
Hot Chips 1999

IA64 Architecture and Compilers

Dr. Allan Knies, Intel, IA64 Processor Division
Dr. Wei Li, Intel, Microcomputer Software Labs
Dr. Jesse Fang, Intel, Microprocessor Research

Labs

Hot Chips 1999

IA-64 Application Architecture
Tutorial

Allan D. Knies

IA-64 Architecture and Performance Group

Intel Corporation

allan.knies@intel.com

Hot Chips 1999

Objectives for This Tutorial

Provide background for some of the architectural
decisions

Provide a description of the major features of the IA-64
application architecture
– Provide introduction and overview

– Describe software and performance usage models

– Mention relevant design issues

Show an example of IA-64 feature usage (C -> asm)

Hot Chips 1999

Agenda for This Tutorial

IA-64 history and strategyIA-64 history and strategy

IA-64 application architecture overview

C -> IA-64 example

Reference slides (included, but not covered)

Hot Chips 1999

IA-64 Definition History

Two concurrent 64-bit architecture developments:
– IAX at Intel from 1991

• Conventional 64-bit RISC
– Wideword at HP Labs from 1987

• Unconventional 64-bit VLIW derivative

IA-64 definition started in 1994
– Extensive participation of Intel and HP architects, compiler

writers, micro-architects, logic/circuit designers

– Several customers also participated as definition partners

Currently there are 3 generations of microprocessors in
different stages of design

Hot Chips 1999

IA-64 Strategies

Extracting parallelism is difficult
–Existing architectures contain limitations that prevent

sufficient parallelism on in-order implementations

Strategy
–Allow the compiler to exploit parallelism by removing

static scheduling barriers (control and data speculation)

–Enable wider machines through large register files, static
dependence specification, static resource allocation

Hot Chips 1999

IA-64 Strategies

Branches interrupt control flow/scheduling
– Mispredictions limit performance

– Even with perfect branch prediction, small basic blocks of
code cannot fully utilize wide machines

Strategies
– Allow compiler to eliminate branches (and increase basic

block size) with predication

– Reduce the number and duration of branch mispredicts by
using compiler generated branch hints

– Allow compiler to schedule more than one branch per clock -
multiway branch

Hot Chips 1999

IA-64 Strategies

Memory latency is difficult to hide
– Increasing relative to processor speed (larger cache miss

penalties)

Strategy
– Allow the compile to schedule for longer latencies by using

control and data speculation

– Explicit compiler control of data movement through an
architecturally visible memory hierarchy

Hot Chips 1999

IA-64 Strategies

Procedure calls interrupt scheduling/control flow
– Software modularity is standard

– Call overhead from saving/restoring registers

Strategy
– Provide special support for software modularity

– Reduce procedure call/return overhead

• Register Stack
• Register Stack Engine (RSE)

Hot Chips 1999

IA-64 Strategies Summary

Move complexity of resource allocation, scheduling, and
parallel execution to compiler

Provide features that enable the compiler to reschedule
programs using advanced features (predication,
speculation)

Enable wide execution by providing processor
implementations that the compiler can take
advantage of

Hot Chips 1999

Agenda for This Tutorial

IA-64 history and strategyIA-64 history and strategy

IA-64 application architecture overview

C -> IA-64 example

Reference slides included (but not covered)
– Loop Support

– Register Stack
– Memory Support
– Floating Point, Multi-media, 3D Graphics

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Application State
Directly accessible CPU state

– 128 x 65-bit General registers (GR)
– 128 x 82-bit Floating-point registers (FR)
– 64 x 1-bit Predicate registers (PR)
– 8 x 64-bit Branch registers (BR)

Indirectly accessible CPU state
– Current Frame Marker (CFM)
– Instruction Pointer (IP)

Control and Status registers
– 19 Application registers (AR)
– User Mask (UM)
– CPU Identifiers (CPUID)
– Performance Monitors (PMC,PMD)

Memory

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Instruction Formats: Bundles

Instruction Types
– M: Memory
– I: Shifts, MM
– A: ALU

– B: Branch
– F: Floating point
– L+X: Long

Instruction 2
41 bits

Instruction 1
41 bits

Instruction 0
41 bits

template
5 bits

128 bits

Template types
– Regular: MII, MLX, MMI, MFI, MMF
– Stop: MI_I M_MI

– Branch: MIB, MMB, MFB, MBB, BBB
– All come in two versions:

• with stop at end

• without stop at end

Hot Chips 1999

Instruction Formats: Instructions

Qualifying predicates (6 bits)
– A few instructions do not have a QP

Register operand identifiers (7 bits)
Register result identifier(s) (6 or 7 bits)
Immediate operands (8-22 bits)
Minor opcode
Major opcode (4 bits)

register id
7 bits

register id
7 bits

qual. pred
6 bits

register id
7 bits

major
opc 4b

minor opcode or
immediate 10 bits

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Integer Instructions

Memory - load, store, semaphore, . . .
Arithmetic - add, subtract, shladd, . . .
Compare - lt, gt, eq, ne, . . ., tbit, tnat
Logical - and, or
Bitfields - deposit, extract
Shift Pair
Character
Shifts - left, right
32-bit support - cmp4, shladdp4
Move - various register files moves
No-ops

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Execution Semantics

Traditional architectures have sequential semantics
– The machine must always behave as if the instructions

were executed in an unpipelined sequential fashion

– If a machine actually issues instructions in a different order
or issues more than one instruction at a time, it must insure
sequential execution semantics are obeyed

add r1 = r2, r3
sub r4 = r1, r2
shl r2 = r4, r8

add r1 = r2, r3
sub r4 = r11, r21
shl r12 = r14, r8

Case 1 - Dependent Case 2 - Independent

Hot Chips 1999

Execution Semantics

IA-64 has parallel semantics
– The compiler uses templates with stops to indicate

dependent operations

– Hardware does not have to check for dependent operations
within instruction groups

