Lecture 9:

Memory Management II:
Paging and Segmentation

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 9: Wednesday 24th October 2001

Today’s Lecture

In the last lecture, we considered the question:

How do we manage memory when sharing the
CPU between many processes?

But we saw the problem of fragmentation, and a
possible solution: compaction.
Today we'll look at another idea:

What if we allow a process to reside in
non-contiguous memory?

We'll consider two possible methods:
1. Paging, and

2. Segmentation.

Lecture 9: Contents

Paged Virtual Memory

logical address Page Table

P

physical
address

Another solution is to allow a process to exist in
non-contiguous memory, i.e.

e divide physical memory into relatively small blocks
of fixed size, called frames

e divide logical memory into blocks of the same size
called pages (typical value is 4K)

e each address generated by CPU is composed of a
page number p and page offset o.

e MMU uses p as an index into a page table.
e page table contains associated frame number f

e usually have |p| >> |f| = need valid bit.

Lecture 9: Paging

Paging Pros and Cons

Virtual Memory
Page 0

Page 1 Physical Memory

Page 2

Page 3

Page 4

® N ORWN = O

Page n-1

memory allocation easier
OS must keep page table per process

no external fragmentation (in physical
memory at least)

but get internal fragmentation

clear separation between user and system
view of memory usage.

x Sx SN xS

additional overhead on context switching

Lecture 9: Paging

Structure of the Page Table

Different kinds of hardware support can be provided:

e Simplest case: set of dedicated relocation registers

— one register per page

— OS loads the registers on context switch

— fine if the page table is small. . . but what if
have large number of pages ?

e Alternatively keep page table in memory

— only one register needed in MMU (page table
base register (PTBR))
— OS switches this when switching process
e Problem: page tables might still be very big.

— can keep a page table length register (PTLR) to
indicate size of page table.
— or can use more complex structure (see later)

e Problem: need to refer to memory twice for every
‘actual’ memory reference. . .

= use a translation lookaside buffer (TLB)

Lecture 9: Paging 4

TLB Operation

TLB

pl f1l
- p2 £2
- p3 £3
L p4 £4 f o

physical address
Page Table Y

Memory

logical address

e On memory reference present TLB with logical
memory address

e If page table entry for the page is present then get
an immediate result

e If not then make memory reference to page tables,
and update the TLB

Lecture 9: Paging

Multilevel Page Tables

e Most modern systems can support very large
(232,254) address spaces.

e Solution: split page table into several sub-parts

e Two level paging—page the page table

Base Register Virtual Address
|L1 Addressl | Pl | P2 | Offset |

L2 Page Table 1

n| 12 Address [==$0 I

L1 Page Table
0

n Leaf PTE [l

e For 64 bit architectures a two-level paging scheme
is not sufficient: need further levels.

(even some 32 bit machines have > 2 levels).

Lecture 9: Paging 6

Example: x86

Virtual Address

Page Directory (Level 1)

20 bits
P z[a[c[w[U[R[V
S B EEEHEE

1024
entries

e Page size 4K (or 4Mb).

e First lookup is in the page directory: index using
10 most significant bits.

e Address of page directory stored in internal
processor register (cr3).

e Results (normally) in the address of a page table.

Lecture 9: Paging

Example: x86 cont.

Virtual Address

Page Table (Level 2)
20 bits
ke FEHEEEEEE

1024

entries

e Use next 10 bits to index into page table.

e Once retrieve page frame address, add in the offset
(i.e. the low 12 bits).

e Notice page directory and page tables are exactly
one page each themselves.

Lecture 9: Paging 8

Protection Issues

e Associate protection bits with each page—kept in
page tables (and TLB).
e.g. one bit for read, one for write, one for execute.

e May also distinguish whether may only be accessed
when executing in kernel mode, e.g.

