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Learning Guide

The course as lectured proceeds fairly evenly through these notes, with 7 lectures devoted
to part A, 5 to part B and 3 or 4 devoted to parts C and D. Part A mainly consists of
analysis/transformation pairs on flowgraphs whereas part B consists of more sophisticated
analyses (typically on representations nearer to source languages) where typically a general
framework and an instantiation are given. Part C consists of an introduction to instruction
scheduling and part D an introduction to decompilation and reverse engineering.

One can see part A as intermediate-code to intermediate-code optimisation, part B as
(already typed if necessary) parse-tree to parse-tree optimisation and part C as target-code
to target-code optimisation. Part D is concerned with the reverse process.

Rough contents of each lecture are:

Lecture 1: Introduction, flowgraphs, call graphs, basic blocks, types of analysis

Lecture 2: (Transformation) Dead-code elimination

Lecture 3: (Analysis) Live variable analysis

Lecture 5: (Analysis) Available expressions

Lecture 5: (Transformation) Uses of LVA

Lecture 6: (Continuation) Register allocation by colouring

Lecture 7: (Transformation) Uses of Avail

Lecture 8: Single Static Assignment

Lecture 9: (Framework) Abstract interpretation

Lecture 10: (Instance) Strictness analysis

Lecture 11: Control-flow analysis (for λ-terms)

Lecture 12: (Framework) Inference-based program analysis

Lecture 13: (Instance) Effect systems

Lecture 14: Instruction scheduling

Lecture 15: Same continued, slop

Lecture 16: Decompilation.
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Books

• Aho, A.V., Sethi, R. & Ullman, J.D. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986. Now a bit long in the tooth and only covers part A of the
course.

• Appel A. Modern compiler implementation in C/ML/Java (2nd edition). CUP 1997.
See http://www.cs.princeton.edu/~appel/modern/index.html

• Hankin, C.L., Nielson, F., Nielson, H.R. Principles of Program Analysis. Springer 1999.
Good on part A and part B.
See http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-65410-0

• Muchnick, S. Advanced compiler design and implementation. Morgan Kaufmann, 1997.
See http://www.mkp.com/books_catalog/1-55860-320-4.asp

• Wilhelm, R. Compiler design. Addison-Wesley, 1995.
See http://cseng.aw.com/bookpage.taf?ISBN=0-201-42290-5
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Part A: Classical ‘Dataflow’ Optimisations

1 Introduction

Recall the structure of simple non-optimising compiler (e.g. from CST part IB).
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In such a compiler “intermediate code” is typically a stack-oriented abstract machine code
(e.g. OCODE in the BCPL compiler or JVM for Java). Note that stages ‘lex’, ‘syn’ and ‘trn’
are in principle source language-dependent, but not target architecture-dependent whereas
stage ‘gen’ is target dependent but not language dependent.

To ease optimisation (really ‘amelioration’ !) we need an intermediate code which makes
inter-instruction dependencies explicit to ease moving computations around. Typically we
use 3-address code (sometimes called ‘quadruples’). This is also near to modern RISC archi-
tectures and so facilitates target-dependent stage ‘gen’. This intermediate code is stored in
a flowgraph G—a graph whose nodes are labelled with 3-address instructions (or later ‘basic
blocks’). We write

pred(n) = {n′ | (n′, n) ∈ edges(G)}
succ(n) = {n′ | (n, n′) ∈ edges(G)}

for the sets of predecessor and successor nodes of a given node; we assume common graph
theory notions like path and cycle.

Forms of 3-address instructions (a, b, c are operands and f is a procedure name):

• ENTRY f : no predecessors;

• EXIT: no successors;

• ALU a, b, c: one successor;

• CMP〈cond〉 b, c: two successors.

Multi-way branches (e.g. case) can be considered for this course as a cascade of CMP in-
structions. Procedure calls (CALL f) and indirect calls (CALLI a) are treated as atomic
instructions like ALU a, b, c. Similarly one distinguishes MOV a, b instructions (a special case
of ALU ignoring one operand) from indirect memory reference instructions (LDI a, b and
STI a, b) used to represent pointer dereference including accessing array elements. Indirect
branches (used for local goto 〈exp〉) terminate a basic block (see later); their successors must
include all the possible branch targets (see the description of Fortran ASSIGNED GOTO).
A safe way to over-estimate this is to treat as successors all labels which occur other than in
a direct goto l form. Arguments to and results from procedures are presumed to be stored
in standard places, e.g. global variables arg1, arg2, res1, res2, etc. These would typically
be machine registers in a modern procedure-calling standard.
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Slogan: Optimisation = Analysis + Transformation

Transformations are often simple (e.g. delete this instruction) but may need complicated
analysis to show valid. Note also the use of Analyses without corresponding Transformations
for the purposes of compile-time debugging (e.g. see the later use of LVA to warn about the
dataflow anomaly of possibly uninitialised variables).

Hence new structure of the compiler:
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This course only considers the optimiser, which in principle is both source-language and
target-architecture independent, but certain gross target features may be exploited (e.g. num-
ber of user allocatable registers for a register allocation phase).

Often we group instructions into basic blocks: a basic block is a maximal sequence of
instructions n1, . . . , nk which have

• exactly one predecessor (except possibly for n1)

• exactly one successor (except possibly for nk)

Basic blocks reduce space and time requirements for analysis algorithms by calculating and
storing data-flow information once-per-block (and recomputing within a block if required)
over storing data-flow information once-per-instruction.

It is common to arrange that stage ‘trn’ which translates a tree into a flowgraph uses a new
temporary variable on each occasion that one is required. Such a basic block (or flowgraph)
is referred to as being in normal form. For example, we would translate

x = a*b+c;
y = a*b+d;

into

MUL t1,a,b
ADD x,t1,c
MUL t2,a,b
ADD y,t2,d.

Later we will see how general optimisations can map these code sequences into more efficient
ones.

1.1 Forms of analysis

Form of analysis (and hence optimisation) are often classified:

• ‘local’ or ‘peephole’: within a basic block;
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• ‘global’ or ‘intra-procedural’: outwith a basic block, but within a procedure;

• ‘inter-procedural’: over the whole program.

This course mainly considers intra-procedural analyses in part A (an exception being ‘dead
procedure elimination’ in section 1.3) whereas the techniques in part B often are applicable
intra- or inter-procedurally (since the latter are not flowgraph-based further classification by
basic block is not relevant).

1.2 Simple example: dead-code elimination

(Reachability) Analysis = ‘find reachable blocks’; Transformation = ‘delete code which reach-
ability does not mark as reachable’. Analysis:

• mark entry node of each procedure as reachable;

• mark every successor of a marked node as reachable and repeat until no further marks
are required.

Analysis is safe: every node to which execution may flow at execution will be marked by the
algorithm. The converse is in general false:

if tautology(x) then C1 else C2.

The undecidability of arithmetic (cf. the halting problem) means that we can never spot all
such cases. Note that safety requires the successor nodes to goto 〈exp〉 (see earlier) not to be
under-estimated. Note also that constant propagation (not covered in this course) could be
used to propagate known values to tests and hence sometimes to reduce (safely) the number
of successors of a comparison node.