• WAR register dependences allowed

• Memory operations still require sequential semantics

– Dependences disabled by predication dynamically

add r1 = r2, r3 ;;
sub r4 = r1, r2 ;;
shl r2 = r4, r8

Case 1 - Dependent

add r1 = r2, r3
sub r4 = r11, r21
shl r12 = r14, r8 ;;

Case 2 - Independent

(p1) add r1 = r2, r3
(p2) sub r1 = r2, r3 ;;
shl r12 = r1, r8

Case 3 - Predication

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Control and Data Speculation

Two kinds of instructions in IA-64 programs
– Non-Speculative Instructions -- known to be useful/needed

• would have been executed in the original program
– Speculative instructions -- may or may not be used

• Schedule operations before results are known to be needed

• Usually boosts performance, but occasionally may degrade

• Heuristics can guide compiler in aggressiveness

• Need profile data for maximum benefit

Two kinds of speculation
– Control and Data

Moving loads up is a key to performance
– Hide increasing memory latency
– Computation chains frequently begin with loads

Hot Chips 1999

Speculation

Control Speculation

Original:
(p1) br.cond

ld8 r1 = [r2]

Transformed:
ld8.s r1 = [r2]

. . .

(p1) br.cond

. . .

chk.s r1, recovery

Data Speculation

Original:
st4 [r3] = r7]

ld8 r1 = [r2]

Transformed:
ld8.a r1 = [r2]

. . .

st4 [r3] = r7

. . .

chk.a r1, recovery

Separates loads into 2 parts: speculative
loading of data and detection of conflicts/faults.

Hot Chips 1999

Control Speculation

Example:
– Suppose br.cond is a check

for a null pointer

– Suppose the load of r1 is
dereferencing that pointer and
then using it

– Normally, the compiler cannot
reschedule the load before the
branch because of potential
fault

Control speculation is ...
– Moving loads (and possibly

instructions that use the
loaded values) above
branches on which their
execution is dependent

instr 1
instr 2
. . .
br.cond

ld8 r1 = [r2]
add r3 = r1,r4

Traditional Architectures

Hot Chips 1999

Control Speculation: Step 1

Separate load behavior from exception behavior
– ld.s which defers exceptions

–chk.s which checks for deferred exceptions

Exception token propagates from ld.s to chk.s
–NaT bits in General Registers, NaTVal (Special NaN value) in FP

Registers

instr 1
instr 2
. . .
br.cond

ld8 r1 = [r2]
add r3 = r1,r4

instr 1
instr 2
. . .
br.cond

ld8.s r1 = [r2]
chk.s r1, recovery
add r3 = r1,r4

Hot Chips 1999

Control Speculation: Step 2

Reschedule ld8.s
–Now, ld8.s will defer a fault and set the NaT bit on r1

–chk.s checks r1’s NaT bit and branches/faults if necessary

Allows faults to propagate
–NaT bits in General Registers, NaTVal (Special NaN value) in FP

Registers

instr 1
instr 2
. . .
ld8.s r1 = [r2]
br.cond ;;

chk.s r1, recovery
add r3 = r1,r4

instr 1
instr 2
. . .
br.cond

ld8.s r1 = [r2] ;;
chk.s r1, recovery
add r3 = r1,r4

Hot Chips 1999

Control Speculation

Original Reschedule

use
load use

load

chk.s

Transform

use

load

chk.s

Hot Chips 1999

Hoisting Uses

The uses of speculative data can also be executed speculatively

Requires extra recovery code and chk.s

chkchk.s.s
(Home Block)(Home Block)

ld
uses
br home

Recovery codeRecovery code

ldld.s.s
instr instr 11
instr instr 22
usesuses
brbr

Hot Chips 1999

NaT Propagation

All computation instructions propagate NaTs to reduce number of
checks required

 chk chk.s r5,.s r5, rec rec
home:home:
 sub r7 = r5,r2 sub r7 = r5,r2

 ld8.s r3 = [r9]
 ld8.s r4 = [r10] ;;
 add r6 = r3, r4 ;;
 ld8.s r5 = [r6]
 p1,p2 = cmp….
(p1) br

Only one check needed

recrec::
 ld8 r3 = [r9] ld8 r3 = [r9]
 ld8 r4 = [r10] ;; ld8 r4 = [r10] ;;
 add r6 = r3, r4 ;; add r6 = r3, r4 ;;
 ld8 r5 = [r6] ld8 r5 = [r6]
 brbr home home

Hot Chips 1999

Exception Deferral

Deferral allows the efficient delay of costly exceptions

OS-controlled deferral of data-related faults
– Page faults
– Protection violations
– …

NaTs/Chks enable deferral with recovery

Hot Chips 1999

Architectural Support for Control Speculation

65th bit (NaT bit) on each GR indicates if an exception has
occurred

Special speculative loads that set the NaT bit if a
deferable exception occurs

Special chk.s instruction that checks the NaT bit and
branches to recovery, if set

Computational instructions propagate NaTs like IEEE
NaN’s

Compare operations propagate “false” when writing
predicates

Example:
– st1 writes into memory

the

–
the store and the load addresses

load before the store
Such store to load dependences are

Data speculation is ...
–

instructions that use the loaded

stores

instr2

st1 [r3] = r4

add r3 = r1,r4

Hot Chips 1999

Data Speculation: Step 1

Separate load behavior from overlap detection
– ld8.a which performs normal loads and keeps bookkeeping (ALAT)

–chk.a which checks ALAT to see if conflicting store has occurred

Advanced load address table
– ld8.a puts information about advanced loads into table (address

ranges accessed)
–stores and other memory writers ‘snoop’ ALAT and if overlapping

loads are found, entries are deleted

–chk.a checks to see if a corresponding entry is in ALAT

instr1
instr2
. . .
st1 [r3] = r4
ld8 r1 = [r2] ;;
add r3 = r1,r4

instr1
instr2
. . .
st1 [r3] = r4
ld8.a r1 = r2 ;;
chk.a r1, recovery
add r3 = r1,r4

