dis-
tribution of absolute errors when finding close nodes with
both algorithms. The algorithm with coordinate refinement
is significantly more effective at locating the closest node
or a close approximation, which explains the improved ac-
curacy. This increased accuracy comes at the cost of an in-
creased number of probes: the algorithm with refinement
probes 55.6 nodes on average and the algorithm without re-
finement only probes 21 nodes.
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ing two algorithms to find close nodes.
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4. Secure coordinate computation

The version of PIC that we described in the previous sec-
tion and previous solutions to network distance estimation
are vulnerable to malicious nodes. If a malicious node is se-
lected as a landmark, it can lie about its coordinates or in-
terfere with the distance measurement. The result of this at-
tack is a set of coordinates that can be arbitrarily wrong.
For PIC to be practical, we need to be able to compute ac-
curate coordinates even when some of the nodes chosen to
be landmarks are malicious.

We devised a security test to eliminate malicious nodes
from the set of landmarks chosen to compute the coordi-
nates of each node n. The test relies on the observation that
the triangle inequality holds for most triples of nodes in the
Internet. Since the accuracy of PIC and the other distance
estimation proposals relies on this condition [17, 9], it is a
reasonable assumption for our security test. Therefore, we
assume that for most triples of nodes a, b, c, da,b + db,c ≥
da,c, where di,j denotes either the measured network dis-

tance between i and j or the predicted distance.
The intuition behind the security test is as follows. An

attacker that lies about its coordinates or its distance to the
joining node is likely to violate triangle inequality. The join-
ing node uses the distances it measured to each landmark
node and the coordinates of the landmarks to check for vio-
lations of the triangle inequality. It then removes from L the
nodes that most violate the triangle inequality.
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Figure 9. Triangle inequality with measured
and predicted distances.

Let L be the set of landmark nodes chosen to compute
n’s coordinates and let i,j be two distinct elements of L.
This is illustrated in Figure 9. If dm

i is the distance mea-
sured between n and i and d

p
i,j is the distance predicted (us-

ing the coordinates) between i and j, all of the following
should hold for a correct i:

dm
i ≤ dm

j + d
p
i,j (1)

dm
i ≥ dm

j − d
p
i,j (2)

dm
i ≥ d

p
i,j − dm

j (3)

The first inequality imposes an upper bound on dm
i and

the other two impose a lower bound of |dm
j − d

p
i,j |.

For each element i in L, the security test checks whether
the upper bounds and lower bounds defined by each ele-
ment j in L are satisfied by i and computes the following
two metrics:

upperi =

|L|
∑

j=1

{

dm
i − (dm

j + dp
i,j) if (dm

j + dp
i,j) < dm

i ,

0 otherwise

loweri =

|L|
∑

j=1

{

|dm
j − dp

i,j | − dm
i if |dm

j − dp
i,j | > dm

i ,

0 otherwise

upperi is the sum of the deviations above the upper bounds
and loweri is the sum of the deviations below the lower
bounds.

The security test computes the maximum value of both
metrics for all nodes in L and removes the corresponding



node. Then, the joining node uses the Simplex to compute
its coordinates with the remaining landmarks. This process
is repeated a fixed number of times (less than |L|−d−1) or
until the average relative error in the predicted distances be-
tween the joining node and the remaining landmarks is be-
low a threshold (currently, 5%).

4.1. Experimental evaluation

We ran experiments to evaluate the accuracy of PIC un-
der attack with the security test.

4.1.1. Attacker model We model a very powerful at-
tacker. We assume that a fraction f of the nodes in the
overlay is malicious and that all the malicious nodes col-
lude to cause the most damage to the system.

When a node joins the system, all malicious landmarks
collude to produce coordinates for the joining node that are
the furthest away possible from the correct ones. We give
the attacker total knowledge to achieve its goal; all mali-
cious landmarks know the distances between all the land-
marks and the joining node, n, and all the landmark coordi-
nates. The attacker uses this information to compute a set of
fake coordinates and distances for all malicious landmarks
that maximize the error in the coordinates computed for the
joining node.

We impose a restriction on the shortest distance provided
by a malicious landmark. It cannot be shorter than the dis-
tance between the joining node and the closest attacker. This
is a realistic assumption if probes include a nonce (an un-
predictable value that identifies the probe). The nonce en-
sures that the closest point at which a credible reply to a
distance probe can be faked is the position of the closest at-
tacker.

Picking fake coordinates and distances that maximize the
error in the coordinates computed for the joining node is a
multi-dimensional optimization problem similar to the co-
ordinate computation problem in PIC. The Simplex algo-
rithm [16] is a good approach to solve this type of problem.
We implement the error maximizing attack using simplex to
minimize the following function:

f(Ca, Da) =

{

+∞ if ∃d ∈ Da : d < dca,

1/dist(pcorrect, p(Ca, Da)) otherwise

Here, Ca is the set of attacker coordinates, Da is the set
of attacker distances to the joining node, dca is the distance
from the joining node to the closest attacker, pcorrect is the
correct position of the joining node, and p(Ca, Da) is the
position of the joining node computed with the current val-
ues of Ca and Da (and the coordinates and distances of the
correct landmarks that are all known to the attacker).