1.3 Simple example: dead-procedure elimination

(A simple interprocedural analysis.) Analysis = ‘find callable procedures’; Transformation
= ‘delete procedures which analysis does not mark as callable’. Data-structure: call-graph,
a graph with one node for each procedure and an edge (f, g) whenever f has a CALL g
statement or f has a CALLI a statement and we suspect that the value of a may be g. A safe
(i.e. over-estimate in general) interpretation is to treat CALLI a as calling any procedure in
the program which occurs other than in a direct call context—in C this means (implicitly or
explicitly) address taken. Analysis:

• mark procedure main as callable;

• mark every successor of a marked node as callable and repeat until no further marks
are required.

Analysis is safe: every procedure which may be invoked during execution will be marked by
the algorithm. The converse is again false in general. Note that label variable and procedure
variables may reduce optimisation compared with direct code—do not use these features of a
programming language unless you are sure they are of overall benefit.
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2 Live Variable Analysis—LVA

A variable x is semantically live at node n if there is some execution sequence starting at n
whose I/O behaviour can be affected by changing the value of x.

A variable x is syntactically live at node n if there is a path in the flowgraph to a node
n′ at which the current value of x may be used (i.e. a path from n to n′ which contains no
definition of x and with n′ containing a reference to x). Note that such a path may not
actually occur during any execution, e.g.

l1: ; /* is ’t’ live here? */
if ((x+1)*(x+1) == y) t = 1;
if (x*x+2*x+1 != y) t = 2;

l2: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.

sem-live(n) ⊆ syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and |= and also syntactic liveness and `.

From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) =

 ⋃
s∈succ(n)

live(s)

 \ def (n) ∪ ref (n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry
to node n and out-live(n) for those live on exit. This gives

in-live(n) = out-live(n) \ def (n) ∪ ref (n)
out-live(n) =

⋃
s∈succ(n)

in-live(s)

Here def (n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x, y}.

Notes:

• These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

• Any solution of these dataflow equations is safe (w.r.t. semantic liveness).

Problems with address-taken variables—consider:

int x,y,z,t,*p;
x = 1, y = 2, z = 3;
p = &y;
if (...) p = &y;
*p = 7;
if (...) p = &x;
t = *p;
print z+t;
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Here we are unsure whether the assignment *p = 7; assigns to x or y. Similarly we are
uncertain whether the reference t = *p; references x or y (but we are certain that both
reference p). These are ambiguous definitions and references. For safety we treat (for LVA)
an ambiguous reference as referencing any address-taken variable (cf. label variable and pro-
cedure variables—an indirect reference is just a ‘variable’ variable). Similarly an ambiguous
definition is just ignored. Hence in the above, for *p = 7; we have ref = {p} and def = {}
whereas t = *p; has ref = {p, x, y} and def = {t}.

Algorithm (implement live as an array live[]):

for i=1 to N do live[i] := {}
while (live[] changes) do

for i=1 to N do

live[i] :=

 ⋃
s∈succ(i)

live[s]

 \ def (i) ∪ ref (i).

Clearly if the algorithm terminates then it results in a solution of the dataflow equation.
Actually the theory of complete partial orders (cpo’s) means that it always terminates with
the least solution, the one with as few variables as possible live consistent with safety. (The
powerset of the set of variables used in the program is a finite lattice and the map from
old-liveness to new-liveness in the loop is continuous.)

Notes:

• we can implement the live[] array as a bit vector using bit p being set to represent
that variable xp (according to a given numbering scheme) is live.

• we can speed execution and reduce store consumption by storing liveness information
only once per basic block and re-computing within a basic block if needed (typically
only during the use of LVA to validate a transformation). In this case the dataflow
equations become:

live(n) =

 ⋃
s∈succ(n)

live(s)

 \ def (ik) ∪ ref (ik) · · · \ def (i1) ∪ ref (i1)

where (i1, . . . , ik) are the instructions in basic block n.

3 Available expressions

Available expressions analysis (AVAIL) has many similarities to LVA. An expression e (typ-
ically the RHS of a 3-address instruction) is available at node n if on every path leading to
n the expression e has been evaluated and not invalidated by an intervening assignment to a
variable occurring in e.

This leads to dataflow equations:

avail(n) =
⋂

p∈pred(n) (avail(p) \ kill(p) ∪ gen(p)) if pred(n) 6= {}
avail(n) = {} if pred(n) = {}.

Here gen(n) gives the expressions freshly computed at n, i.e. {y + z} for the instruction
x = y+z; but {} for the instruction x = x+z. Similarly kill(n) gives the expressions killed at
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n, i.e. all expressions containing a variable updated at n. These are ‘forwards’ equations since
avail(n) depends on the past rather than the future. Note also the change from ∪ in LVA to
∩ in AVAIL. You should also consider the effect of ambiguous kill and gen (cf. ambiguous ref
and def in LVA) caused by pointer-based access to address-taken variables.

Again any solution of these equations is safe but, given our intended use, we wish the
greatest solution (in that it enables most optimisations). This leads to an algorithm (assuming
flowgraph node 1 is the only entry node):

avail[1] := {}
for i=2 to N do avail[i] := U
while (avail[] changes) do

for i=2 to N do

avail[i] :=
⋂

p∈pred(i)

(avail[p] \ kill(p) ∪ gen(p)).

Here U is the set of all expressions; it suffices here to consider all RHS’s of 3-address instruc-
tions. Indeed if one arranges that every assignment assigns to a distinct temporary (a little
strengthening of normal form for temporaries) then a numbering of the temporary variables
allows a bit-vector representation of avail[].

4 Uses of LVA

There are two main uses of LVA:

• to report on dataflow anomalies, particularly a warning to the effect that “variable ‘x’
may be used before being set”;

• to perform ‘register allocation by colouring’.

For the first of these it suffices to note that the above warning can be issued if ‘x’ is live at
entry to the procedure (or scope) containing it. (Note here ‘safety’ concerns are different—it is
debatable whether a spurious warning about code which avoids executing a seeming error for
rather deep reasons is better or worse than omitting to give a possible warning for suspicious
code; decidability means we cannot have both.) For the second, we note that if there is
no 3-address instruction where two variables are both live then the variables can share the
same memory location (or, more usefully, the same register). The justification is that when
a variable is not live its value can be corrupted arbitrarily without affecting execution.

4.1 Register allocation by colouring

Generate naive 3-address code assuming all variables (and temporaries) are allocated a differ-
ent (virtual) register (recall ‘normal form’). Gives good code, but real machines have a finite
number of registers typically 32. Derive a graph (the ‘clash graph’) whose nodes are virtual
registers and there is an edge between two virtual registers which are ever simultaneously live
(this needs a little care when liveness is calculated merely for basic block starts—we need to
check for simultaneous liveness within blocks as well as at block start!). Now try to colour (=
give a different value for adjacent nodes) the clash graph using the real (target architecture)
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registers as colours. (Clearly this is easier if the target has a large-ish number of interchange-
able registers—not an early 8086.) Although graphs corresponding to terrestrial maps can
always be coloured with four colours this is not generally the case for clash graphs (exercise).

Graph colouring is NP-complete but here is a simple heuristic for choosing an order to
colour virtual registers (and to decide which need to be spilt to memory where access can be
achieved via LD/ST to a dedicated temporary instead of directly by ALU register-register
instructions):

• choose a virtual register with the least number of clashes;

• if this is less than the number of colours then push it on a LIFO stack since we can
guarantee to colour it after we know the colour of its remaining neighbours. Remove the
register from the clash graph and reduce the number of clashes of each of its neighbours.

• if all virtual registers have more clashes than colours then one will have to be spilt.
Choose one (e.g. the one with least number of accesses1) to spill and reduce the clashes
of all its neighbours by one.