Hot Chips 1999

Data Speculation: Step 2

Reschedule ld8.a

–Now, ld8.a will allocate an entry in the ALAT

–If the st1 instruction overlaps with the ld8.a address, then the
ALAT entry will be removed

–chk.a checks for matching entry in ALAT -- if found, speculation
was ok, if not found, need to re-execute

instr1
instr2
. . .
st1 [r3] = r4
ld8 r1 = [r2]
add r3 = r1,r4

instr1
instr2
ld8.a r1 = r2
. . .
st1 [r3] = r4
chk.a r1, recovery
add r3 = r1,r4

Hot Chips 1999

Data Speculation

Original Reschedule

use
load

chk.s

Transform

store

use

store

chk.s

use

load

Hot Chips 1999

Hoisting Uses

Uses can be hoisted, but then chk.a needed for recovery

ld8.a r1=
instr 1
instr 2

st8

ld.c r1=
uses =r1

ld8.a r1=
instr 1
uses =r1
instr 2

st8

chk.a r1,rec

ld8 r1=
uses =r1
br home

Recovery code

No hoisted uses With hoisted uses

Hot Chips 1999

Architectural Support for Data Speculation

ALAT - HW structure containing information about
outstanding advanced loads

Instructions
– ld.a - advanced loads
– ld.c - check loads

– chk.a - advance load checks

Speculative Advanced loads - ld.sa - is an control
speculative advanced load with fault deferral
(combines ld.a and ld.s)

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Predication Concepts

Branching causes difficult to handle effects
– Istream changes (reduces fetching efficiency)

– Requires branch prediction hardware
– Requires execution of branch instructions

– Potential branch mispredictions

IA-64 provides predication
– Allows some branches to be moved
– Allows some types of safe code motion beyond branches

– Basis for branch architecture and conditional execution

Hot Chips 1999

Predication

cmp.eq

(p1) add r7 = r2, r4

sa

If p1 is performed, else it acts as a nop
If p2 is performed, else it acts as a nop

Hot Chips 1999

Control Flow Simplification

Predication
– Change control flow dependences into data dependences

– Removes branches
• reduce/eliminate mispredictions and branch bubbles

• instruction fetch efficiency

• exposes parallelism

Original Predicated

p2p1 (p1)
(p1)

(p2)
(p2)

Hot Chips 1999

Multiple Selects

cmp p1,p2 =

cmp p3,p4 =

(p1) br.cond

(p3) br.cond

cmp p1,p2 = ;;
(p2) cmp p3,p4 =

Original Transform/
Reschedule

r8 = 5

r8 = 7 r8 = 10

(p1) r8 = 5
(p3) r8 = 7
(p4) r8 = 10

p1 p2

p4p3

Hot Chips 1999

Downward Code Motion

Original Transform Reschedule

store
p1

(p1) store
p1

p1 = false

(p1) store

p1
(p1) store

p1 = false

!p1

p1

p1!p1!p1

!p1

Hot Chips 1999

Architectural Support

64 1-bit predicate registers (true/false)
– p0 - p63

Compare and test instructions write predicates with results
of comparison/test
– most compare/test write result and complement
– Ex: cmp.eq p1,p2 = r1,0

Almost all instructions can have a qualifying predicate (qp)
– Ex: (p1) add r1 = r2, r3

– if qp is true, instruction executed normally

– if qp is false, instruction is squashed

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Parallel Compares

Parallel compares allow compound conditionals to be
executed in a single instruction group.

Example:
if (a && b && c) { . . . }

Assembly:
cmp.eq p1 = r0,r0 ;; // init p1=1

cmp.ne.and p1 = rA,0

cmp.ne.and p1 = rB,0

cmp.ne.and p1 = rC,0

Hot Chips 1999

Height Reduction

cmp pA =

cmp pB =

cmp pC =

(pA) br.cond

(pB) br.cond

(pC) br.cond

cmp.and pABC =
cmp.and pABC =
cmp.and pABC =
(pABC) br.cond

Original Transform/
Reschedule

Hot Chips 1999

Architectural Support

Compare
– equality: eq, ne

– relational: only against zero

– tbit and tnat

Allows for both ‘and’ and ‘or’ compares
– one side: and

– one side: or

– both sides of conditional: or.andcm, and.orcm

Hot Chips 1999

IA-64 Application Architecture Tutorial

Application StateApplication State

Instruction Format

Integer Instructions

Execution Semantics

Control Speculation, Data Speculation

Predication

Parallel Compares

Branch Architecture

Hot Chips 1999

Branch Architecture

IP-offset branches (21-bit disp.)

Branch registers
– 8 registers for indirect jumps, call/ret link

Multi-way branches
– Bundle 1-3 branches in a bundle
– Allow multiple bundles to participate

Hot Chips 1999

 cmp p1 = cond
(p1) br target;

Conditional branches

(p0) br target;Unconditional branchUnconditional branch

Branch Execution

Compare and branch can be in same instruction group

Compiler-directed static prediction w/dynamic prediction
– Reduced false mispredicts due to aliasing

– Frees space in H/W predictor

– Can give hint for dynamic predictor

Hot Chips 1999

Multiway Branches

Allow multiple branch targets to be selected in one
instruction group

Example:
{ .bbb

(p1) br.cond target_1

(p2) br.cond target_2

(p3) br.call b1

}

Four possible instructions executed next:
fall through, target_1, target_2, or address in b1

Hot Chips 1999

3 branch cycles 1 branch cycle1 branch cycle

w/o Speculationw/o Speculation Hoisting LoadsHoisting Loads IA-64IA-64

ld8 r6 = (ld8 r6 = (rara))
(p1)(p1) br br exit1 exit1

ld8 r7 = (ld8 r7 = (rbrb))
(p3)(p3) br br exit2 exit2

ld8 r8 = (ld8 r8 = (rcrc))
(p5)(p5) br br exit3 exit3

chkchk r6, rec0 r6, rec0
(p1)(p1) br br exit1 exit1

ChkChk r7, rec1 r7, rec1
(p3)(p3) br br exit2 exit2

ChkChk r8, rec2 r8, rec2
(p5)(p5) br br exit3 exit3

ld8.s r6 = (ld8.s r6 = (rara))
ld8.s r7 = (ld8.s r7 = (rbrb))
ld8.s r8 = (ld8.s r8 = (rcrc))

ld8.s r6 = (ld8.s r6 = (rara))
ld8.s r7 = (ld8.s r7 = (rbrb))
ld8.s r8 = (ld8.s r8 = (rcrc))

chkchk r6, rec0 r6, rec0
(p2)(p2) chk chk r7, rec1 r7, rec1
(p4)(p4) chk chk r8, rec2 r8, rec2

