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Linux Network software
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Unix system introduction

• We will be dealing with the way that Unix works 
(most particularly those Unixes with net code 
derived from BSD e.g. SunOS 4.x, SVR4, AIX 
3.2)

• At a user level this is through the socket interface 
(actually, there is an alternative – TLI aka XTI 
X/Open Transport Interface)
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Linux overview
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Network drivers

• For a long time, OS have provided a standard 
abstraction/interface for classes of device.

• Unix traditionally divides devices into 2 classes
• Chararcter (low rate, interactive, serial line typically)
• Block (Disk, Display, etc)

• Its possible to squeeze network devices into the 
block  mode paradigm, but it’s messy

• Linux adds a 3rd type of device - network. 
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Device API

• Typically, device has name to place it in the file 
namespace, but also has identifier – unix has major/minor 
numbers

• Driver is a structure (class?) with a set of entry points 
(functions/methods)

• At boot (or module load) time, the device is initialised by 
calling its init() function – this resets the device, and 
installs any relevant interrupt handlers and so on….it then 
registers with the OS…

• Rest of time, we manage i/o with device with open, close, 
queue_xmit, and interrupts/notifications

Device files are found in the /dev directory. Each device is 
assigned a major and minor device number. The major device 
number identifies the type of device, i.e. all SCSI devices 
would have the same number as would all the keyboards. The 
minor device number identifies a specific device, i.e. the 
keyboard attached to this workstation.
Device files are created using the mknod command. 
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Internals

• Device driver manages specifics like 
• Bus interface/memory/I/o address of device registers
• DMA and timer chip use
• IRQs, etc

• Notice asymmetry of input and output – output is 
requested, whereas input arrives unexpectedly

• Input results in packets being queued, and 
netif_rx() called to find out which higher level 
protocol function to dispatch
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Bridge, Route, Filter

• What if packet is “not for us”?
• Basically, will either bridge, route, or discard

• Bridge is intensive (requires promiscuous ether 
interface – expensive in packet discard!)

• Route is part of linux and bsd unix – requires 
forwarding table, and prob. 1 routing protocol process 
to build and maintain it

• Discard – most common case! Requires efficient 
handling – lots of good work on efficient filtering 
(berkeley packet filter – see papers!)
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Network implementationBook:
Jon Crowcroft & Iain Philips
TCP/IP & Linux Protocol Implementation: 
Systems Code for the Linux Internet
1st edition (October 15, 2001) 
John Wiley & Sons; ISBN: 0471408824 
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Introduction

• Now we’re going to look at system level details of 
UNIX networking.
• Assume Net/3 – like approach e.g. BSD sockets
• However, code will be from Linux – kernel version 

2.4.14) – there are some differences in implementation.

• Socket data structures
• sk_buf (Linux) (? mbuf (Net/3)) and a brief look 

at transmission.
• Routing (forwarding) DS & code
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Layering
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Application to wire (and v.v.)
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User level code

See sheet 1
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Overview -- output

• Send-type routines are normally blocking
• Data gets passed to the appropriate lower level transport code, 

based on the fd.
• See net/socket.c::sock_sendmsg, net/ipv4/af_inet.c::inet_sendmsg 

• This runs the state machine for that protocol and then passes code 
on to IP level

• See e.g. net/ipv4/udp.c::udp_sendmsg 

• This deals with routing, fragementation, etc. adds appropriate IP 
header and queues for output

• See net/ipv4/ip_output.c:: ip_build_xmit 
• See net/ipv4/ip_output.c:: ip_fragment 
• See net/ipv4/ip_output.c:: ip_queue_xmit 

• Actually these may be deferred to allow better use of resources –
need a network scheduler (or actually several levels of scheduling)
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Overview -- input

• Receive involves coordinating a synchronous call and an 
asynchronous packet arrival
• Hardware determines if packet is for us, and generates interrupt if 

it is.
• ISR in device driver is called, pulls packet off device and 

determines which type of packet it is.
• Network level – check input, perform reassembly, determine 

whether to reroute, etc.
• net/ipv4/ ip_input.c:: ip_rcv
• net/ipv4/route.c::ip_route_input
• net/ipv4/ ip_input.c:: ip_local_deliver

• Transport level – check checksums, update local state machine, 
and demux to individual socket.