• when the clash graph is empty, pop in turn the virtual registers from the stack an
colour them in any way to avoid the colours of their (already-coloured) neighbours. By
construction this is always possible.

Note that when we have a free choice between several colours (permitted by the clash graph)
for a register, it makes sense to choose a colour which converts a MOV r1,r2 instruction into
a no-op by allocating r1 and r2 to the same register (provided they do not clash). This can
be achieved by keeping a separate ‘preference’ graph.

4.2 Non-orthogonal instructions and procedure calling standards

A central principle which justifies the idea of register allocation by colouring at all is that
of having a reasonable large interchangeable register set from which we can select at a later
time. It is assumed that if we generate a (say) multiply instruction then registers for it can be
chosen later. This assumption is a little violated on the 80x86 architecture where the multiply
instruction always uses a standard register unlike other instructions which have a reasonably
free choice of operands. Similarly, it is violated on a VAX where some instructions corrupt
registers r0–r5.

However, we can design a uniform framework in which such small deviations from unifor-
mity can be gracefully handled. We start by arranging that physical registers are a subset of
virtual registers by arranging that (say) virtual registers v0–v31 are pre-allocated to physical
registers r0–r31 and virtual registers allocated for temporaries and user variables start from
32. Now

• when an instruction requires an operand in a given physical register, we use a MOV to
move it to the virtual encoding of the given physical register—the preference graph will
try to ensure calculations are targeted to the given source register;

1Of course this a static count, but can be made more realistic by counting an access within a loop nesting
of n as worth 4n non-loop accesses. Similarly a user register declaration can be here viewed as an extra (say)
1000 accesses.
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• similarly when an instruction produces a result in a given physical register, we move
the result to an allocatable destination register;

• finally, when an instruction corrupts (say) rx during its calculation, we arrange that its
virtual correspondent vx has a clash with every virtual register live at the occurrence
of the instruction.

Note that this process has also solved the problem of handling register allocation over
procedure calls. A typical procedure calling standard specified n registers for temporaries, say
r0–r[n-1] (of which the first m are used for arguments and results—these are the standard
places arg1, arg2, res1, res2, etc. mentioned at the start of the course) and k registers to
be preserved over procedure call. A CALL or CALLI instruction then causes each variable
live over a procedure call to clash with each non-preserved physical register which results in
them being allocated a preserved register. For example,

int f(int x) { return g(x)+h(x)+1;}

might generate intermediate code of the form

f: mov r0,v32
call g
mov r0,v33
mov v32,r0
call h
add v33,r0,v34
add #1,v34,r0
ret

which, noting that v32 and v33 are clash with all non-preserved registers (being live over
a procedure call), might generate code (on a machine where r8 upwards are specified to be
preserved over procedure call)

f: push {r8,r9}
mov r0,r8
call g
mov r0,r9
mov r8,r0
call h
add r9,r0,r0
add #1,r0,r0
pop {r8,r9}
ret

Note that r8 and r9 need to be push’d and pop’d at entry and exit from the procedure
to preserve the invariant that these registers are preserved over a procedure call (which is
exploited by using these registers over the calls to g and h. In general a sensible procedure
calling standard specifies that some (but not all) registers are preserved over procedure call.
The effect is that store-multiple (or push-multiple) instructions can be used more effectively
than sporadic ld/st to stack.
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5 Uses of AVAIL

The main use of AVAIL is common sub-expression elimination, CSE, (AVAIL provides a tech-
nique for doing CSE outwith a single basic block whereas simple-minded tree-oriented CSE
algorithms are generally restricted to one expression without side-effects). If an expression e
is available at a node n which computes e then we can ensure that the calculations of e on
each path to n are saved in a new variable which can be re-used at n instead of re-computing
e at n.

In more details (for any ALU operation ⊕):

• for each node n containing x := a⊕ b with a⊕ b available at n:

• create a new temporary t;

• replace n : x := a⊕ b with n : x := t;

• on each path scanning backwards from n, for the first occurrence of a⊕ b (say n′ : y :=
a⊕ b) in the RHS of a 3-address instruction (which we know exists by AVAIL) replace
n′ with two instructions n′ : t := a⊕ b; n′′ : y := t.

Note that the additional temporary t above can be allocated by register allocation (and also
that it encourages the register allocator to choose the same register for t and as many as
possible of the various y). If it becomes spilt, we should ask whether the common sub-
expression is big enough to justify the LD/ST cost of spilling of whether the common sub-
expression is small enough that ignoring it by re-computing is cheaper.

One subtlety which I have rather side-stepped in this course is the following issue. Suppose
we have source code

x := a*b+c;
y := a*b+c;

then this would become 3-address instructions:

t1 := a*b;
x := t1+c;
t2 := a*b;
y := t2+c.

CSE as presented converts this to

t3 := a*b;
t1 := t3;
x := t1+c;
t2 := t3;
y := t2+c.

which is not obviously an improvement! There are two solutions to this problem. One is to
consider bigger CSE’s than a single 3-address instruction RHS (so that effectively a*b+c is
a CSE even though it is computed via two different temporaries. The other is to use copy
propagation—we remove t1:=t3 and t2:=t3 by the expedient of renaming t2 and t3 as t1.
This is only applicable because we know that t1, t2 and t3 are not otherwise updated. The
result is that t3+c becomes another CSE so we get
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t3 := a*b;
t4 := t3+c;
x := t4;
y := t4.

which is just about optimal for input to register allocation (remember that x or y may be
spilled to memory whereas t3 and t4 are highly unlikely to be; moreover t4 (and even t3)
are likely to be allocated the same register as either x or y if they are not spilt).

6 Single Static Assignment Form

Register allocation re-visited: sometimes the algorithm presented for register allocation is not
optimal in that it assumes a single user-variable will live in a single place (store location or
register) for the whole of its scope. Consider the following illustrative program:

extern int f(int);
extern void h(int,int);
void g()
{ int a,b,c;

a = f(1); b = f(2); h(a,b);
b = f(3); c = f(4); h(b,c);
c = f(5); a = f(6); h(c,a);

}

Here a, b and c all mutually clash and so all get separate registers. However, note that the
first variable on each line could use (say) r8, a register preserved over function calls, and the
second variable a distinct variable (say) r1. This would reduce the need for registers from
three to two, by having distinct registers used for a given variable at different points in its
scope. (Note this may be hard to represent in debugger tables.)

The transformation is often called live range splitting and is can be seen as resulting from
source-to-source transformation:

void g()
{ int a1,a2, b1,b2, c1,c2;

a1 = f(1); b2 = f(2); h(a1,b2);
b1 = f(3); c2 = f(4); h(b1,c2);
c1 = f(5); a2 = f(6); h(c1,a2);

}

This problem does not arise with temporaries because we have arranged that every need
for a temporary gets a new temporary variable (and hence virtual register) allocated (at least
before register colouring). The critical property of temporaries which we wish to extend to
user-variables is that each temporary is assigned a value only once (statically at least—going
round a loop can clearly assign lots of values dynamically).

This leads to the notion of Single Static Assignment (SSA) form and the transformation
to it.