(p1)(p1) br br exit1 exit1
(p3)(p3) br br exit2 exit2
(p5)(p5) br br exit3 exit3
}}

P1P1

P6P6
P5P5

P2P2

P4P4
P3P3

Control Height Reduction

Hot Chips 1999

Control Height Reduction

Original Transform
/Reschedule

Multiways Added

store

p1

(p1) store

p1

(p1) store

p1 = false

branch

branch

branch

branch

(p1) store

p1

(p1) store

p1 = false

branch
branch

!p1 !p1

!p1
p1

Hot Chips 1999

Branch Architecture

Notes:
– Multiple branches per clock is a natural side-effect of

speculation

– Allows fast selection of multiple branch targets

– Branch prediction for both single and multiple branches
is important for good performance

– Compiler profiling can help facilitate the use of hints

– Hints may reduce needed size/functionality of hardware
predictors

– Works in conjunction with control speculation, data
speculation, predication, and parallel compares

Hot Chips 1999

Agenda for This Tutorial

IA-64 history and strategyIA-64 history and strategy

IA-64 application architecture overview

C -> IA-64 example

Reference slides included (but not covered)

Hot Chips 1999

Synthesis: ChkGetChunk()
if (((Theory->Flags[ChunkNum] & 0x0008))
 && ((Theory->Flags[ChunkNum] & 0x0040))

 && (*(Theory->ChunkAddr[ChunkNum] - 28)) == SizeOfUnit) {
 StackPtr = (*(Theory->ChunkAddr[ChunkNum] - 20));

 if (Index >= StackPtr) {
 if (SetGetSwi)

 *Status = -10009;
 else {

 Mem_DumpChunkChunk (0, ChunkNum);

 *Status = 1005; } }
} else {

 if ((*(Theory->ChunkAddr[ChunkNum] - 28)) != SizeOfUnit) {
 *Status = 1003;

 } else {
 *Status = 1004; }

 Mem_DumpChunkChunk (0, ChunkNum);
 } }

return((Test= *Status==0 ? True:Ut_PrintErr (F,Z,*Status)));

Hot Chips 1999

Synthesis: ChkGetChunk()

Assumptions for code examples
– Abstract machine model

– Unlimited instruction issue (execution) resources

– Loads have 2 cycle latency to first level cache

– All other instructions 1 cycle latency

Hot Chips 1999

Synthesis

8

1

8

1

call

3 3 1
call + 33

2

4

1

1

call + 1
1

Hot Chips 1999

Synthesis: ChkGetChunk()

ld8 rT = [&rT] 0:B1

ld8 rCN = [&rCN] ;; 0:B1

add rAdF = rT, 8 2:B1

shladd rOff = rCN, 4;; 2:B1

add rAdFs =rOff,rAdF;; 3:B1

ld8 rFD = [rAdFs] ;; 4:B1

and rMask8 = rFD,0x8 ;; 6:B1

cmp.eq p1,p2 = rMask8,0 7:B1

(p1) br.cond GREEN

and rMask4 = rFD,0x40;; 0:B2

cmp.eq p3,p4 = rMask4,0 1:B2

(p3) br.cond GREEN

add rAdCA = 16, rT ;; 0:B3

add rAdCAs= rAdCA,rOff;;1:B3

ld8 rTmp = [rAdCAs];; 2:B3

sub rTmp2 = rTmp, 28 ;; 4:B3

ld8 rDR = [rTmp2]; 6:B3

cmp.eq p5,p6 = rDR,VAL 7:B3

(p5) br.cond GREEN

// fallthru is TURQUOISE

8

1

8

ld8 rT = [&rT] 0:B1
ld8 rCN = [&rCN] ;; 0:B1
add rAdCA = 16, rT 2:B3
add rAdF = rT, 8 2:B1
shladd rOff = rCN, 4;; 2:B1
add rAdCAs= rAdCA,rOff 3:B3
add rAdFs = rOff,rAdF;; 3:B1
ld8 rFD = [rAdFs] 4:B1
ld8.s rTmp = [rAdCAs] ;; 4:B3
and rMask4 = rFD,0x40 6:B2
and rMask8 = rFD,0x8 6:B1
sub rTmp2 = rTmp, 28 ;; 6:B3
cmp.eq p3,p4 = rMask4,0 7:B2
cmp.eq p1,p2 = rMask8,0 7:B1
ld8.s rDR = [rTmp2];; 7:B3
cmp.eq p5,p6 = rDR,VAL 9:B3
(p1) br.cond GREEN
(p3) br.cond GREEN
(p5) br.cond GREEN
// 19 instructions/10 cycles
// fallthru is TURQUOISE

10

Hot Chips 1999

Synthesis: ChkGetChunk()

ld8 rT = [&rT] 0:B1

ld8 rCN = [&rCN] ;; 0:B1

add rAdCA = 16, rT 2:B3

add rAdF = rT, 8 2:B1

shladd rOff = rCN, 4;; 2:B1

add rAdCAs= rAdCA,rOff 3:B3

add rAdFs = rOff,rAdF;; 3:B1

ld8 rFD = [rAdFs] 4:B1

ld8.s rTmp = [rAdCAs] ;; 4:B3

and rMask4 = rFD,0x40 6:B2

and rMask8 = rFD,0x8 6:B1

sub rTmp2 = rTmp, 28 ;; 6:B3

cmp.eq p3,p4 = rMask4,0 7:B2

cmp.eq p1,p2 = rMask8,0 7:B1

ld8.s rDR = [rTmp2];; 7:B3

cmp.eq p5,p6 = rDR,VAL 9:B3

(p1) br.cond GREEN

(p3) br.cond GREEN

(p5) br.cond GREEN

// 19 instructions/10 cycles: < 2 IPC
// fallthru is TURQUOISE

ld8 rT = [&rT] 0:B1

ld8 rCN = [&rCN] ;; 0:B1

 2:??

