
Introduction to Functional Programming
Lent 2002

Suggested Exercises 3

1. Sequences
Define a function that takes a sequence (a lazy list) of integers, and produces a
sequence containing the sums of adjacent pairs. So, the list [x1, x2, x3, x4, . . .]
would be mapped to [x1 + x2, x3 + x4, . . .].

2. Lazier Lists
The following datatype provides an alternative implementation of lazy lists
to the one given in the lectures. It avoids the unnecessary computation of
the first element, when it is not required.

datatype ’a seq = Nil

| Cons of unit -> ’a * ’a seq;

Modify the functions hdq, tlq, from and take to work with this datatype.

Repeat Question 1 for this datatype.

3. Structural Induction
Prove the following identities by induction on lists.

(map f) ◦ reverse = reverse ◦ (map f)

foldr(op ::)l1l2 = l2@l1

Write a function mirror that produces the mirror image of a binary tree,
i.e. the tree obtained by interchanging (recursively) the left and right child
of every node.
Prove, by induction on trees, that reflect(reflectt) = t.

1