The Single Static Assignment (SSA) form (see e.g. [2]) is a compilation technique to enable
repeated assignments to the same variable (in flowgraph-style code) to be replaced by code
in which each variable occurs (statically) as a destination exactly once.
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In straight-line code the transformation to SSA is straightforward, each variable v is re-
placed by a numbered instance vi of v. When an update to v occurs this index is incremented.
This results in code like

v = 3; v = v+1; v = v+w; w = v*2;

(with next available index 4 for w and 7 for v) being mapped to

v7 = 3; v8 = v7+1; v9 = v8+w3; w4 = v9*2;

On path-merge in the flowgraph we have to ensure instances of such variables continue to
cause the same data-flow as previously. This is achieved by placing a logical (single static)
assignment to a new common variable on the path-merge arcs. Because flowgraph nodes
(rather than edges) contain code this is conventionally represented by a invoking a so-called
φ-function at entry to the path-merge node. The intent is that φ(x, y) takes value x if control
arrived from the left arc and y if it arrived from the right arc; the value of the φ-function is
used to define a new singly-assigned variable. Thus consider

{ if (p) { v = v+1; v = v+w; } else v=v-1; } w = v*2;

which would map to (only annotating v and starting at 4)

{ if (p) { v4 = v3+1; v5 = v4+w; } else v6=v3-1; } v7 = φ(v5,v6); w = v7*2;

Part B: Higher-Level Optimisations

This second half of the course concerns itself with more modern optimisation techniques than
the first part. A simplistic view is that the first part concerned classical optimisations for
imperative languages and this part concerns mainly optimisations for functional languages
but this somewhat misrepresents the situation. For example even if we perform some of the
optimisations (like strictness optimisations) detailed here on a functional language, we may
still wish to perform flowgraph-based optimisations like register allocation afterwards. The
view I would like to get across is that the optimisations in this part tend to be interprocedural
ones and these can often be seen with least clutter in a functional language. So a more correct
view is that this part deals with analyses and optimisations at a higher level than that which is
easily represented in a flowgraph. Indeed they tend to be phrased in terms of the original (or
possibly canonicalised) syntax of the programming language, so that flowgraph-like concepts
are not easily available (whether we want them to be or not!).

As a final remark aimed at discouraging the view that the techniques detailed here ‘are
only suited to functional languages’, one should note that for example ‘abstract interpretation’
is a very general framework for analysis of programs written in any paradigm and it is only
the instantiation of it to strictness analysis given here which causes it to be specialised to
programs written in a functional paradigm. Similarly ‘rule-based program property inference’
can be seen as a framework which can be specialised into type checking and inference systems
(the subject of another CST part II course) in addition to the techniques given here.

One must remark however, that the research communities for dataflow analyses and
higher-level program analyses have not always communicate sufficiently for unified theory
and notation to have developed.
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7 Algebraic Identities

One form of transformation which is is not really covered here is the (rather boring) purely
algebraic tree-to-tree transformation such as e + 0 → e or (e + n) + m → e + (n + m) which
usually hold universally (without the need to do analysis to ensure their validity, although
neither need hold in floating point arithmetic!). A more programming-oriented rule with a
trivial analysis might be transforming

let x = e in if e’ then ... x ... else e’’

in a lazy language to

if e’ then let x = e in ... x ... else e’’

when e’ and e’’ do not contain x. The flavour of transformations which concern us are those
for which a non-trivial (i.e. not purely syntactic) property is required to be shown by analysis
to validate the transformation.

8 Abstract Interpretation

In this course there is only time to give the briefest of introductions to abstract interpretation.
We observe that to justify why (−1515)× 37 is negative there are two explanations. One

is that (−1515) × 37 = −56055 which is negative. Another is that −1515 is negative, 37 is
positive and ‘negative × positive is negative’ from school algebra. We formalise this as a table

⊗ (−) (=) (+)
(−) (+) (=) (−)
(=) (=) (=) (=)
(+) (−) (=) (+)

Here there are two calculation routes: one is to calculate in the real world (according to the
standard interpretation of operators (e.g. × means multiply) on the standard space of values)
and then to determine the whether the property we desire holds; the alternative is to abstract
to an abstract space of values and to compute using abstract interpretations of operators (e.g.
× means ⊗) and to determine whether the property holds there. Note that the abstract
interpretation can be seen as a ‘toy-town’ world which models certain aspects, but in general
not all, of reality (the standard interpretation).

When applying this idea to programs undecidability will in general mean that answers
cannot be precise, but we wish them to be safe in that “if a property is exhibited in the
abstract interpretation then the corresponding real property holds”. (Note that this means
we cannot use logical negation on such properties.) We can illustrate this on the above rule-
of-signs example by considering (−1515) + 37: real-world calculation yields −1478 which is
clearly negative, but the abstract operator ⊕ on signs can only safely be written

⊕ (−) (=) (+)
(−) (−) (−) (?)
(=) (−) (=) (+)
(+) (?) (+) (+)
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where (?) represents an additional abstract value conveying no knowledge (the always-true
property). Abstract addition ⊕ operates on (?) by (?)⊕x = (?) = x⊕ (?). Thus we find that,
writing abs for the abstraction from concrete (real-world) to abstract values we have

abs((−1515) + 37) = (−) but abs(−1515)⊕ abs(37) = (?).

Safety is represented by the fact that (−) ⊆ (?), i.e. the values predicted by the abstract
interpretation (here everything) include the property corresponding to concrete computation
(here {z ∈ ZZ | z < 0}).

Similar tricks abound elsewhere e.g. ‘casting out nines’ (e.g. 123456789 divides by 9
because 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 does, 45 because 4+5 does).

One point worth noting, because it turns up in programming equivalents, is that two
different syntactic forms which have the same standard meaning may have differing abstract
meanings. A good example for the rule-of-signs is the example (x + 1) × (x + 1) + 1 which
gives (+) when x = (−) whereas x× x + 2× x + 2 gives (?).

Abstract interpretation has been used been used to exhibit properties such as live variable
sets, available expression sets, types etc. as abstract values whose computation can be seen
as pre-evaluating the user’s program but using non-standard (i.e. abstract) operators during
the computation. For this purpose it is useful to ensure the abstract computation is finite,
e.g. by choosing finite sets for abstract value domains.

9 Strictness analysis

This is an example of abstract interpretation which specialises the general framework to de-
termining when a function in a lazy functional language is strict in a given formal parameter
(i.e. the actual parameter will necessarily have been evaluated whenever the function returns).
The associated optimisation is to use call-by-value (eager evaluation) to implement the pa-
rameter passing mechanism for the parameter. This is faster (because call-by-value is closer to
current hardware than the suspend-resume of lazy evaluation) and it can also reduce asymp-
totic space consumption (essentially because of tail-recursion effects). Note also that strict
parameters can be evaluated in parallel with each other (and with the body of the function
about to be called!) whereas lazy evaluation is highly sequential.

In these notes we will not consider full lazy evaluation, but a simple language of recur-
sion equations; eager evaluation is here call-by-value (CBV—evaluate argument once before
calling the function); lazy evaluation corresponds to call-by-need (CBN—pass the argument
unevaluated and evaluate on its first use (if there is one) and re-use this value on subsequent
uses—argument is evaluated 0 or 1 times). In a language free of side-effects CBN is seman-
tically indistinguishable (but possibly distinguishable by time complexity of execution) from
call-by-name (evaluate a parameter each time it is required by the function body—evaluates
the argument 0,1,2,. . . times).

The running example we take is

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).

To illustrate the extra space use of CBN over CBV we can see that

plus(3,4) 7→ cond(3=0,4,plus(3-1,4+1))
7→ plus(3-1,4+1)
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7→ plus(2-1,4+1+1)
7→ plus(1-1,4+1+1+1)
7→ 4+1+1+1
7→ 5+1+1
7→ 6+1
7→ 7.