add rAdCA = 16, rT 2:B3

add rAdF = rT, 8 2:B1

shladd rOff = rCN, 4;; 2:B1

add rAdCAs= rAdCA,rOff 3:B3

add rAdFs = rOff,rAdF;; 3:B1

ld8 rFD = [rAdFs] 4:B1

ld8.s rTmp = [rAdCAs] ;; 4:B3

cmp.ne p1,p2 = r0,r0 6:??
and rMask4 = rFD,0x40 6:B2

and rMask8 = rFD,0x8 6:B1

sub rTmp2 = rTmp, 28 ;; 6:B3

cmp.eq.or.andcm p1,p2=rMask4,0 7:B2
cmp.eq.or.andcm p1,p2=rMask8,0 7:B1
ld8.s rDR = [rTmp2];; 7:B3

 9:??
cmp.eq.or.andcm p1,p2=rDR,VAL 9:B3
(p1) br.cond GREEN

// fallthru is TURQUOISE

10
10

Hot Chips 1999

Synthesis

10

1

call

3 3 1
call + 33

2

4

1

1

call + 1
1

Hot Chips 1999

Synthesis: ChkGetChunk()

3

(p8) st [rStat]=rValp8 0:B3

(p9) st [rStat]=rValp9 0:B3

(p8) rVal = 1003 0:B3

(p9) rVal = 1004 0:B3

call DC(CN) 0:B3

br PURPLE 1:B3

call+1

cmp.eq p8,p9 = rDR, SOU 0:B3
if (p8) { 0:B3
 ld8 rStat = [&Status] 1:B3
 mov rValp8 = 1003 1:B3
 mov rVal = 1003 ;; 1:B3
 st [rStat] = rValp8 3:B3
} else {
 ld8 rStat = [&Status] 1:B3
 mov rVal = 1004 1:B3
 mov rValp9 = 1004 ;; 1:B3
 st [rStat] = rValp9 3:B3
}
call DC(CN)
br PURPLE

Steps:

1) Speculate ld8 instructions into red block cycle 1

2) Copy and speculate mov instructions into red blocks cycle 0

3) Speculate cmp instruction into red block cycle 9

4) Predicate both sides of the conditional

1

3

call

Hot Chips 1999

Synthesis

10

call+1
1

call + 33

2

4

1

1

call + 1
1

Hot Chips 1999

Synthesis: ChkGetChunk()

call+1

 cmp.ne p10,p11 = rVal,0

(p11)br.call PrErr(F,Z,rVal);;

(p10)mov r8 = 1

 br.ret

call+1

cmp.ne p10,p11 = rVal, 0

if (p10) {

 mov rTest = 1;

} else {

 br.call PrErr(F,Z,rVal)

 mov rTest = r8

}

mov r8 = rTest;

br.ret

Steps:

1) Replace rTest with r8

2) Predicate both sides of conditional

1

1

Hot Chips 1999

Synthesis

10

call+1
1

call + 33

2

4

call + 1

Hot Chips 1999

Synthesis: ChkGetChunk()

3

(p13) call F() 0:B4

(p12) st [rStat] = rValp12 1:B4

(p13) st [rStat] = rValp13 1:B4

(p12) rVal = -10009 1:B4

(p13) rVal = 1005 1:B4

br PURPLE

ld8 rSGS = [&SGS] ;;
cmp.eq p12,p13 = rSGS,0
if (p12) {
 ld8 rStat = [&Status]
 mov rValp12 = -10009 ;;
 st8 [rStat] = rValp12
 mov rVal = -10009
} else {
 call F()
 ld8 rStat = [&Status]
 mov rValp13 = 1005;;
 st8 [rStat] = rValp13
 mov rVal = 1005;
}
br PURPLE

Steps:

1) speculate all the ld8’s in to red block cycle 1

2) speculate the cmp.eq in to red block cycle 3

3) copy and speculate the mov rVal in to red block cycle 0

4) predicate both sides of conditional

2

call+3

1

call+1

Hot Chips 1999

Synthesis

10

call+1 call + 1

4

call + 1

Hot Chips 1999

Synthesis: ChkGetChunk()
(p2) st8 [&StkPtr] = rDR2

(p14) br.cond BLUE

br PURPLE

(p13) call F() 0:B4

(p12) st [rStat] = rValp12 1:B4

(p13) st [rStat] = rValp13 1:B4

(p12) rVal = -10009 1:B4

(p13) rVal = 1005 1:B4

br PURPLE

sub rTmp3 = rTmp2,20 ;;

ld8 rDR2 = [rTmp3] ;;

st8 [&StkPtr] = rDR2

cmp.ge p14,p15 = rDR2,rIdx

(p14) br.cond BLUE

br PURPLE

Steps:

1) speculate sub, ld8, and cmp.ge into the red block (cycles 6, 7, and 9)

2) predicate the st8 with (p2)

3) concatenate with blue block

4) (cont. next page)

4

Hot Chips 1999

Synthesis: ChkGetChunk()

(p2) st8 [&StkPtr] = rDR2 0:B4

(p13) call F() 0:B4

(p12) st [rStat] = rValp12 1:B4

(p13) st [rStat] = rValp13 1:B4

(p12) rVal = -10009 1:B4

(p13) rVal = 1005 1:B4

br PURPLE

(p2) st8 [&StkPtr] = rDR2

(p14) br.cond BLUE

br PURPLE

(p13) call F() 0:B4

(p12) st [rStat] = rValp12 1:B4

(p13) st [rStat] = rValp13 1:B4

(p12) rVal = -10009 1:B4

(p13) rVal = 1005 1:B4

br PURPLE

Steps:

