
Robert Brady February 2002 Page 1

The Software Development Process

A personal view

Dr Robert Brady

Brady ltd

Science Park

Cambridge

r.brady@bradytrinity.com

Key reference:
 “Debugging the Development Process”
S Maguire
Microsoft Press

Robert Brady February 2002 Page 2

The three most important things in software
development

1. Bugs

2. Bugs

3. Bugs

My agenda today:-

• Why are bugs inevitable?

• Why do the best companies treat their developers
as if bugs were not inevitable?

• How do you structure a development process to
get an acceptable level of bugs in practice?

Robert Brady February 2002 Page 3

 How to lose $70bn

 In the late 1980s, IBM lost $70 billion of stock-market
value, and gave an entire market away to a previously
small company called Microsoft.

 According to the popular book “Big Blues”, this was,
amongst other things, because it couldn’t write software
effectively.

 But IBM “did it right”. It followed all the standard rules
taught in computer science courses at the time:

• Get the design right before you write the code

• Write complete documentation

• Get it right first time

• Use formal methods, design walk-throughs etc. to satisfy
yourself that the code is bug-free

 So what went wrong?

Robert Brady February 2002 Page 4

 Size is important

 Bytes

 100b-1kb Typical punch-card program
 (The IBM development method was
 probably developed for this type of

 program)

 2kb-10kb Typical software module
 Typical computer science project(?)

 16kb Operating system of Sinclair Spectrum

 200Kb Our first software product – 1986

 18 Mb Human Genome estimate
 (estimate - 30k genes * protein size 800)

 64Mb Xbox RAM

 100Mb Our current software product (code)

 300Mb Typical database used with our product

 1Gb – 2 Gb Windows 2000 with associated products

 8Gb Permanent storage on Xbox

Robert Brady February 2002 Page 5

 How size affects the basic assumptions

 Punch-card
program

 2kb of code Large program

 Complete the design
in advance

 Almost
essential

 Difficult Too complex -
not possible

 Complete the
documentation in
advance

 Highly
desirable

 Difficult Too complex -
not possible

 Prove it is bug-free Very difficult
mathematical
challenge

 Too complex -
not possible

 Too complex -
not possible

 “Right first time” A worthy goal Too complex -
not possible

 Too complex -
not possible

 Conclusion: bugs are inevitable

 (but do not let this become an excuse)

Robert Brady February 2002 Page 6

 The consequences of Bug denial

 Until recently, computer science courses used to teach
that you must design in advance, document in advance,
and write bug-free code first time. ...

 … they were in denial that bugs are inevitable …

 … and so were the students we used to hire …

 … The students believed that management was ineffective
or stupid because its policies differed from those taught by
the university professor …

 … and my management used to have a policy not hiring
people who had graduated in Computer Science at a
university because it “just didn’t work”

Robert Brady February 2002 Page 7

 Waterfall model

 Design

 Deploy

 Code

 Test

Robert Brady February 2002 Page 8

 Strengths and pitfalls of the Waterfall Model

 Good for small modules or sub-units, particularly if you
can have simple and well-specified interface.

• IBM implemented this model by having DIFFERENT
people in each stage. This gave people posh-sounding
job titles (“Analyst” etc.), but caused very bad
communication that killed their projects.

• Like Microsoft, we have a policy: “We do not have any
programmers” We have developers. They are
responsible for seeing the whole thing through.

Robert Brady February 2002 Page 9

 The “Prototype” Model

 “Playcode” it

 Amend or reject it

 Test and deploy it

 Review it

Robert Brady February 2002 Page 10

 Strengths and pitfalls of the “Prototype” model

• Good where there are significant project risks or
unknowns - e.g. external software, new techniques or
methods, or can’t decide between alternatives.

• Not very predictable (a big problem in contracted
developments)

Robert Brady February 2002 Page 11

 The “evolutionary” model
 - what everyone does in practice

 (whatever they call it)

 This “evolutionary” model is needed where there are
complex interactions between the work of different
developers (or the work of the same developer over time).

 Waterfall
model

changes

 Prototyping
 model

changes

 Small Bug-
fixes

 Integration;
manual and
automated

tests

 Review for
release

 Deploy

Robert Brady February 2002 Page 12

 A quiz

 You are the manager of a small (2 person) software
development/test team. They come to you with a problem
and a proposed solution. Do you approve it?

 Problem

• We need to implement 10 features. We have
reviewed the designs, we now need to code and test
them.

• Time is very tight. We will have to pull out all the
stops to do it by the contracted deadline of next
month

• John (the developer) is the best person to do the
coding

• Richard (the test engineer) is the best person to do
the testing

 Proposed solution

• John and Richard work closely together to accelerate
the development phase

• John codes the features and makes quick releases to
Richard during development

• Richard provides testing feedback during
development

• After this development phase, the software goes into
the normal release cycle for testing/bugfix

Robert Brady February 2002 Page 13

 If you approve the plan

• You will send a message to your developers that
bugs don’t matter – you can “throw them over the
wall” and someone else will find them for you

• You will accelerate developers who produce sloppy
code and slow down developers who produce good
code

• The process will be inefficient, eg
o the developer has a rough idea which areas will

be buggy, he can home in on these
o The developer has tools (“debuggers”) to find

bugs which the tester doesn’t have
o The developer will have to constantly

communicate with the tester on what’s changed,
this slows them both down

o The tester will be inefficient because silly bugs
will stop him running his automated tests

• When you get to the original deadline
o your project will probably have all the features
o but the product probably won’t work well enough

to run the automated tests, so you cannot ship
o You won’t be able to advise the customer of the

new ship date, because the automated tests
don’t work and they might (or might not) uncover
something when they do run

o It will be too late to take corrective action

Robert Brady February 2002 Page 14

 If you reject the plan (developer has to test his code
before release)

• Your team will be forced to make the hard project
decisions, eg
o Go back to the design stage for feature number

3 – can we implement it more simply?
o Cut feature number 6 – it’s not strictly in the

specification
o Advise the customer there is a risk. Does he

want a delay or does he want feature number 7
in a later release?

o Request more resources (a long shot…)

• Your team will work more efficiently
o The tester will always work on code that is

basically stable (so he can develop his
regression tests etc.)

o The developer will be rewarded for producing
quality code, not for producing features that
destabilise the product

• Your team will be able to plan the project
o If a feature is in the product then it will “basically

work”
o The team (and you) can now monitor progress
o You can get test results and customer feedback

early on the features you have implemented
o Management make a decision to ship, with an

shorter freeze-time for stabilisation

Robert Brady February 2002 Page 15

Developers, Bugs, Attitude and Organisation

• Convince your developers to be affronted if someone
finds a bug in their code

 “I believe that the final bug in TEX was discovered and
removed on November 27, 1985. But if, somehow, an
error still lurks in the code, I will gladly pay a finder’s fee of
$20.48 to the first person who discovers it”

 Donald Knuth

• Developers must fix their own bugs

1. Developers get feedback early on, and can
change their development process to produce
better code earlier on

2. Developers realise that bugs are important

3. Slows down buggy developers

4. Speeds up good developers

5. Lets you plan projects