The language we consider here is that of recursion equations:

F1(x1, . . . , xk1) = e1

· · · = · · ·
Fn(x1, . . . , xkn) = en

where e is given by the syntax

e ::= xi | Ai(e1, . . . , eri) | Fi(e1, . . . eki
)

where the Ai are a set of symbols representing built-in (predefined) function (of arity ri). The
technique is also applicable to the full λ-calculus but the current formulation incorporates
recursion naturally and also avoids difficulties with the the choice of associated strictness
optimisations for higher-order situations.

We now interpret the Ai with standard and abstract interpretations (ai and a]
i respec-

tively) and deduce standard and abstract interpretations for the Fi (fi and f ]
i respectively).

Let D = ZZ⊥ be the space of integer values (for terminating computations of expressions
e) augmented with a value ⊥ (to represent non-termination). The the standard interpretation
of a function Ai (of arity ri) is a value ai ∈ Dri → D. For example

+(⊥, y) = ⊥
+(x,⊥) = ⊥
+(x, y) = x +ZZ y otherwise

cond(⊥, x, y) = ⊥
cond(0, x, y) = y

cond(p, x, y) = x otherwise

(Here, and elsewhere we treat 0 as the false value for cond and any non-0 value as true as in
C.)

We can now formally define the notion that a function A (of arity r) with semantics
a ∈ Dr → D is strict in its ith parameter (recall earlier we said that this was if the parameter
had necessarily been evaluated whenever the function returns). This happens precisely when

(∀d1, . . . , di−1, di+1, . . . , dr ∈ D)a(d1, . . . , di−1,⊥, di+1, . . . , dr) = ⊥.

We now let D] = 2 def= {0, 1} be the space of abstract values and proceed to define an a]
i

for each ai. The value ‘0’ represents the property ‘guaranteed looping’ whereas the value ‘1’
represents ‘possible termination’.

Given such an a ∈ Dr → D we define a] : 2r → 2 by

a](x1, . . . , xr) = 0 if (∀d1, . . . , dr ∈ D s.t. (xi = 0 ⇒ di = ⊥))a(d1, . . . , dr) = ⊥
= 1 otherwise.
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This gives the strictness function a]
i which provides the strictness interpretation for each

Ai. Note the equivalent characterisation (to which we shall return when we consider the
relationship of f ] to f)

a](x1, . . . , xr) = 0 ⇔ (∀d1, . . . , dr ∈ D s.t. (xi = 0 ⇒ di = ⊥))a(d1, . . . , dr) = ⊥

For example we find

+](x, y) = x ∧ y

cond ](p, x, y) = p ∧ (x ∨ y)

We build a table into our analyser giving the strictness function for each built-in function.
Strictness functions generalise the above notion of “being strict in an argument”. For a

given built-in function a, we have that a is strict in its ith argument iff

a](1, . . . , 1, 0, 1, . . . , 1) = 0

(where the ‘0’ is in the ith argument position). However strictness functions carry more
information which is useful for determining the strictness property of one (user) function in
terms of the functions which it uses. For example consider

let f1(x,y,z) = if x then y else z
let f2(x,y,z) = if x then y else 42
let g1(x,y) = f1(x,y,y+1)
let g2(x,y) = f2(x,y,y+1)

Both f1 and f2 are strict in x and nothing else—which would mean that the strictness of g1
and g2 would be similarly deduced identical—whereas their strictness functions differ

f1](x, y, z) = x ∧ (y ∨ z)
f2](x, y, z) = x

and this fact enables us (see below) to deduce that g1 is strict in x and y while g2 is merely
strict in x. This difference between the strictness behaviour of f1 and f2 can also be expressed
as the fact that f1 (unlike f2) is jointly strict in y and z (i.e. (∀x ∈ D)f(x,⊥,⊥) = ⊥) in
addition to being strict in x.

Now we need to define strictness functions for user-defined functions. The most exact
way to calculate these is to calculate these would be to calculate them as we did for base
functions: thus

f(x,y) = if tautology(x) then y else 42

would yield
f \(x, y) = x ∧ y

assuming that tautology was strict. (Note use of f \ in the above—we reserve the name f ]

for the following alternative.) Unfortunately this is undecidable in general and we seek a
decidable alternative (see the corresponding discussion on semantic and syntactic liveness).
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To this end we define the f ]
i not directly but instead in terms of the same composition

and recursion from the a]
i as that which defines the Fi in terms of the Ai. Formally this can

be seen as: the fi are the solution of the equations

F1(x1, . . . , xk1) = e1

· · · = · · ·
Fn(x1, . . . , xkn) = en

when the Ai are interpreted as the ai whereas the f ]
i are the solutions when the Ai are

interpreted as the a]
i.

Safety of strictness can be characterised by the following: given user defined function F
(of arity k) with standard semantics f : Dk → D and strictness function f ] : 2k → 2 by

f ](x1, . . . , xk) = 0 ⇒ (∀d1, . . . , dk ∈ D s.t. (xi = 0 ⇒ di = ⊥))f(d1, . . . , dk) = ⊥

Note the equivalent condition for the Ai had ⇒ strengthened to ⇔—this corresponds to
the information lost by composing the abstract functions instead of abstracting the standard
composition. An alternative characterisation of safety is that f \(~x) ≤ f ](~x).

Returning to our running example

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).

we derive equation

plus](x, y) = cond ](eq(x, 0]), y, plus](sub1 ](x), add1 ](y)). (1)

Simplifying with built-ins

eq](x, y) = x ∧ y

0] = 1
add1 ](x) = x

sub1 ](x) = x

gives
plus](x, y) = x ∧ (y ∨ plus](x, y)).

Of the six possible solutions (functions in 2×2 → 2 which do not include negation—negation
corresponds to ‘halt iff argument does not halt’)

{λ(x, y).0, λ(x, y).x ∧ y, λ(x, y).x, λ(f, y).y, λ(x, y).x ∨ y, λ(x, y).1}

we find that only λ(x, y).x and λ(x, y).x∧ y satisfy equation (1) and we choose the latter for
the usual reasons—all solutions are safe and this one permits most strictness optimisations.

Mathematically we seek the least fixpoint of the equations for plus] and algorithmically
we can solve any such set of equations (using f#[i] to represent f ]

i , and writing e]
i to mean

ei with the Fj and Aj replaced with f ]
j and a]

j) by:

for i=1 to n do f#[i] := λ~x.0
while (f#[] changes) do

for i=1 to n do

f#[i] := λ~x.e]
i.
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Note the similarity to solving dataflow equations—the only difference is the use of functional
dataflow values. Implementation is well served by an efficient representation of such boolean
functions. ROBDDs2 are a rational choice in that they are a fairly compact representation
with function equality (for the convergence test) being represented by simple pointer equality.

For plus] we get the iteration sequence λ(x.y).0 (initial), λ(x, y).x ∧ y (first iteration),
λ(x, y).x ∧ y (second iteration, halt as converged).

Since we can now see that plus](0, 1) = plus](1, 0) = 0 we can deduce that plus is strict
in x and in y.

We now turn to strictness optimisation. Recall we suppose our language requires each
parameter to be passed as if using CBN. As indicated earlier any parameter shown to be
strict can be implemented using CBV. For a thunk-based implementation of CBN this means
that we continue to pass a closure λ().e for any actual parameter e not shown to be strict
and evaluate this on first use inside the body; whereas for a parameter shown to be strict, we
evaluate e before the call by passing it using CBV and then merely use the value in the body.

