www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 2:

Simple Computer Architecture |

Lecture 2: Monday 8th October 2001

Today’s Lecture

Today we'll cover:
e What's inside a computer?

— Registers,

— Memory Hierarchy,
Control, Execution units
Fetch-Execute Cycle,

— ALU.

e How do we store and manipulate numbers?

— Sign and Magnitude,
— Two’s complement,
— Arithmetic.

Lecture 2: Contents

A (Simple) Modern Computer

Processor Bus
Register File Address Data Control
(including PC) SR
Memory
ConL'rol ExecuAtion e.g. 64 MByte
Unit Unit M6 % 8 =
536,870,912bits
Reset
Hard Disk
Framebuffer
Super I/O
Sound Card
@ @D D

Processor (CPU): executes programs.

e Memory: stores both programs & data.

Devices: for input and output.

Bus: transfers information.

Lecture 2: Anatomy of a Computer

Registers and the Register File

RO 0x5A R8 0xEAQ2D1F
R1 0x102034 R9 0x1001D
R2| 0x2030ADCB R10| OxXFFFFFFFF
R3 0x0 R11 0x102FC8
R4 0x0 R12 0xFF0000
R5 0x2405 R13 0x37B1CD
R6 0x102038 R14 Ox1
R7 0x20 R15]| 0x20000000

Computers are all about operating on information:

e information arrives into memory from input devices

e memory is a essentially large byte array which can hold any
information we wish to operate on.

e computer logically takes values from memory, performs
operations, and then stores result back.

In practice, CPU operates on registers:

® a register is an extremely fast piece of on-chip memory,
usually either 32- or 64-bits in size.

o modern CPUs have between 8 and 128 registers.

e data values are loaded from memory into registers before
being operated upon,
e and results are stored back again.

Lecture 2: Anatomy of a Computer

Memory Hierarchy

CPU
Cache (SRAM)
Main Memor
] Execution | o Data g a emory
[ia) Unit l ” Cache =]
— B 64MB
}1;)) £ DRAM
g £
[3) Control | Instruction 2
~ Unit [Cache a

32K ROM

Address

Data

Control

Bus

Use cache between main memory and register: try
to hide delay in accessing (relatively) slow DRAM.

Cache made from faster SRAM:

— more expensive, so much smaller
— holds copy of subset of main memory.

Split of instruction and data at cache level =
“Harvard” architecture.

o Cache <+ CPU interface uses a custom bus.
e Today have ~ 512KB cache, ~ 128MB RAM.

Lecture 2: Anatomy of a Computer 4

“Ideally one would desire an indefinitely large
memory capacity such that any

particular. . . word would be immediately
available. . . We are. . . forced to recognize the
possibility of constructing a hierarchy of
memories, each of which has greater capacity
than the preceding but which is less quickly
accessible.”

Burks, Goldstine & Von Neumann, 1946.

Lecture 2: Anatomy of a Computer

The Fetch-Execute Cycle

Control Unit

Register File

e A special register called PC holds a memory
address; on reset, initialised to 0.

e Then:

1. Instruction fetched from memory address held in
PC into instruction buffer (IB).

2. Control Unit determines what to do: decodes
instruction.

3. Execution Unit executes instruction.

4. PC updated, and back to Step 1.

e Continues pretty much forever. . .

Execution Unit

Register File

#rRb 4—»| Execution
4R Ay Unit

H

[y D C

e The “calculator” part of the processor.

e Broken into parts (functional units), e.g.

— Arithmetic Logic Unit (ALU).
Shifter/Rotator.

Multiplier.

Divider.

Memory Access Unit (MAU).
Branch Unit.

Choice of functional unit determined by signals
from control unit.

