Channel Capacity, Sampling Theory and Image, Video & Audio Compression exercises

all numbered exercises are by Cover and Thomas except where noted otherwise

Exercise 8.2:

Maximum likelihood decoding. A source produces independent, equally probable symbols from an alphabet $\{a, b\}$ at a rate of one symbol every 3 seconds. These symbols are transmitted over a binary symmetric channel which is used once each second by encoding the source symbol a as 000 and the source symbol b as 111. If, in the corresponding 3 second interval of the channel output, any of the sequences 000, 001, 010, 100 is received then the output is decoded as a; otherwise the output is decoded as b. Let $\epsilon < \frac{1}{2}$ be the channel crossover probability.

- (a) For each possible received 3-bit sequence in the interval corresponding to a given source letter, find the probability that *a* came out of the source given that received sequence.
- (b) Using part (a), show that the above decoding rule minimizes the probability of an incorrect decision.
- (c) Find the probability of an incorrect decision.
- (d) The source is slowed down to produce one letter every 2n + 1 seconds, *a* being encoded by 2n + 1 "0"s and *b* being encoded by 2n + 1 "1"s. What decision rule minimizes the probability of error at the decoder? What is the probability of error as $n \to \infty$? What is the transmission rate as $n \to \infty$?

Exercise 8.3:

An additive noise channel. A channel has additive noise, Z, such that the output Y depends on the input X and the noise Z by the rule Y = X + Z. The alphabet for x is $\{0, 1\}$. The alphabet for Z is $\{a, b\}$ where $\Pr\{Z = a\} = \Pr\{Z = b\} = \frac{1}{2}$, $a, b, \in \mathbb{Z}$. Assume that Z is independent of X. What is the channel capacity of this discrete memoryless channel? [Hint: the channel capacity depends on the value of b - a.]

Exercise 8.9:

The Z channel. The Z channel has binary input and output alphabets $x, y \in \{0, 1\}$ and transition probabilities p(x|y) given by:

$$\begin{array}{c|ccc} x = 0 & x = 1 \\ \hline y = 0 & 1 & 0 \\ y = 1 & \frac{1}{2} & \frac{1}{2} \end{array}$$

Find the input probability distribution which maximises the mutual information and hence determine the channel capacity.

Exercise 8.11:

Zero-error capacity. A channel with alphabet $\{0, 1, 2, 3, 4\}$ has transition probabilities of the form:

$$p(y|x) = \begin{cases} \frac{1}{2}, & y = (x \pm 1) \text{mod} 5\\ 0, & \text{otherwise} \end{cases}$$

That is: any symbol is equally likely to transition to the symbol before it or the symbol after it. For example "2" could be received as "1" or "3" with equal probability.

- (a) Compute the theoretical channel capacity in bits.
- (b) The zero-error capacity of a channel is the number of bits per channel use that can be transmitted with zero probability of error. Clearly, the zero-erro capacity of this five-symbol channel is at least one bit (transmit "0" or "1" with probability $\frac{1}{2}$). Find a block code that shows that the zero-error capacity is greater than 1 bit. [Hint: consider codes of length 2.]
- (c) Estimate the value of the zero-error capacity as the number of symbols in a block goes to infinity. [This is not something that you are likely to be able to calculate, so give your best guess along with some sort of justification.]

Exercise A [Kuhn]:

JPEG. Which steps of the JPEG (DCT baseline) algorithm cause a loss of information? Distinguish between accidental loss due to rounding errors and information that is removed for a purpose.

Exercise B [Kuhn]:

JPEG. How can you rotate/mirror an already compressed JPEG image without loosing any further information. Why might the resulting JPEG file not have the exact same filelength?

Exercise C [Kuhn]:

Fax encoding. Decompress this G3-fax encoded pixel sequence, which starts with a white-pixel count: 1101001011110111000011011100110100 [Hint: see page 2 of

http://www.cl.cam.ac.uk/Teaching/2002/InfoTheory/mgk/additional-slides-4up.pdf
for the decoding table]

Exercise D [Dodgson]:

Audio \mathcal{C} Video encoding. What is it about audio and video data which allows us to use lossy compression for compressing it?

Exercise E [Dodgson]:

Sampling theory. Without using Fourier transforms, show that, for every $\nu_1 > 0$, there exists a ν_2 , $0 \le \nu_2 \le \nu_b$, such that a sine wave, $y = \sin(2\pi\nu_1 x)$ of frequency ν_1 will produce exactly the same sample values as a sine wave of frequency ν_2 if sampled at the points $\{x = \frac{n}{2\nu_b}, n \in \mathbb{Z}\}$. Determine a formula for ν_2 in terms of ν_1 and ν_b .