10 Control-flow analysis (for λ-terms)

This is not to be confused with the simpler intraprocedural reachability analysis on flow
graphs, but rather generalises call graphs. Given a program p the aim is to calculate, for each
expression e, the set of primitive values (here integer constants and λ-abstractions) which
can result from e during the evaluation of p. (This can be seen as a higher-level technique
to improve the resolution of the approximation “assume an indirect call may invoke any
procedure whose address is taken” which we used in calculating the call graph.)

We take the following language for concrete study (where we consider c to range over a
set of (integer) constants and x to range over a set of variables):

e ::= x | c | λx.e | e1e2 | let x = e1 in e2.

Programs p are just terms in e with no free variables. For this lecture we will consider the
program, p, given by

let id = λx.x in id id 7

We now need a notion of program point (generalisation of label) which we can use to refer-
ence uniquely a given expression in context. This is important because the same expression
may occur twice in a program but we wish it to be treated separately. Thus we label the
nodes of the syntax tree of the above program uniquely with their occurrences in the tree
(formally sequences of integers representing the route from the root to the given node, but
here convenient integers). This gives

(let id10 = (λx20.x21)22 in ((id30 id31)32 733)34)1.

The space of flow values F for this program is

{(λx20.x21)22, 733}
2ROBBD means Reduced Ordered Binary Decision Diagram, but often OBDD or BDD is used to refer to

the same concept.
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which again in principle require the labelling to ensure uniqueness. Now associate a flow
variable with each program point, i.e.

α1, α20, α21, α22, α30, α31, α32, α33, α34.

In principle we wish to associate, with each flow variable αi associated with expression ei, the
subset of the flow values which it yields during evaluation of p. Unfortunately again this is
undecidable in general and moreover can depend on the evaluation strategy (CBV/CBN). We
have seen this problem before and, as before, we give an formulation to get safe approximations
(here possibly over-estimates) for the αi.3 Moreover these solutions are safe with respect to
any evaluation strategy for p (this itself is a source of some imprecision!).

We get constraints on the αi determined by the program structure (the following con-
straints are in addition to the ones recursively generated by the subterms e, e1, e2 and e3):

• for a term xi we get the constraint αi ⊇ αj where xj is the associated binding (via
let xj = · · · or λxj . · · ·);

• for a term ci we get the constraint αi ⊇ {ci};

• for a term (λxj .ek)i we get the constraint αi ⊇ {(λxj .ek)i};

• for a term (ej
1e

k
2)

i we get the compound constraint (αk 7→ αi) ⊇ αj ;

• for a term (let xl = ej
1 in ek

2)
i we get the constraints αi ⊇ αk and αl ⊇ αj ;

• for a term (if ej
1 then ek

2 else el
3)

i we get the constraints αi ⊇ αk and αi ⊇ αl.

Here (γ 7→ δ) ⊇ β represents the fact that the flow variable β (corresponding to the informa-
tion stored for the function to be applied) must include the information that, when provided
an argument contained within the argument specification γ, it yields results contained within
the result specification δ. (Of course δ may actually be larger because of other calls.) Formally
(γ 7→ δ) ⊇ β is shorthand for the compound constraint that (i.e. is satisfied when)

whenever β ⊇ {(λxj .ek)i} we have αj ⊇ γ ∧ δ ⊇ αk.

Such constraint sets are always finitely satisfiable and have a unique least solution (w.r.t. ⊆)
because of reasons concerning monotonicity of the above implication (outside this course).

The above program p gives the following constraints, which we should see as dataflow
inequations:

α1 ⊇ α34 let result
α10 ⊇ α22 let definiens
α22 ⊇ {(λx20.x21)22} λ-abstraction
α21 ⊇ α20 x use
α33 ⊇ {733} constant 7
α30 ⊇ α10 id use

α31 7→ α32 ⊇ α30 application-32
α31 ⊇ α10 id use

α33 7→ α34 ⊇ α32 application-34

3The above is the normal formulation, but you might prefer to think in dataflow terms. αi represents
possible-values(i) and the equations below are dataflow equations.
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Again all solutions are safe, but the least solution is

α1 = α34 = α32 = α21 = α20 = {(λx20.x21)22, 733}
α30 = α31 = α10 = α22 = {(λx20.x21)22}

α33 = {733}

You may verify that this solution is safe, but note that is imprecise because 733 ∈ α1. The
reason for this imprecision is that we have only a single flow variable available for the expres-
sion which forms the body of each λ-abstraction. This has the effect that possible results from
one call are conflated with possible results from another. There are various enhancements to
reduce this which we sketch in the next paragraph (but which are rather out of the scope of
this course).

The analysis given above is a monovariant analysis in which one property (here a single
set-valued flow variable) is associated with a given term. As we saw above, it led to some
imprecision in that p above was seen as possibly returning {7, λx.x} whereas we evaluation
of p results in 7. There are two ways to improve the precision. One is to consider a poly-
variant approaching in which multiple calls to a single procedure are seen as calling separate
procedures with with identical bodies. An alternative is a polymorphic approach in which the
values which flow variables may take are enriched so that a (differently) specialised version
can be used at each use. One can view the former as somewhat akin to the ML treatment of
overloading where we see (letting ∧ represent the choice between the two types possessed by
the + function)

op + : int*int->int ∧ real*real->real

and the latter can be similarly be seen as comparable to the ML typing of

fn x=>x : ∀α.α->α.

This is an active research area and the ultimately ‘best’ treatment is unclear.

11 Inference-based program analysis

This is a general technique in which an inference system specifies judgements of the form

Γ ` e : φ

where φ is a program property and Γ is a set of assumptions about free variables of e. One
standard example (to be covered in more detail the the CST part II ‘Types’ course) is the
ML type system. Although the properties are here types and thus are not directly typical
of program optimisation (the associated optimisation consists of removing types of values,
evaluating in a typeless manner, and attaching the inferred type to the computed typeless
result; non-typable programs are rejected) it is worth considering this as an archetype. For
current purposes ML expressions e can here be seen as the λ-calculus:

e ::= x | λx.e | e1e2

and (assuming α to range over type variables) types t of the syntax

t ::= α | int | t → t′.
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Now let Γ be a set of assumptions of the form {x1 : t1, . . . , xn : tn} which assume types ti for
free variables xi; and write Γ[x : t] for Γ with any assumption about x removed and with x : t
additionally assumed. We then have inference rules:

(VAR)
Γ[x : t] ` x : t

(LAM)
Γ[x : t] ` e : t′

Γ ` λx.e : t → t′

(APP)
Γ ` e1 : t → t′ Γ ` e2 : t

Γ ` e1e2 : t′
.

Safety: the type-safety of the ML inference system is clearly not part of this course, but its
formulation clearly relates to that for other analyses. It is usually specified by the soundness
condition:

({} ` e : t) ⇒ ([[e]] ∈ [[t]])

where [[e]] represents the result of evaluating e (its denotation) and [[t]] represents the set of
values which have type t. Note that (because of {}) the safety statement only applies to
closed programs (those with no free variables) but its inductive proof in general requires one
to consider programs with free variables.

The following gives a more program analysis-related example; here properties have the
form

φ ::= odd | even | φ → φ′.

We would then have rules:

(VAR)
Γ[x : φ] ` x : φ

(LAM)
Γ[x : φ] ` e : φ′

Γ ` λx.e : φ → φ′

(APP)
Γ ` e1 : φ → φ′ Γ ` e2 : φ

Γ ` e1e2 : φ′
.