Frame Number |K|R|W|X|V|

e At the same time as address is going through page
hardware, can check protection bits.

e Attempt to violate protection causes h/w trap to
operating system code

e As before, have valid/invalid bit determining if
the page is mapped into the process address space:

— if invalid = trap to OS handler
— can do lots of interesting things here,
particularly with regard to sharing. . .

Lecture 9: Paging 9

Shared Pages

Another advantage of paged memory is code/data
sharing, for example:

e binaries: editor, compiler etc.
e libraries: shared objects, dlls.
So how does this work?

e Implemented as two logical addresses which map
to one physical address.

e If code is re-entrant (i.e. stateless, non-self
modifying) it can be easily shared between users.

e Otherwise can use copy-on-write technique:

— mark page as read-only in all processes.

— if a process tries to write to page, will trap to
OS fault handler.

— can then allocate new frame, copy data, and
create new page table mapping.

e (may use this for lazy data sharing too).

Requires additional book-keeping in OS, but worth it.

Lecture 9: Paging 10

Segmentation

Logical Physical
Address Memory

stack

200
procedure Limit _Base main()
1000 5900

200 0

5000 | 200 5200

°
200 | 5700

300 | 5300 2300
symbols 4 symbols
2 5600
$ 5700
sys library3|

Segment 5900

main()

AW N~ D

sys library

Table

procedure
6900

e User prefers to view memory as a set of segments
of no particular size, with no particular ordering.

e Segmentation supports this user-view of memory
— logical address space is a collection of (typically
disjoint) segments.

e Segments have a name (or a number) and a
length—addresses specify segment and offset.

e Contrast with paging where user is unaware of
memory structure (all managed invisibly).

Lecture 9: Segmentation 11

Implementing Segments

e Maintain a segment table for each process:

Segment | Access | Base | Size | Others!

e If program has a very large number of segments
then the table is kept in memory, pointed to by ST
base register STBR.

e Also need a ST length register STLR since no.
of segs used by different programs will differ widely

e The table is part of the process context and hence
is changed on each process switch.

Algorithm:

1. Program presents address (s, d).
Check that s < STLR. If not, fault

2. Obtain table entry at reference s+ STBR, a tuple
of form (b, ()

3. If 0 < d < I, then this is a valid address at location
(bs,d), else fault

Lecture 9: Segmentation 12

Sharing and Protection

e Big advantage of segmentation is that protection is
per segment; i.e. corresponds to logical view.

e Protection bits associated with each ST entry
checked in usual way, e.g.

— instruction segments (should be non-self
modifying!) thus protected against writes etc.

— place each array in own seg = array limits
checked by hardware

e Segmentation also facilitates sharing of code/data:

— each process has its own STBR/STLR

— sharing is enabled when two processes have
entries for the same physical locations.

— for data segments can use copy-on-write as per
paged case.

e Several subtle caveats exist with segmentation —
e.g. jumps within shared code.

Lecture 9: Segmentation 13

Sharing Segments

Per-process Physical Memory
Segment
Tables System
Segment
N Table a
B B
Shared
[DANGEROUS] [SAFE]

Sharing segments:

e wasteful (and dangerous) to store common
information on shared segment in each process
segment table

e assign each segment a unique System Segment
Number (SSN)

e process segment table simply maps from a Process
Segment Number (PSN) to SSN

Lecture 9: Segmentation 14

External Fragmentation Returns. . .

e Long term scheduler must find spots in memory for
all segments of a program.

e Problem now is that segs are of variable size =
leads to fragmentation.

e Tradeoff between compaction/delay depends on
average segment size

e Extremes:

— each process 1 seg — reduces to variable sized
partitions, or

— each byte 1 seg separately relocated —
quadruples memory use!

e Fixed size small segments = paging!

e In general with small average segment sizes,
external fragmentation is small.

Lecture 9: Segmentation 15

Summary

You should now understand:
e Paging, and

e Segmentation.

Next lecture: 1/0

Background Reading:
e Silberschatz et al.: — Sections 9.4& 9.5.

Lecture 9: Summary

16