1) qualify p13 and p12 (now in red block) so they can only be true when both p2 and p14

are true (use parallel and-compares) by either of the following:

– adding 4 parallel compares to red block

– lengthening red block by 1 cycle

2) now it is safe to remove the first PURPLE and BLUE branches

call+1

Hot Chips 1999

Synthesis

10

call+1 call + 1

call + 1

Hot Chips 1999

Synthesis: ChkGetChunk()

(p2) st8 [&StkPtr] = rDR2 0:B4

(p13) br.call DC(CN) 0:B4

(p12) st [rStat] = rValp12 1:B4

(p13) st [rStat] = rValp13 1:B4

(p12) rVal = -10009 1:B4

(p13) rVal = 1005 1:B4

br PURPLE

(p8) st [rStat]=rValp8 0:B3

(p9) st [rStat]=rValp9 0:B3

(p8) rVal = 1003 0:B3

(p9) rVal = 1004 0:B3

(p1) br.call DC(CN) 0:B3

br PURPLE 1:B3

Steps:

1) Note that p2 is the ‘blue/turquoise’ branch predicate and that p12 and p13 are
qualified with p2 already

2) Predicate br.call DC(CN) with p1

3) If we further qualify p8 and p9 with p1 (the ‘green branch’) in the red block, then the

green and blue instructions are guaranteed to be independent! Can be done by either:

– adding 3 parallel compares to red block

– lengthening red block by 1 cycle

call+1

Hot Chips 1999

Synthesis

10

call/call + 1

call + 1

Cycles = 12 + 2 calls

Hot Chips 1999

Agenda for This Tutorial

IA-64 history and strategyIA-64 history and strategy

IA-64 application architecture overview

C -> IA-64 example

Reference slides included (but not covered)
– Loop Support

– Register Stack
– Memory Support
– Floating Point, Multi-media, 3D Graphics

Hot Chips 1999

Key IA-64 Features

Loop Support*

Register Stack*

Memory Support

Floating Point, Multi-media, 3D Graphics

* Some slides provided by Dale Morris, HP Cupertino

Hot Chips 1999

Register Rotation

Motivation:
– pipeline-schedule loops onto HW

– remove extraneous work from loop
– minimize start-up overhead

– small code footprint

– maximum computational throughput with few instructions

Hot Chips 1999

GR Stack Frame w/ Rotation

localslocals

StaticStatic

00

3131
3232

127127

outputsoutputssofsof

sofsofsolsol

Current Frame Marker (CFM)Current Frame Marker (CFM)

solsol
Size of Rotating (Size of Rotating (sorsor))

sorsorrrbrrb..grgrrrbrrb..frfrrrbrrb.pr.pr

Hot Chips 1999

GR Rotation

Size of rotating region multiple of 8
Rotating region overlays current frame

–
– Overlay allows rotation & stack renaming in a single level of

– Must copy input registers before loop

RotatingRotating

StaticStatic

00

3131
3232

127127

Upper 3/4 of registerUpper 3/4 of register
file rotatesfile rotates

Hot Chips 1999

Predicate Rotation

 Rotating Rotating

StaticStatic

00

1515
1616

6363

Upper 3/4 of registerUpper 3/4 of register
file rotatesfile rotates

Hot Chips 1999

Palm SunnySunnyisSprings

RRB=0RRB=0

Register Rotation & RRB

Separate Rotating Register Base for each: GRs, FRs, PRs
Loop branches decrement all register rotating bases (RRB)
Instructions contain a “virtual” register number

–

ldld11
35:
34:
33:33:
32:

36:

......

PalmPalm

Hot Chips 1999

PalmPalm SunnySunnyisisSpringsSprings

IA-64IA-64

....

35:
34:
33:33:
32:

36:

......

RRB=0RRB=0

Register Rotation & RRB

Separate Rotating Register Base for each: GRs, FRs, PRs
Loop branches decrement all register rotating bases (RRB)
Instructions contain a “virtual” register number

–

PalmPalm

ldld R34

st11 R35 R35

Hot Chips 1999

PalmPalm SunnySunnyisisSpringsSprings

IA-64IA-64

....

34:
33:
32:32:
127:

35:

......

RRB=-1RRB=-1

Register Rotation & RRB

Separate Rotating Register Base for each: GRs, FRs, PRs
Loop branches decrement all register rotating bases (RRB)
Instructions contain a “virtual” register number

–

PalmPalm SpringsSprings

ldld R34

st22 R35 R35

Hot Chips 1999

PalmPalm SunnySunnyisisSpringsSprings

IA-64IA-64

....

33:
32:32:
127:
126:

34:34:

Separate Rotating Register Base for each: GRs, FRs, PRs
Loop branches decrement all register rotating bases (RRB)
Instructions contain a “virtual” register number

– RRB + virtual register number = physical register number.

ld44 R34

stst R35

SunnySunny
isis
SpringsSprings

isis

Hot Chips 1999

PalmPalm SunnySunnyisisSpringsSprings

IA-64IA-64

....

32:
127:127:
126:
125:

33:33:

Separate Rotating Register Base for each: GRs, FRs, PRs
Loop branches decrement all register rotating bases (RRB)
Instructions contain a “virtual” register number

– RRB + virtual register number = physical register number.

stst44 Sunny
is

isis Sunny

Hot Chips 1999

Loop Branches

br.cloop uses LC for simple, non-pipelined loops
– decrements LC and loops until LC is 0

br.ctop uses LC and EC for pipelined counted loops
br.wtop uses branch predicate and EC for pipelined

“while” loops
br.cexit, br.wexit used for unrolled, pipelined loops

Hot Chips 1999

br.ctop

Function (simplified):
• if (LC>0) {

LC--; pr[63]=1; rrb--; loop;}
else if (EC>0) {

EC--; pr[63]=0; rrb--; loop;}
else

fall_through;

LC counts main loop iterations
EC counts pipeline stages for drain

Hot Chips 1999

Software Pipelining

Overlapping execution of different loop iterations

vsvs..