Under the assumptions

Γ = {2 : even, + : even → even → even, × : even → odd → even}

we could then show
Γ ` λx.λy.2× x + y : odd → even → even.

but note that showing

Γ′ ` λx.λy.2× x + 3× y : even → even → even.

would require Γ′ to have two assumptions for × or a a single assumption of a more elaborate
property, involving conjunction, such as:

× : even → even → even ∧
even → odd → even ∧
odd → even → even ∧
odd → odd → odd .
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Exercise: Construct a system for odd and even which can show that

Γ ` (λf.f(1) + f(2))(λx.x) : odd

for some Γ.

12 Effect systems

This is an example of inference-based program analysis. The particular example we give
concerns an effect system for analysis of communication possibilities of systems.

The idea is that we have a language such as the following

e ::= x | λx.e | e1e2 | ξ?x.e | ξ!e1.e2 | if e1 then e2 else e3.

which is the λ-calculus augmented with expressions ξ?x.e which reads an int from a channel ξ
and binds the result to x before resulting in the value of e (which may contain x) and ξ!e1.e2

which evaluates e1 (which must be an int) and writes its value to channel ξ before resulting
in the value of e2. Under the ML type-checking regime, side effects of reads and writes would
be ignored by having rules such as:

(READ)
Γ[x : int ] ` e : t

Γ ` ξ?x.e : t

(WRITE)
Γ ` e1 : int Γ ` e2 : t

Γ ` ξ!e1.e2 : t
.

For the purpose of this example, we suppose the problem is to determine which channels
may be read or written during evaluation of a closed term p. These are the effects of p. Here
we take the effects, ranged over by F , to be subsets of

{Wξ, Rξ | ξ a channel}.

The problem with the natural formulation is that a program like

ξ!1.λx.ζ!2.x

has an immediate effect of writing to ξ but also a latent effect of writing to ζ via the resulting
λ-abstraction.

We can incorporate this notion of effect into an inference system by using judgements of
the form

Γ ` e : t, F

whose meaning is that when e is evaluated then its result has type t and whose immediate
effects are a subset (this represents safety) of F . To account for latent effects of a λ-abstraction
we need to augment the type system to

t ::= int | t F→ t′.
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Letting one(f) = {f} represent the singleton effect, the inference rules are then

(VAR)
Γ[x : t] ` x : t, ∅

(READ)
Γ[x : int ] ` e : t, F

Γ ` ξ?x.e : t, one(Rξ) ∪ F

(WRITE)
Γ ` e1 : int , F Γ ` e2 : t, F ′

Γ ` ξ!e1.e2 : t, F ∪ one(Wξ) ∪ F ′

(LAM)
Γ[x : t] ` e : t′, F

Γ ` λx.e : t
F→ t′, ∅

(APP)
Γ ` e1 : t

F ′′
→ t′, F Γ ` e2 : t, F ′

Γ ` e1e2 : t′, F ∪ F ′ ∪ F ′′ .

Note that by changing the space of effects into a more structured set of values (and by
changing the understanding of the ∅, one and ∪ constants and operators on effects e.g. using
sequences with ∪ being append) we could have captured more information such as temporal
ordering since

ξ?x.ζ!(x + 1).42 : int , {Rξ} ∪ {Wζ}

and
ζ!7.ξ?x, 42 : int , {Wζ} ∪ {Rξ}.

Similarly one can extend the system to allow transmitting and receiving more complex types
than int over channels.

One additional point is that care needs to be taken about allowing an expression with
fewer effects to be used in a context which requires more. This is an example of subtyping
although the example below only shows the subtype relation acting on the effect parts. The
obvious rule for if-then-else is:

(COND)
Γ ` e1 : int , F Γ ` e2 : t, F ′ Γ ` e3 : t, F ′′

Γ ` if e1 then e2 else e3 : t′, F ∪ F ′ ∪ F ′′ .

However, this means that

if x then λx.ξ!3.x + 1 else λx.x + 2

is ill-typed (the types of e2 and e3 mismatch because their latent effects differ). Thus we tend
to need an additional rule which, for the purposes of this course can be given by

(SUB)
Γ ` e : t

F ′
→ t′, F

Γ ` e : t
F ′′
→ t′, F

(provided F ′ ⊆ F ′′)

Safety can then similarly approached to that of the ML type system where semantic
function [[e]] is adjusted to yield a pair (v, f) where v is a resulting value and f the actual
(immediate) effects obtained during evaluation. The safety criterion is then stated:

({} ` e : t, F ) ⇒ (v ∈ [[t]] ∧ f ⊆ F where (v, f) = [[e]])
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Epilogue for Part B

You might care to reflect that program analyses and type systems have much in common.
Both attempt to determine whether a given property of a program holds (in the case of
type systems, this is typically that the application of an operator is type-safe). The main
difference is the use to which analysis results are put—for type systems failure to guarantee
type correctness causes the program to be rejected whereas for program analysis failure to
show a result causes less efficient code to be generated.

Part C: Instruction Scheduling

13 Introduction

In this part we instruction scheduling for a processor architecture of complexity typical of
the mid-1980’s. Good examples would be the MIPS R-2000 or SPARC implementations of
this period. Both have simple 5-stage pipelines (IF,RF,EX,MEM,WB) with feed-forwarding
and both have delayed branches and delayed loads. One difference is that the MIPS had
no interlocks on delayed loads (therefore requiring the compiler writer, in general, to insert
NOP’s to ensure correct operation) whereas the SPARC has interlocks which cause pipeline
stalls when a later instruction refers to an operand which is not yet available. In both cases
faster execution (in one case by removing NOP’s and in the other by avoiding stalls) is often
possible by re-ordering the (target) instructions essentially within each basic block.

Of course there are now more sophisticated architectures: many processors have multiple
dispatch into multiple pipelines. Functional units (e.g. floating point multipliers) may be
scheduled separately by the pipeline to allow the pipeline to continue while they complete.
They may be also duplicated. Intel Pentium architecture goes as far as re-scheduling instruc-
tion sequences dynamically, to some extent making instruction scheduling at compile time
rather redundant. However, the ideas presented here are an intellectually satisfactory basis
for compile-time scheduling for all architectures; moreover, even if all scheduling were to be
done dynamically in hardware, someone (now hardware designers) still has to understand
scheduling principles!

The data structure we operate upon is a graph of basic blocks, each consisting of a
sequence of target instructions obtained from blow-by-blow expansion of the abstract 3-address
intermediate code we saw in Part A of this course. Scheduling algorithms usually operate
within a basic block and adjust if necessary at basic block boundaries—see later.

The objective of scheduling is to minimise the number of pipeline stalls (or the number
of inserted NOP’s on the MIPS). Sadly the problem of such optimal scheduling is often NP-
complete and so we have to fall back on heuristics for life-size code. We present the O(n2)
algorithm due to Gibbons and Muchnick (attached in the paper version of the notes) in these
notes.

