
Diploma in Computer Science

Computer Science Tripos II(G)

Introduction to Algorithms

http://www.cl.cam.ac.uk/Teaching/2001/InroAlgs

Martin Richards mr@cl.cam.ac.uk

Michaelmas 2001

These notes are based on those of Dr A.C. Norman and Dr A. Mycroft

1

1 Introduction

This is a set of four lectures aimed for the Diploma in Computer Science and the Computer

Science Tripos (Part 2 General) classes. It leads in to the \Data Structures and Algorithms"

course that is timetabled immediately after it. The DS&A course is also attended by CST

1b students, who had a couple of courses on programming last year as well as one on

Discrete Mathematics. The programming side of things is covered to a large extent by the

fact that the Diploma class gets taught Java early in the term, thus this course provides

survival training with regard to the mathematics that the DS&A course needs to rely on.

Those Diploma students who have just completed a �rst degree in mathematics (elsewhere

or here, and possibly including Part 3) might reasonably collect a copy of these notes,

observe the topics covered and not worry about attending these four lectures1.

Later in the year there is a course that has \Discrete Mathematics" as its title. There

may be a small amount of overlap between this course and that one, but I do not mind!

Firstly because some things can usefully be said twice and make more sense the second

time, and secondly because the coverage I give here will be somewhat compressed and will

relate only the the DS&A course, while Discrete Mathematics has other applications in

Computer Science.

This set of four lectures is not directly examined. Some of the concepts introduced

may, however, help in answers to DS&A questions, and it may give a preview of Discrete

Maths and hence make that easier to cope with.

2 Teaching and Learning Guide

[This is a Computer Laboratory mandated section of all lecture courses.]

Since this course is not directly examined (its purpose is mainly to (re-) introduce

discrete mathematics needed for the `Data Structures and Algorithms Course') there is no

obvious source of questions. For additional problems I would suggest that you turn to the

Teaching and Learning Guides issued by the (two di�erent) Discrete Mathematics courses

given as part of the Diploma/Part 2 General and as part of the Computer Science Tripos

(Part 1A).

The general areas covered in the four lectures are

� Sets, functions.

� Relations, graphs; induction.

� Combinations and permutations.

� O(f) notation, sorting as example algorithm.

1However note that before dropping any other lectures you ought to discuss your plans with your

Director of Studies.

2

If you want more reading on this sort of material, I recommend \Concrete Mathematics"

by Knuth, Graham and Patashnik. It obviously contains much more that can �t in my

four lectures, but a great deal of what it contains could �nd direct use somewhere in a

computer science course. The Schaum-series book `Discrete Mathematics' contains some

700 worked problems and is in general quite useful.

3 Proofs and Induction

A signi�cant issue in designing proper computer procedures to solve problems is that of

proving that they always work. There is a very large body of empirical evidence that just

writing a program and testing it (even testing it on a very large number of examples) is

not suÆcient: formal proof is necessary. Examples given in this course will not all have a

very obviously computerish feeling|I hope that when the DS&A course follows it you will

see some of the applications of notation introduced here.

The �rst piece if notation to introduce here is the symbol \)" which I will pronounce

\implies". The idea is that if you know that the thing on the left is true then you can

deduce that the one on the right is. A major use of this is in the following construction:

If you know both A and A) B

Then you may deduce B

whatever the statements A and B are. Eg:

All cats are animals

and Arthur is a cat

therefore

Arthur is an animal

To bring the example better into line with the original formalism it is perhaps helpful

to see \All cats are animals" as shorthand for standing for all possible statements of the

form \x is a cat) x is an animal", with arbitrary words (including in particular including

\Arthur") substituted for the marker x.

What you �nd is that the more you strain to make real-world examples precise the

more murky they appear. Some of this is a direct re
ection of the
exibility and impre-

cision of natural language. (A pretty example of the imprecision of English here is the

statement `everyone loves someone'. Does this mean that every person has there own little

favourite(s)? Or that there is some shared someone which everyone admires to the point

of loving?) Often things that start o� mathematical in style �t into the structure of formal

proofs more easily.

The notation \A) B" can be read as \If A then B" or \B is true if A is" or \whenever

A is true it happens that B is true". So far we have use this in cases where we have some

way of knowing that A is true. Another use of the same rule is when we can tell (from

some other source) that B is false. It is then valid to deduce that A must be false also.