When some malicious nodes are chosen as landmarks,
they compute the joining node’s correct position using their

correct coordinates and distances and the distances and co-
ordinates of the correct landmark nodes. Then they find the
minimum of the function above using the Simplex Down-
hill algorithm and they supply the joining node with the co-
ordinate values Ca and distance values Da at the minimum
value of f(Ca, Da).

We reiterate that this is a very powerful attacker. In prac-
tice, we expect that it will be difficult for the malicious
nodes to learn the distances and coordinates of the hon-
est landmarks. Additionally, faking distances to malicious
landmarks equal to the distance to the closest malicious
node is hard because it requires the closest attacker to in-
tercept the probes to all malicious landmarks. Finally, we
give the attacker 10 minutes to compute fake coordinates
and distances that maximize the error in the coordinates of
the joining node. In practice, the attacker would have only
seconds or less to run this computation.

4.1.2. Experimental results We ran some experiments to
evaluate the accuracy of PIC under the attack model out-
lined above. We also experimented with less powerful at-
tacker models, for example, attackers that try to attract join-
ing nodes to their position by providing small distances, and
attackers that provide random distances and coordinates.
The attacker model discussed above was significantly more
effective than all of these.

Figure 10 shows the cumulative distribution of relative
errors for PIC hybrid with 32 landmarks, 4 of which are
nearby landmarks, and security. These results were obtained
with the GATech topology in the experimental setting de-
scribed in Section 2.1.1 but with 2,000 end nodes. The two
topmost lines show the performance of the system without
attacks. They show that using the security test does not re-
sult in any degradation on accuracy.

The lines labelled colluding attackers were obtained us-
ing the attacker model described above when 10% and 20%
of the nodes in the system are malicious. The results show
that the accuracy of PIC is very good even when the frac-
tion of malicious nodes is high and even with the very pow-
erful attacker that we modelled.

5. Proximity-aware overlay construction with
PIC

Recently there has been much interest in structured
peer-to-peer overlay networks like CAN, Chord, Pas-
try and Tapestry [21, 26, 24, 30]. They map application-
defined keys to overlay nodes and provide a primitive to
route a message to the node responsible for a key. Struc-
tured overlays conform to a specific graph structure that
allows them to route in O(log N) hops while maintain-
ing at most O(log N) routing state where N is the number
of nodes in the overlay.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

relative error (%)

fr
ac

tio
n 

of
 d

is
ta

nc
es

no attackers, security off
no attackers, security on
10% colluding attackers
20% colluding attackers

Figure 10. Cumulative distribution of relative
errors over random distances with security in
GATech.

It is important for overlay routing to exploit proximity
in the underlying network. Otherwise, each overlay hop has
an expected delay equal to the average delay between a pair
of random overlay nodes, which stretches route delay by a
factor equal to the number of overlay hops and increases
the stress in the underlying network links. There are sev-
eral techniques for proximity-aware routing proposed in the
literature [20, 30, 21, 24, 12, 23]. Recent work [3, 7, 11]
identifies proximity neighbor selection (PNS) as the most
promising technique. Tapestry, Pastry [24], and a recent ver-
sion of Chord [11] implement PNS.

PNS can be used to achieve low delay routes and low
bandwidth usage. It selects routing state entries for each
node from among the closest nodes in the underlying topol-
ogy that satisfy constraints required for overlay routing.
Currently, building the routing state of each node requires
probes to estimate network distances when nodes join and
while maintaining the overlay which contributes signifi-
cantly to the overheads.

Using PIC to estimate network distances reduces this
probing overhead by almost an order of magnitude because
distance probes can be replaced by PIC distance estimates.
PIC only requires distance probes to compute node coordi-
nates. This technique can be applied to any of the systems
mentioned above. We implemented and evaluated a version
of PNS on MSPastry [1] that uses PIC to estimate network
distances.

We modified MSPastry to use PIC as follows. Each node
already maintains a set with 32 other nodes (called the leaf
set) which are random and uniformly distributed across the
network. A joining node randomly selects 9 (d + 1) mem-
bers of the leaf set of its contact node as the set of landmarks
L to compute a rough estimate of its coordinates with ran-
dom PIC. Then it uses this rough estimate to find the closest
node in the Pastry overlay while refining its coordinates us-
ing the algorithm in Figure 6. When it finds this node, it

uses the algorithm in [1] to join with the closest node as
seed. We modified the join and routing table maintenance
algorithms in MSPastry to replace probes by distances esti-
mated using PIC.

We also implemented a version of MSPastry that com-
bines the use of PIC and distance probing in the routing ta-
ble maintenance. We refer to the approach as filtered prob-
ing. Distance estimates using PIC are used as a filter to elim-
inate explicit distance probing of candidates that are un-
likely to be added to a nodes routing state. If the estimated
distance to a candidate for a routing state slot is greater than
the distance to the node currently in the slot, then the candi-
date is discarded; otherwise, the distance is explicitly mea-
sured using a probe and the replacement decision is based
on a comparison of the measured distances.