• net/ipv4/udp.c::udp_recvmsg 
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Important files – so far

• There are lots and lots of important ones, but for now….
• .h files

• include/linux/[net.h, udp.h, tcp.h]
• include/net/[socket.h, sock.h, udp.h, tcp.h]

• .c files
• net/socket.c
• net/ipv4/[af_inet.c, udp.c tcp.c tcp_output.c tcp_input.c, tcp_ipv4.c 

tcp_timer.h]
• net/core/sock.c
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struct socket

See sheet 2



17

Page 17

sock structure include/net/sock.h

• struct sock is messy:
• Bits of it are to do with TCP – in fact the whole of the 

networking code is a bit of a jumble, with TCP data 
appearing at the network layer.

• Since we don’t have time to look at TCP, figuring this 
part of it out is an exercise for the reader.

• It is likely to be tidied up in future versions of Linux 
(and is now a lot better than it was in earlier versions)

See sheet 3
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struct sk_buff

• The task of the sk_buff is to manage individual packets, 
their payloads and their headers. You must understand it to 
understand the networking code.
• (actually it does more than this, but we’ll ignore that for now)

• They have an equivalent in Net/3 code, the mbuf, which is 
described in Stevens, but they are different.

• There is a producer-consumer chain where the buffer is 
allocated by the producer (be this the driver for input or the 
transport for output) and freed by the consumer.

• There is only one copy of the buffer ever in existence

See sheet 4
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Routing

• Two main functions:
• Forwarding

• Carried out on every packet – look in forwarding table to 
determine destination and output interface.

• Routing
• Build and maintain forwarding table. Done asynchronously, 

usually by a user space process.
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Forwarding block structure

See sheet 5
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Forwarding in Linux

• There are 3 structures of interest:
• The neighbour table

• include/net/neighbour.h::neigh_table
• In effect, this is an ARP cache:

– It only contains information for machines that are physically 
connected to ours

– That info eventually vanishes, unless hardwired by an admin.

• The FIB table
• This is the main routing table, which contains details of how we

forward packets to any address. More later.

• The routing cache – smaller and faster.
• Caches info obtained from recently routed packets.
• The info times out if not used.
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Class based addresses

• Before we look at routing in detail, we need to 
understand something about addressing, 
subnetting and aggregation.

• Back to basics:
• Class A    0NNN NNNN HHHH HHHH HHHH HHHH HHHH HHHH

0.0.0.0 to 127.255.255.255
• Class B    10NN NNNN NNNN NNNN HHHH HHHH HHHH HHHH

128.0.0.0 to 191.255.255.255
• Class C    110N NNNN NNNN NNNN NNNN NNNN HHHH HHHH

192.0.0.0 to 223.255.255.255
• Class D    1110 MMMM MMMM MMMM MMMM MMMM MMMM MMMM

224.0.0.0 to 239.255.255.255
• Class E    1111 0XXX XXXX XXXX XXXX XXXX XXXX XXXX

240.0.0.0 to 247.255.255.255
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…and their problems

• network.host form is
• too inflexible
• Wasteful – e.g. class A addresses have 224 hosts on a 

single network!

• We want multiple levels of hierarchy
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Subnetting

• All very well, but what happens when you want to split up 
your address allocation amongst smaller administrative 
components.
• E.g Take a Class B address 128.16.0.0
• We could split this up into a number of class C networks
• We would have, in effect, addresses of the form:

• NB the first subnet address is the net identifier, the last is for 
broadcast. First usable address is normally router.

• Could do others, e.g. /20 gives subnets of 4094 machines

 ......NETWORK...... ........HOST.......  CLASS B ADDRESS 
1000 0000 0001 0000 SSSS SSSS HHHH HHHH  BUT WE USE SUBNETS 
NNNN NNNN NNNN NNNN NNNN NNNN HHHH HHHH  IN EFFECT 
   255   .   255   .   255   .    0   SUBNET MASK OR /24 
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Aggregation

• We do not have to advertise each subnet 
individually: B and C only need one route.