For instance given that all cats are animals, knowing that the statement \the moon is an

3

animal" is false assures us that the moon is not a cat. Wow! If you were a class of mediaeval

philosophers you would know these rules as modus ponens and modus tolens, and we could

talk about deduction using them as syllogisms. I hope the rules look like natural common

sense, but it is worth noting that in common speech (especially of a political nature!) the

rules are very often not adhered to. As an exercise try to spot examples where people

try to carry forward an argument but break the formal rules of logic. Eg modi�ed from a

Thurber story

People who eat carrots and have long ears cause earthquakes

and there was just an earthquake

therefore

It was caused by the rabbits

therefore We wolves are justi�ed in taking them into protective custody

. . . to protect ourselves

Some people would consider that the above line of argument illustrates various other bad

forms of deduction, such as starting the argument o� with an assertion that is false, and

slightly adjusting the interpretation of \protect" part way through (etc).

On occasions it will also be useful to write things the other way around as in \B (A",

which can perhaps unexpectedly be read as \A only if B". To see how, observe that A

being true while B is false contradicts the implication. Finally A, B is a shorthand for

having both A) B and A (B, and to prove it you normally need to prove both the if

and the only if parts|often separate proofs will be required for these two parts. A very

common confusion is to mix up whether you are in the process of proving the) or (
part.

Often the sorts of things you want to prove in computer science (and mathematics) will

be general statements true for all cases of some condition. One approach to this is known

as proof by induction. It comes in a number of variants, so I will deal with the simplest

one �rst:

Suppose I want to prove that some result is true for all integer values of n, ie n = 1,

n = 2, n = 3, . . . then I can start by proving the base case which will be the �rst one, n = 1

(or n = 0, since computer scientists often start counting at zero), and then showing that if

the result is true for some particular value of n then it must also be true for the next step

up (n+ 1).

As an example, consider the Tower of Hanoi problem|you have a set of graduated

discs and three pegs. A larger disc may never be piled on top of a smaller one, and the

discs live on the pegs. In a single move you may move one disc from the top of the pile

on one peg to the top of the pile on another peg, but you must keep to the rule that large

discs may never be placed above small ones. The result to be proved is that however many

discs there are it is possible (starting with all discs piled in order on one peg) to make a

sequence of moves that end up with the discs on another nominated peg.

The proof by induction goes as follows

Base case: With one disc it is easy - just move it!

4

Induction step: Suppose we can achieve the desired e�ect with k discs, and now we have

k + 1. Calls the discs X, Y and Z and suppose all discs start on X and are to be

moved to Y. Observe that if we just ignore the bottom (largest) disc the remaining k

discs are subject to the same rules of the Hanoi game, so by our induction hypothesis

there is a sequence of moves that ends up with all of them on peg Z. From this state

it is possible to move the largest disc from X to Y. For the remainder of the sequence

again the largest disc can be ignored, and again moving the k discs from Z to Y can

be done. In the end all discs are on peg Y in the desired order, so we have shown

how to generate a sequence of steps that move k + 1 discs.

The two parts above are suÆcient to prove the general result. If one writes an abbreviation

Hn for the statement \The Hanoi puzzle can be solved if there are n discs" then we proved

H1 directly, and then set up a chain H1) H2, then H2) H3, H3) H4 and so on for

ever. So you see that the inductive step in the proof is just a way of building up (all at

once) a chain of simple \)" deductions.

It is vital in proofs by induction to have a base case. In many examples that you will

come across it will be incredibly trivial, but it is still important to write it down.

In the above example the inductive step took the view that when proving stage n it

was legal to assume that stage n � 1 was true2. An alternative variant on the induction

idea is that when proving stage n you assume that the result has already been proved for

all values less than n, not just the special value n� 1.

A lion may be asleep somewhere in a desert, can we �nd it or discover that it is absent?

Base case: If the desert has area less than 10 square metres then we can �nd the lion [since

this example is slightly a joke I am going to assume that this remark is \obviously"

true].

Inductive step: Divide the desert into two sub-deserts each of equal area. Call these N

and S (or E and W if you like). Observe that their area is in each case smaller than

that of the whole desert. Thus by an induction hypothesis we can �nd the lion (or

its absence) in each sub-desert. If we �nd the lion in one part we report success, if it

is not found in either sub-desert it is utterly absent.

This proof needs one more crucial component|an argument that if we take any desert at

all and keep dividing it in two we will always end up with a region of sand that has area less

than 10 square metres. The base case here is in fact a bit questionable, especially if you

imagine a large desert always being split strictly North/South so that the 10 square metre

base case is in fact a very very long but very very thin strip of territory. Such concerns do

not damage the structure of the inductive proof, but should serve to warn you that all the

�ne details must be in place for a proof to be valid.