Lecture 2: Central Processing Unit 6

Lecture 2: Central Processing Unit

Arithmetic Logic Unit Number Representation
00005 | 04 01102 | 646 11004 Clig
An N-bit ALU 00012 116 01112 716 11012 D16
Function k 00102 216 10002 816 11102 E16
Code Carry In 0011, 316 1001, 916 11115 Fig
01005 | 416 10105 | Asg 100005 | 1046
01015 | 516 10115 | Bag 100015 | 1146

input a

output (d) R B n
e a n-bit register b, _1b,_2...b1bg can represent 2

different values.

e Call b,,_1 the most significant bit (msb), by the
least significant bit (Isb).

e Unsigned numbers: treat the obvious way, i.e.

e Inputs from register file; output to register file. val = b, 12" L 4 b, 92772 oo 5121 4 20,
eg 1101, =23 +224+20=8+4+1=13.

e Represents values from 0 to 2™ — 1 inclusive.

input b

Carry Out

o Part of the execution unit.

e Performs simple two-operand functions:

—a+b

—a-b e For large numbers, binary is unwieldy: use
— 2 AND b hexadecimal (base 16).

—aORb e To convert, group bits into groups of 4, e.g.
— etc. 11111010102 = 0011]1110|10102 = 3E Ass.

Oft “0z" prefix to denote hex, e.g. 02107.
e Typically perform all possible functions; use y en use U prefix to denote hex, e.e. Br

function code to select (mux) output. e Can use dot to separate large numbers into 16-bit

chunks, e.g. 0z3FF.FFFF.

Lecture 2: Arithmetic and Logical Operations 8 Lecture 2: Arithmetic and Logical Operations 9

Number Representation cont. Unsigned Arithmetic

e What about signed numbers? Two main options: .

_C. Cs B

e Sign & magnitude: 0 (8) (é)
— top (leftmost) bit flags if negative; remaining + o |o
0 ©O1

Co=Cin

c, ¢C;
1) (0) (0)
1 1 1
1 1 0

\ \ \
M1 @®o 1

bits make value.
— e.g. byte 100110115, — —00110115 = —27.

— represents range —(2" ' — 1) to +(2" ' — 1), (we use 5-bit registers for simplicity)
and the bonus value —0 (!).

e Unsigned addition: C,, means “carry”:
e 2's complement:
. . 00101 5 11110 30
— to get —z from z, invert every bit and add 1. + 00111 7 v 00111 7

- e.g. +27 =00011011 =» | . ___
—27 = (111001002 + 1) = 111001015. 0 01100 12 1 00101 5
— treat 1000...0005 as —27~1. | mmmmmmmmmmeem o

— represents range —2" ! to +(27 1 — 1) o
P & () e Unsigned subtraction: C,, means “borrow":

e Note:
. . u - 01100 12 00111 7
— in both cases, top-bit means “negative”. + 11001 -7 + 10110 -10
— both representations depend onn; | cmmmmmmmeol
1 00101 5 0 11101 29

e In practice, all modern computers use 2's
complement. . .

Lecture 2: Arithmetic and Logical Operations 10 Lecture 2: Arithmetic and Logical Operations 11

Signed Arithmetic

In signed arithmetic, carry no good on its own.
Use the overflow flag, V = (C,® C,,_1).

e Also have negative flag, N = b,,_; (i.e. the msb).
e Signed addition:
00101 5 01010 10
+ 00111 7 + 00111 7
0 01100 12 0 10001 -15
0 1
e Signed subtraction:
01010 10 10110 -10
+ 11001 -7 + 10110 -10
1 0001t 3 1 01100 12
1 0

Note that in overflow cases the sign of the result is
always wrong (i.e. the N bit is inverted).

Lecture 2: Arithmetic and Logical Operations 12

Summary

You should now understand:

e Some details of simple computer architecture,
e The fetch-execute cycle,

e Binary and hexadecimal numbers,

e Representing signed numbers in binary, and

o Arithmetic with signed binary numbers.

Next lecture: Simple Computer Architecture Il

Background Reading:
e Hennessy/Patterson:

— Chapter 4 - Arithmetic
— Chapter 7 - Memory

Lecture 2: Summary 13