 

 

128.16.1.0/24 
 

128.16.2.0/24 
 

128.16.13.0/24 

Router A 
128.16.0.0/16 

 

128.16.24.0/24 

Router C Router B 
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…cont

• In older routing protocols e.g. RIPv1, routing updates do 
not include subnet masks.
• Thus a router must assume that the subnet mask it has been 

configured with is valid for all subnets. i.e. a single mask must be 
used for all subnets within a network. 

• No longer true – since mid 1993 we’ve had Classless 
Interdomain Routing (CIDR).
• Newer routing protocols (e.g. RIPv2, OSPFv2, BGPv4, etc) can 

deal with this.
• FORGET EVERYTHING I JUST SAID ABOUT THE (CLASS-

BASED) ‘NETWORK’ AND ‘HOST’ SEPARATION
• a routing table entry is indexed on a combination of address and

mask
• Not only can we break networks into subnets, but we can combine 

networks into supernets, so long as they have a common network 
prefix.
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CIDR
(RFCs 1518, 1519, 1466, 1447)

• If you summarise any block of routes with a subnet mask 
smaller than the matching class of the address, you are 
supernetting.

 

192.168.1.0/24 192.168.2.0/24 192.168.3.0/24 

192.168.0.0/16 

192.0.0.0/8  

192.169.0.0/16 

192.169.1.0/24 
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Variable Length Subnet Masks

• This goes hand-in-hand with variable length submasks 
(actually VLSM preceeded CIDR).

• Assume we have a class C address: 192.168.1.x and we 
want to subnet it amongst 200 hosts in the following way:

 

Subnet A 
100 hosts  

192.168.1.0/24 

Subnet B 
50 hosts  

Subnet C 
50 hosts 
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VLSM cont

• Our problem is that our possible masks are:
• /25 giving 2 subnets with 126 hosts in each
• /26 giving 4 subnets with 62 hosts in each

• Neither is any good.
• We need to use different masks for each subnet

• Use /25 for subnet A
• Use /26 for subnets B and C

• A = 192.168.1.0/25
• B = 192.168.1.128/26
• C = 192.168.1.192/26
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CIDR vs VLSM

• CIDR and VLSM are essentially the same thing, since each 
is about allowing a portion of the IP address space to be 
repeatedly divided into smaller and smaller pieces (aka
recursion).
• Both approaches require that the extended network prefix 

information be provided with each route advertisement.  
• The key difference between VLSM and CIDR is a matter of where 

recursion is performed:
• In VLSM the subdivision of addresses is done after the address range 

is given to the user.
• In CIDR the subdivision of addresses is done by the Internet 

authorities and ISP before the user receives the addresses.

• Both approaches use longest matching for addresses
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Longest match

• We have a situation in which we have variable length 
masks in a routing table.

• Pick the routing table entry that is closest to the address we 
want => need a longest match algorithm

• e.g.
• 128.0.0.0/8 via route A
• 128.1.0.0/16 via route B
• 128.1.1.0/24 via route C

• Where do we send
• 128.1.0.1
• 128.1.1.1
• 128.2.1.1

• Note that e.g. 128.1.1.1 matches all three rules but it 
MUST be accessible via route C, else it will never get any 
packets => need to assign addresses with care.
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Alternatives for IP lookups

• Hardware – Content Addressable Memory (CAM)
• Present e.g. IP destination and get back next hop
• Like a TLB. Expensive.

• Protocol-based approaches
• IP and tag/layer 3 switching (e.g. MPLS)
• Similar to VCID in circuit switched nets (and may use it!)
• Requires separate label distribution protocol to specify address/tag 

mapping
• Basically, use IP pkts and IP routing as signalling for circuit set-up
• Faster algorithms call this into question.

• Software…
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Data structures -- tries

• Tries: an m-ary tree structure. e.g. 26 chars + ‘end of word’

• Very heavy on space for sparse keyspace where most nodes have only 
1 descendant

g

a

t

o

$t

e

= gate

= go = got

This has 
only 1 
child
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Patricia trees (4.3 Berkeley Reno)

• Binary trie, but with ‘path compression’

• See http://www.cs.berkeley.edu/~sklower/routing.ps

1

2

5

10

000110

01010 01011

01$
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LC tries

• LC tries are really Patricia trees with ‘level 
compression’
• Path compression helps compress parts of the tree 

which are sparsely populated.
• Level compression helps with parts of the tree that are 

densely populated. It’s a bit like going back to standard 
m-ary tries for parts of the structure.