I will show one more example of a proof that uses a form of induction. The result I

want to prove is that any arithmetic expression that uses just addition and multiplication

2Well, the notation that when proving stage k+1 I assumed the result true for k, but that amounts to

the same thing!

5

and that has only even numbers written in it will evaluate to an even value. This will be

structurally much closer to many of the proofs needed for DS&A methods. The inductive

proof will be in terms of the number of operators in an expression.

Base case: With no operators at all the expression is just a number, and by the statement

of the problem that is an even one.

Inductive step: If there is at least one operator then the whole expression is of the form

A � B where � will be either an addition or multiplication operator, and A and B

are sub-expressions. I will treat things like 2 + 4 + 6 as (2 + 4) + 6 here. There are

then two cases to consider

The leading operator is + Each of A and B will have fewer operators than the

whole expression, hence by induction each will evaluate to an even number. The

sum of two even numbers is even, hence the whole expression is even as required.

The leading operator is * Similarly, since the product of two even numbers is

even.

4 Sets, Relations

Very many computer data structures are best reasoned about using things called \sets".

For the purpose of this course a set is collection of things, and is written by listing the

members of the set inside curly brackets.. So for instance the set whose members are the

�rst �ve whole numbers might be written f0,1,2,3,4g. It is perfectly possible to have a set

with no members at all, and it is then (obviously) written as fg, and known as the empty

set. There are a number of rules about sets and a collection of things you are allowed to

do with them:

� The members of a set should not be thought of as being there in an particular order,

even though when you write down a representation of a set you have to list them

somehow. So for instance f1,2,3g, f3,1,2g and f2,1,3g are all just di�erent ways of
writing down the same set.

� Any particular object can either be in a set or not. The consequence of this is that

when you list the members of a set you should never see any duplicates. It is not

possible for an object to be a member of a set twice or more times, so f1,1,1,2,2,3g
is not a valid things to write.

� As well as having the null set fg it is (of course) quite proper to have sets that have
a single member. Set members can be arbitrary things, including other sets. Thus

we can have the number 1, and the sets f1g, ff1gg, fff1ggg. These are all quite

di�erent things. For instance the set ffg, ffggg is a set with two members (one of

which is the empty set, the other is a set whose sole member is the empty set).

6

� It is quite common to use upper case letters to stand for sets and lower case ones for

the items that may be members of those sets. The notation x 2 A is used to indicate

set membership. x is an object and A is a set. Eg 3 2 f1; 2; 3; 4; 5g is true. The

notation A � B is used to indicate that A is a subset of B, ie it has as its members

some selection from the members of B. Eg f2; 4g � f1; 2; 3; 4; 5g.

� The notation A\B is a set whose members are just those things that are present in

both A and B (the intersection), while A[B has all the members that are in either

(or both) A and B (the union).

� The exact rules for the treatment of very in�nite sets are not needed in this course,

but informal notation will be used to describe simple cases, such as the integers

f: : : ;�2;�1; 0; 1; 2; : : :g. The expression fx2 j x 2 f0; 1; : : :gg stands for f0; 1; 4; 9; : : :g.

� Given a �nite set you can �nd out how many members it has. The number is known

as the cardinality of the set (or more simply as its size), and is sometime written jAj
as in jf2; 4; 6gj = 3.

An ordered pair is just a pair of things grouped together where (unlike the situation

with sets) the ordering of the two items does match. Such pairs will be written with

parentheses as in (1,2) rather than curly brackets. This idea will be extended to ordered

triples, quadruples, 5-tuples and so on, and in general n-tuples. The objects in an n-tuple

do not need to be all of the same sort. Eg here is a 4-tuple

(1, "string", {{}, {22}}, x}

where the third member of the 4-tuple is a set.

Given one or more sets there are ways of constructing bigger sets out of them. The

cartesian product of two sets A and B is the set of ordered pairs (a; b) with a 2 A and b 2 B.

Eg fa; bg�f1; 2g = f(a; 1); (a; 2); (b; 1); (b; 2)g. The powerset of a set A is the collection of

all subsets of A. Eg. powerset(fp; q; rg)= ffg; fpg; fqg; frg; fp; qg; fq; rg; fp; rg; fp; q; rgg
You might like to convince yourself that jA � Bj = jAjjBj and jpowerset(A)j = 2jAj.