More iterations in same amount of time

Hot Chips 1999

 Especially Useful for Integer Code With Small
Number of Loop Iterations

 Especially Useful for Integer Code With Small Especially Useful for Integer Code With Small
Number of Loop IterationsNumber of Loop Iterations

Software Pipelining

Synergistic use of IA-64 features:
– Full Predication

– Special branches
– Register rotation: removes loop copy overhead
– Predicate rotation: removes prologue & epilogue

Traditional architectures use loop unrolling
– High overhead: extra code for loop body, prologue, and epilogue

Hot Chips 1999

Pipelined Loop Example

DAXPY inner loop
– dy[i] = dy[i] + (da * dx[i])

– 2 loads, 1 fma, 1 store / iteration

Machine assumptions
– can do 2 loads, 1 store, 1 fma, 1 br / cycle

– load latency of 2 clocks

– fma latency of 1 clocks (not realistic, but good for example)

Hot Chips 1999

Example: Pipeline

Each column represents 1 source iteration

load dx,dy

tmp = dy + da * dx

store dy

Hot Chips 1999

.rotf dx[3], dy[3], tmp[2]

mov ar.lc = 3 // #iterations-1

mov ar.ec = 4 // #stages

mov pr.rot = 0x10000

;;

looptop:

 (p16) ldfd dx[0] = [dxsp],8

 (p16) ldfd dy[0] = [dysp],8

 (p18) fma.d tmp[0] = da, dx[2], dy[2]

 (p19) stfd [dydp] = tmp[1],8

br.ctop looptop

;;

Example Code

Hot Chips 1999

(p16) ldx (p16) ldy (p18) fma (p19) st

Loop Execution

..
63:63: 00
16:16: 11
17:17: 00
18:18: 00
19:19: 00

......

RRB=0 LC=3 EC=4

(p16)

(p18)
(p19)

Execution SequenceExecution Sequence

InitializationInitializationInitialization

(p63)

Hot Chips 1999

(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st

..
63:63: 00
16:16: 11
17:17: 00
18:18: 00
19:19: 00

......

RRB=0 LC=3 EC=4

(p16)

(p18)
(p19)

Execution SequenceExecution Sequence

Branch 1Branch 1Branch 1

......
63:63: 11
16:16: 11
17:17: 00
18:18: 00
19:19: 00

......

......
62:62: 00
63:63: 11
16:16: 11
17:17: 00
18:18: 00

......

Loop Execution

1

RRB=-1 LC=2 EC=4

(p63)

Hot Chips 1999

(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st

..
62:62: 00
63:63: 11
16:16: 11
17:17: 00
18:18: 00

......

RRB=-1 LC=2 EC=4

(p16)

(p18)
(p19)

Execution SequenceExecution Sequence

Branch 2Branch 2Branch 2

......
62:62: 11
63:63: 11
16:16: 11
17:17: 00
18:18: 00

......

......
61:61: 00
62:62: 11
63:63: 11
16:16: 11
17:17: 00

......

Loop Execution

1

RRB=-2 LC=1 EC=4

(p63)

Hot Chips 1999

(p16) ld ldy fma (p19)
(p16) ld ldy fma (p19)
(p16) ld ldy (p18) (p19) st

 ldx (p16) y (p18) fma (p19) st

Execution Sequence

Branch 3Branch 3Branch 3

...
61:61: 1
62: 11
63: 1
16:16: 1
17: 00

......

RRB=-3 LC=0

......
60:60: 00
61:61: 11
62:62: 11
63:63: 11
16:16: 11

......

(p63)

Hot Chips 1999

(p16) ld ldy fma (p19)
(p16) ld ldy fma (p19)
(p16) ld ldy (p18) (p19) st

 ldx (p16) y (p18) fma st
(p16) x (p16) ld fma st

..
60:60: 00
61:61: 11
62:62: 11
63:63: 11
16:16: 11

......

RRB=-3 LC=0 EC=4

(p16)

(p18)
(p19)

Execution Sequence

Branch 4Branch 4Branch 4

......
59: 0
60:60: 0
61: 11
62: 1
63:63: 1

...

Loop Execution

0

RRB=-4 LC=0 EC=3

(p63)

Hot Chips 1999

(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st

..
59:59: 00
60:60: 00
61:61: 11
62:62: 11
63:63: 11

......

RRB=-4 LC=0 EC=3

(p16)

(p18)
(p19)

Execution SequenceExecution Sequence

Branch 5Branch 5Branch 5

......
58:58: 00
59:59: 00
60:60: 00
61:61: 11
62:62: 11

......

Loop Execution

0

RRB=-5 LC=0 EC=2

(p63)

Hot Chips 1999

(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st
(p16) ldx (p16) ldy (p18) fma (p19) st

..
58:58: 00
59:59: 00
60:60: 00
61:61: 11
62:62: 11

......

RRB=-5 LC=0 EC=2

(p16)

(p18)
(p19)

Execution SequenceExecution Sequence

Branch 6Branch 6Branch 6

......
57:57: 00
58:58: 00
59:59: 00
60:60: 00
61:61: 11

......

Loop Execution

0

RRB=-6 EC=1

(p63)

ld ld (p18) (p19)
(p16) x (p16) y fma st

 ld ld fma st
 ld ld fma st
 ld ld (p18) (p19)

(p16) x (p16) y fma st
 ld ld (p18) st

..
57:57: 00
58:58: 00
59:59: 00
60:60: 00
61:61: 11

......

RRB=-6 LC=0 EC=1

(p16)

(p18)
(p19)

Execution Sequence

Branch 7Branch 7Branch 7

...
56: 0
57: 0
58: 0
59: 0
60: 0

...