• Instead of having a binary tree, make it a m-ary 
tree (m is a power of 2) for some levels in the true, 
where this helps.

• http://citeseer.nj.nec.com/nilsson98fast.html
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Example

• So, imagine we have the following strings to 
enter:

? 10111? 101000? 010
? 11101001? 10110? 100? 00101
? 11101000? 10101? 0111? 0001
? 110?101001? 0110? 0000
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e.g. Patricia trie

 

Skip 4 
Skip 2 

?  ?  

? ? 

? ? 

?  

? ?  

? 

?  ? ? 

? ? 

We do 3 
comparisons 

to get 
anywhere
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e.g. LC trie

 

Skip 4 Skip 2 

?  ?  

? ? 

? ? 

?  

? ?  

?  

?  ?  ?  

? ?  

Compress top 
level into 8-
way (3 bit) 

branch

This could be 
compressed 

too
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So, we get to…

 

Skip 4 Skip 2 

?  ?  

? ? 

? ? 

?  

? ?  

?  

?  ? ? 

? ? 
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In table form:
branch = 5 bits, skip = 7 bits, ptr =20 bits – 1 word per entry.

• Start at 0, start input at skip bits, take branch bits of it, and add these to ptr. If 
we get to an entry with a branch of 0, then it’s a leaf.

• Stop & do full comparison

PtrSkipBranch

0009
17418
12007
13026
6005
11014
3003
2202
9011
1030

10010

80020
70019
140018
130017
110016
100015
90014
190113
50012
40011
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Other tree based algs

• Generalised level-compressed tree.
• See e.g. ‘Optimal Routing Table Design for IP Address 

Lookups Under Memory Constraints’  -- Gene Cheung 
and Steve McCanne.

• http://citeseer.nj.nec.com/267395.html
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Hashing

• See ‘Scalable High Speed IP Routing Lookups’ by Marcel 
Waldvogel et al.
• http://citeseer.nj.nec.com/waldvogel97scalable.html

• It is possible to find hash functions whose computation is 
lower cost than a memory access – can we exploit this?
• Note that access to a trie requires a number of accesses, depending 

on the amount of level and path compression.

• We’ll increase complexity gradually.



43

Page 43

Linear search of hash tables

• First, examine linear search of hashing tables:
• Have a series of hash tables, one for each network prefix length we 

know about.
• In the worse case for IPv4 this will be 32, for IPv6 it’ll be 128.

• Lookup in longest length prefix table (i.e. 12) on a key that’s the 
first 12 bits of the address. If a match, OK.

• If not, pick next longest (i.e. 7) and try again with a 7-bit key

12
7
5

HTLength
01010

0110110

0101011

011011010101



44

Page 44

Binary search of hash tables

• General idea:
• Start somewhere in the middle of the table (or, perhaps, with the 

most popular prefix length)
• If we match, search longer prefixes. If we fail, search shorter ones 

in a binary search fashion.

• Naïve impl.

• Search for 111. Problem – no match.
• We don’t know that we should search bottom half of table, so…

3
2
1

HTLength
1
0

00

111

Start here
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Binary search of hash tables

• Need to add a marker…

• Searching for 111, we find the marker, which tells us to 
search bottom half of table, then we find what we want.

• But what if we’re searching for 110x xxxx xxxx xxxx etc.?
• We find the marker and search bottom half, which is wrong.
• Our match is 1
• Need to backtrack – messy

3
2
1

HTLength

M11

00

111

Start here

1
0
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Binary searching of hash tables: 
precomputation

• When marker is inserted into table, tag it with the value of 
the best matching prefix of marker M already in the table.

• Remember best matching prefix so far – when we search 
for 110x, find marker and remember pointer to HT for ‘1’.

• Search lower half and don’t find 110 ? return stored 
value.

3
2
1

HTLength

M 11

00

111

Start here

1
0