Observe that two instructions may be permuted if neither writes to a register read or
written by the other. We define a graph (actually a DAG), whose nodes are instructions
within a basic block. Place an edge from instruction a to instruction b if a occurs before b in
the original instruction sequence and if a and b cannot be permuted. Now observe that the
any of the minimal elements of this DAG (normally drawn at the top in diagrammatic form)
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can be validly scheduled to execute first and after removing such a scheduled instruction from
the graph any of the new minimal elements can be scheduled second and so on. In general
any topological sort of this DAG gives a valid scheduling sequence. Some are better than
others and to achieve non-NP-complete complexity we cannot in general search freely, so
the current O(n2) algorithm makes the choice of the next-to-schedule instruction locally, by
choosing among the minimal elements with the static scheduling heuristics

• choose an instruction which does not conflict with the previous emitted instruction

• choose an instruction which is most likely to conflict if first of a pair (e.g. ld.w over
add)

• choose an instruction which is as far as possible (over the longest path) from a graph-
maximal instruction—the ones which can be validly be scheduled as the last of the basic
block.

On the MIPS or SPARC the first heuristic can never harm. The second tries to get instructions
which can provoke stalls out of the way in the hope that another instruction can be scheduled
between a pair which cause a stall when juxtaposed. The third has similar aims—given two
independent streams of instructions we should save some of each stream for inserting between
stall-pairs of the other.

So, given a basic block

• construct the scheduling DAG as above; doing this by scanning backwards through the
block and adding edges when dependencies arise works in O(n2)

• initialise the candidate list to the minimal elements of the DAG

• while the candidate list is non-empty

– emit an instruction satisfying the static scheduling heuristics (for the first iteration
the ‘previous instruction’ with which we must avoid dependencies is any of the final
instructions of predecessor basic blocks which have been generated so far.

– if no instruction satisfies the heuristics then either emit NOP (MIPS) or emit an
instruction satisfying merely the final two static scheduling heuristics (SPARC).

– remove the instruction from the DAG and insert the newly minimal elements into
the candidate list.

On completion the basic block has been scheduled.
One little point which must be taken into account on non-interlocked hardware (e.g. MIPS)

is that if any of the successor blocks of the just-scheduled block has already been generated
then the first instruction of one of them might fail to satisfy timing constraints with respect
to the final instruction of the newly generated block. In this case a NOP must be appended.

14 Antagonism of register allocation and instruction schedul-
ing

Register allocation by colouring results attempts to minimise the number of store locations
or registers used by a program. As such we would not be surprised to find that the generated
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code for
x := a; y := b;

were to be

ld.w a,r0
st.w r0,x
ld.w b,r0
st.w r0,y

This code takes 6 cycles4 to complete (on the SPARC there is an interlock delay between each
load and store, on the MIPS a NOP must be inserted). According to the scheduling theory de-
veloped above, each instruction depends on its predecessor (def-def or def-use conflicts inhibit
all permutations) this is the only valid execution sequence. However if the register allocator
had allocated r1 for the temporary copying y to b, the code could have been scheduled as

ld.w a,r0
ld.w b,r1
st.w r0,x
st.w r1,y

which then executes in only 4 cycles.
At the moment there does not appear to be very satisfactory theory as to how to resolve

this (it is related to the ‘phase-order problem’ in which we would like to defer optimisation
decisions until we know how later phases will behave on the results passed to them). The
CRAIG system [1] is one exception. One rather ad hoc solution is to allocate temporary
registers cyclically instead of re-using them at the earliest possible opportunity. In the context
of register allocation by colouring this can be seen as attempting to select a register distinct
from all others allocated in the same basic block when all other constraints and desires (recall
the MOV preference graph).

This problem also poses dynamic scheduling problems in pipelines for corresponding 80x86
instruction sequences which need to reuse registers as much as possible because their limited
number. Processors such as the Intel Pentium achieve effective dynamic rescheduling by
having a larger register set in the computational engine than the 8-register based (ax,bx,cd
etc.) instruction set registers and dynamically ‘recolouring’ live-ranges of such registers with
the larger register set. This then achieves a similar effect to the above example in which the
r0-r1 pair replaces the single r0, but without the need to tie up another user register.

4Here I am counting time in pipeline step cycles, from start of the first ld.w instruction to the start of the
instruction following the final st.w instruction.
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Part D: Decompilation and Reverse
Engineering

This final lecture considers the topic of decompilation, the inverse process to compilation
whereby assembler (or binary object) files are mapped into one of the source files which could
compile to the given assembler or binary object source.

Note in particular that compilation is a many-to-one process—a compiler may well ignore
variable names and even compile x<=9 and x<10 into the same code. Therefore we are picking
a representative program.

There are three issues which I want to address:

• The ethics of decompilation;

• Control structure reconstruction; and

• Variable and type reconstruction.

You will often see the phrase reverse engineering to cover the wider topic of attempting
to extract higher-level data (even documentation) from lower-level representations (such as
programs). Our view is that decompilation is a special case of reverse engineering. A site
dedicated to reverse engineering is:

http://www.reengineer.org

Legality/Ethics

Reverse engineering of a software product is normally forbidden by the licence terms which
a purchaser agrees to, for example on shrink-wrap or at installation. However, legislation
(varying from jurisdiction to jurisdiction) often permits decompilation for very specific pur-
poses. For example the EU 1991 Software Directive (a world-leader at the time) allows the
reproduction and translation of the form of program code, without the consent of the owner,
only for the purpose of achieving the interoperability of the program with some other pro-
gram, and only if this reverse engineering is indispensable for this purpose. Newer legislation
is being enacted, for example the US Digitial Millenium Copyright Act which came into force
in October 2000 has a “Reverse Engineering” provision which

“. . . permits circumvention, and the development of technological means for such
circumvention, by a person who has lawfully obtained a right to use a copy of
a computer program for the sole purpose of identifying and analyzing elements
of the program necessary to achieve interoperability with other programs, to the
extent that such acts are permitted under copyright law.”

Note that the law changes with time and jurisdiction, so do it where/when it is legal! Note
also that copyright legislation covers “translations” of copyrighted text, which will certainly
include decompilations even if permitted by contract or by overridding law such as the above.

A good source of information is the Decompilation Page [5] on the web, in particular the
subpage

http://www.csee.uq.edu.au/~csmweb/decompilation/ethics.html
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is attached to the (paper) course notes and mirrored on the course web site

http://www.cl.cam.ac.uk/Teaching/2001/OptComp

Control Structure Reconstruction

Extracting the flowgraph from an assembler program is easy. The trick is then to match
intervals of the flowgraph with higher-level control structures, e.g. loops, if-the-else. Note that
non-trivial compilation techniques like loop unrolling will need more aggressive techniques to
undo. Cifuentes and her group have worked on many issues around this topic. See Cifuentes’
PhD [6] for much more detail. In particular pages 123–130 are attached to the (paper) course
notes and mirrored on the course web site

http://www.cl.cam.ac.uk/Teaching/2001/OptComp

Variable and Type Reconstruction

This is trickier than one might first think, because of register allocation (and even CSE). A
given machine register might contain, at various times, multiple user-variables and tempo-
raries. Worse still these may have different types. Consider

f(int *x) { return x[1] + 2; }

where a single register is used to hold x, a pointer, and the result from the function, an
integer. Decompilation to

f(int r0) { r0 = r0+4; r0 = *(int *)r0; r0 = r0 + 2; return r0; }

is hardly clear. Mycroft uses transformation to SSA form to undo register colouring and then
type inference to identify possible types for each SSA variable. See [7] attached to the (paper)
notes or via the course web site

http://www.cl.cam.ac.uk/Teaching/2001/OptComp
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Advertisement

In addition to the usual sources of money, various tame companies have funded Ph.D. research
at the higher CASE level in areas which interest them. For more details see our research group
site http://www.cl.cam.ac.uk/Research/CPRG and come and talk to me if interested.
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