5.1. Experimental evaluation

We ran an experiment to evaluate the impact of using
PIC on overhead and route delays. The experiment used a
trace obtained from a measurement study of node arrivals
and departures in the Gnutella file sharing application [25].
The study monitored 17,000 unique nodes for 60 hours by
probing each node every seven minutes. The average ses-
sion time in the trace is 2.3 hours and the median is 1 hour.
The number of active nodes varies between 1300 and 2700.
The trace exhibits time of day effects for both node arrivals
and failures. To simulate application-level traffic we used
a Poisson traffic model with 0.01 lookups per second per
node. The GATech topology model described before was
used and we ran Pastry end nodes that were randomly as-
signed to routers in the core with uniform probability. Each
end node was directly attached by a LAN link with a de-
lay of 1ms to its assigned router.

Figure 11 shows, for each version, both the number of
distance probes required per second per node and the to-
tal control traffic required per second per node during the
Gnutella trace. The unmodified MSPastry is referred to as
full probing, MSPastry using PIC is labelled PIC and the
MSPastry using PIC with distance probing is referred to as
filtered probing. The fluctuations in the control traffic and
distance probes are due to the changing node arrival and
failure rates in the trace. The results show that PIC can re-
duce the number of distance probes used in the full probing
by almost an order of magnitude, while the filtered prob-
ing reduces it by almost a factor of two.

Structured overlays attempt to exploit the network prox-
imity in order to minimise the delay stretch relative to the
direct IP route between source and destination nodes. We
refer this as the relative delay penalty (RDP) and Figure 12
presents the RDP observed for the three cases. In all cases
the RDP stretch is low, but the RDP experienced when us-
ing PIC is slightly higher than for both the full probing
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(a) Full probing.
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(b) PIC.
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(c) Filtered probing.

Figure 11. Control traffic and distance probe messages per node per second using Gnutella trace.
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Figure 12. RDP against time for the Gnutella trace.

and filtered probing cases. Both the full and filtered prob-
ing achieve similar performance.

The results indicate that the use of the filtered probing
in structured overlays is a promising technique, lowering
control traffic overheads whilst still achieving good per-
formance. However, further experimentation is required in
large scale deployments. Furthermore, there are several ap-
plications built on top of Pastry that can benefit from the
coordinates generated using PIC. For example, they can re-
duce the cost of tree management in application-level multi-
cast systems built on top of Pastry, like Scribe [5] and Split-
Stream [4]. They can also improve the performance of any-
cast on Scribe trees [6].

6. Related work

Most mechanisms that have been proposed to estimate
network distances [9, 17, 13, 22, 18] rely on a set of spe-
cial infrastructure nodes that are a single point of failure
and that bear most of the communication load required to
predict distances. For example, GNP [17], which pioneered
coordinate-based distance estimation, uses a set of fixed
landmark nodes that are probed whenever a node joins the
system. These landmarks can limit the scalability of the sys-
tem if they become communication bottlenecks and the sys-
tem’s accuracy is very sensitive to their placement. PIC does
not require any dedicated infrastructure and it matches the
accuracy of GNP with optimized landmark placement.

Mithos [28] does not rely on dedicated infrastructure but
it selects the closest nodes as landmarks. Therefore, our re-
sults indicate that it is less accurate than GNP and hybrid
PIC. Additionally, the algorithm used by Mithos to locate
the closest nodes is expensive because it requires a large
number of probes to measure network distance. We de-
scribed an efficient algorithm to locate the closest nodes us-
ing PIC. Mithos does not include any defense against mali-
cious landmarks.

Lighthouses [19] was designed concurrently with PIC. It
also does not rely on a fixed infrastructure but selects land-
marks randomly. Therefore, our results indicate that it is
less accurate than GNP and hybrid PIC. Lighthouses com-
putes coordinates differently from GNP and PIC. It uses
exactly d + 1 landmarks and solves a set of linear equa-
tions to determine a nodes’s coordinates. It lacks the robust-
ness to measurement noise and malicious peers of a multi-
dimensional optimization algorithm with more landmarks.
The techniques that we describe to secure PIC could poten-
tially be used to secure Lighthouses.

7. Conclusions

This paper described PIC, a coordinate-based mecha-
nism to estimate Internet network distance (i.e., round-trip
delay or network hops). PIC is scalable and robust because
it does not rely on infrastructure nodes and spreads load
evenly over all the nodes in the system. PIC is also secure



because it can compute accurate coordinates even when
some nodes are malicious. Therefore, PIC can be used to
improve the performance of many large-scale distributed
applications like network-aware overlay construction and
location of nearby resources in the network. We modified
Pastry to use PIC instead of direct distance probing. Our re-
sults indicate that PIC reduces the cost of joining the Pastry
overlay by almost an order of magnitude.
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