Loop Execution

0

RRB=-7 LC=0 EC=0

(p63)

Hot Chips 1999

Pipelining & Latency

Suppose we change the latencies
– load latency of 6 clocks

– fma latency of 4 clocks

Hot Chips 1999

Example: New Pipeline

Each column represents 1 source iteration

load ,dy

 = dy da *

store dy

Hot Chips 1999

.rotf dx[7], dy[7], tmp[5]

mov ar.lc = 3 // #iterations-1

mov ar.ec = 11 // #stages

mov pr.rot = 0x10000

;;

looptop:

 (p16) ldfd dx[0] = [dxsp],8

 (p16) ldfd dy[0] = [dysp],8

 (p22) fma.d tmp[0] = da, dx[6], dy[6]

 (p26) stfd [dydp] = tmp[4],8

br.ctop looptop

;;

Updated Loop

Hot Chips 1999

Rotation: Summary

Loop pipelining maximizes performance; minimizes overhead
– Avoids code expansion of unrolling and code explosion of prologue

and epilogue
– Smaller code means fewer cache misses
– Greater performance improvements in higher latency conditions

Reduced overhead allows S/W pipelining of small loops with
unknown trip counts
– Typical of integer scalar codes

Hot Chips 1999

Key IA-64 Features

Loop Support*

Register Stack*

Memory Support

Floating Point, Multi-media, 3D Graphics

* Some slides provided by Dale Morris, HP Cupertino

Hot Chips 1999

IA-64 Register Model

Stack & Rotation support
SW-visible renaming resources
HW simplicity and explicit control

Hot Chips 1999

Register Stack

Motivation:
– Automatic save/restore of GRs on procedure call/return

– Cache traffic reduction
– Latency hiding of register spill/fill

Hot Chips 1999

General Registers

StackedStacked

StaticStatic

00

3131
3232

127127

Hot Chips 1999

GR Stack Frame

(inputs)(inputs)

StaticStatic

00

3131
3232

127127

localslocals
outputsoutputs

illegalillegal

size of frame (size of frame (sofsof))

sofsofsolsol

Current Frame Marker (CFM)Current Frame Marker (CFM)

size of locals (sol)size of locals (sol)

Hot Chips 1999

GR Stack Frame - Example

size of frame (size of frame (sofsof))

size of locals (sol)size of locals (sol)

3232

4646

locloc

outout5252

sofsofsolsol

CFMCFM 21211414

Hot Chips 1999

GR Stack Frame - Call

3232

4646

locloc

outout5252

sofsofsolsol

CFMCFM 21211414

PFMPFM xxxx

3232
3838

outout

sofsofsolsol

7700

21211414

callcall

Hot Chips 1999

GR Stack Frame - Allocate

3232

4646

locloc

outout5252

sofsofsolsol

CFMCFM 21211414

PFMPFM xxxx

3232
3838

outout

sofsofsolsol

7700

21211414

callcall allocalloc

sofsofsolsol

19191616

21211414

3232

4848

locloc

outout5050

Hot Chips 1999

GR Stack Frame - Return

3232

4646

locloc

outout5252

sofsofsolsol

CFMCFM 21211414

PFMPFM xxxx

3232
3838

outout

sofsofsolsol

7700

21211414

callcall allocalloc

sofsofsolsol

19191616

21211414

3232

4848

locloc

outout5050

3232

4646

locloc

outout5252

sofsofsolsol

21211414

21211414

returnreturn

Hot Chips 1999

Instructions

br.call
– Copies CFM to PFM
– Creates new frame with only output regs

– Saves local regs from previous frame

alloc
– Resizes current frame
– Saves PFM to a GR

Hot Chips 1999

Instructions (cont.)

mov to PFS
– Restores PFM from a GR

br.ret
– Restores CFM from PFM

– Restores local regs for previous frame

Hot Chips 1999

Key IA-64 Features

Loop Support

Register Stack

Memory Support

Floating Point, Multi-media, 3D Graphics

Hot Chips 1999

Memory

Byte addressable
Accessed with 64-bit pointers

–Upper 3-bits is segment id

–Limited support for 32-bit pointers

Access granularity and alignment
–1,2,4,8,10,16 bytes

–Alignment on naturally aligned boundaries is
recommended

• Performance penalty may result if not

– Instructions are always 16-byte aligned

Accessed big or little endian byte order
32-bit virtual addressing support

Hot Chips 1999

Memory Hierarchy Control

Explicit control of cache allocation and deallocation
–Specify levels of the memory hierarchy affected by the

access

–Allocation and Flush resolution is at least 32-bytes

Allocation
–Allocation hints indicate at which level allocation takes

place

• But always implies bringing the data close to the CPU

–Used in load, store, and explicit prefetch instructions

Deallocation and Flush
–Invalidates the addressed line in all levels of cache

hierarchy

–Write data back to memory if necessary

Hot Chips 1999

Key IA-64 Features

Loop Support

Register Stack

Memory Support

Floating Point, Multi-media, 3D Graphics

Hot Chips 1999

Floating-point Architecture

IEEE 754 compliant
Single, double, double extended (80-bit)
Canonical representation in 82-bit FP registers
Multiply-add instruction
128 floating-point registers

– Rotating, not stacking

Load double/single pair
Multiple FP status registers for speculation

Hot Chips 1999

Multimedia Support

Audio and video functions typically perform the same
operation on arrays of data values

IA-64 defines a set of instructions to treat general
register’s as 8x8, 4x16, or 2x32 bit elements
– Three major types of instructions are defined:

• Addition and subtraction (including special purpose
forms)

• Left shift, signed and unsigned right shift

• Pack/Unpack; converts between different element sizes.

Semantically compatible with IA-32’s MMX Technology

Hot Chips 1999

Parallel FP Support

Enable Cost-effective 3D Graphics platforms
Exploit data parallelism in applications using 32-bit

floating-point data
–Most applications and geometry calculations (transforms and

lighting) are done with 32-bit floating-point numbers

–Provides 2X increase in computation resources for 32-bit
data parallel floating-point operations

Floating-point Registers treated as 2x32 bit single
precision elements
–Full IEEE compliance

• single, double, double-extended data types, packed-64

–similar instructions as for scalar floating-point

–availability of fast divide (non IEEE)