For the powerset example try induction on the size of the set.

Given a set X , a relation is some property that may or may not hold between one

member ofX and another. For instance if attention is restricted to sets of numbers then the

operator \<" for \is less than" is a valid relation, as would be \=" for equality. Sometimes

people will want to use a general name, say R for an unspeci�ed relation, and then rather

than something concrete like x = y they will write xRy to show that x relates to y under

R.

Relations are not only things that arise with numbers. In a family tree (or many

computer data structures you will come across later) the relation \is an ancestor of" can

be relevant. Given a set of people one could specify the relationship \likes" (useful for a

computer-based system for arranging seating plans at large dinners?). A �nal example is

the \is married to" relation.

Relations can have di�erent properties, and the examples given above can illustrate

some of the important ones:

7

Re
exive: Given any member of the set, x say, does the relation hold true between x and

itself. For = it does, for < and \is married to" it does not and for \likes" the status

is unclear to me. Relations that have this property are known as re
exive. From any

(possibly non-re
exive) relation you can derive something called the re
exive closure

by forcing each item x to relate to itself but otherwise leaving conditions unchanged.

Symmetric: Of the examples given here, = and \is married to" have the property that

if (x,y) relate then (y,x) do too. This makes them symmetric, while < is clearly not.

Again the extent to which \likes" is a symmetric relation on any particular set is

an interesting social consideration. The symmetric closure of a relation extends a

relation to force symmetry. Eg the symmetric closure of < is 6=.

Transitive: If x = y and y = z then we may deduce that x = z. Similarly for <, and

these relations are, on account of this, known as transitive. There is such a thing as

a transitive closure, which is discussed in the next section.

5 Relations and Graphs and Matrices

Relations can seem rather abstract things, of dubious utility. One of the things that makes

them come alive in computer science is just an alternative way of looking at them (and

especially at relations on �nite sets). Take a set X and a relation R on it, and identify

the members of X with nice dots drawn somewhere on a piece a paper. Then take the

relation, and if two members in the set, say (x,y) are related (ie xRy) draw a directed arc

from the spot that stands for x to the one that stands for y. By a \directed arc" I mean

that the line drawn has an arrow on it showing which way it goes, so that there is no

possible confusion between the arc (x,y) and the one (y,x). The e�ect is that the relation

has been represented as a graph.

Now set up a square table, with one row for each possible x or y and one column for

each. Fill in the cell at position (x,y) with a true or false marker that indicates whether

xRy holds. The relation has been represented as a matrix. And in passing we have shown

that any graph can be represented as a matrix, and any matrix that has just boolean values

can be interpreted as a graph. To give yourself concrete example, try drawing the graphs

and matrices for the relations = and < as they apply to the set f1; 2; 3; 4; 5g.
Now I can come back to the transitive closure of a relation. A typical application is to

start with a set consisting of cities, and a relation which is true if there is a direct non-stop

rail link between the two cities involved. Then the transitive closure of this relation will

indicate whether there is any way of travelling by rail between two places, ignoring the

original requirements that the journey be direct and non-stop. In terms of graph operations

this is now probably reasonably easy to visualise.

Interpreted in this new image, a re
exive closure just adds little loops to each vertex in

the graph so you can do a small round trip and get back to where you started. Note the

di�erence between being somewhere and being able to get somewhere by taking a single

step of a journey|adding the loops does make a real di�erence.

8

A symmetric closure extends the rail network so that if it is possible to go from A to

B then it is also possible to get back from B to A.

There are a great many natural and important problems that are naturally thought

of in terms of graphs|and so relations can provide some mathematical notation and un-

derpinning while sometimes boolean matrices may be a useful concrete representation for

computers to use. Sample problems include:

1. Is the graph connected (ie each vertex can be reached from any other)? If not, how

many pieces does it fall into?

2. What is the longest path you can take through the graph without visiting any vertex

more than once. What is the longest path that does not traverse any edge more than

once?

3. Given a connected graph, is there any vertex which if removed would leave it not

connected? This is important for communication networks, in that such a vertex

would be critical for the reliability of the whole net.

4. How many colours are needed to colour each vertex of the graph so that vertices that

are joined by an edge have di�erent colours?

5. Within the graph, where is the largest subset of vertices that are all mutually directly

connected.

6. Given two graphs are they really the same shape, only di�ering in the way they

happen to have been described?

A special sort of graph (and hence relation) has all arcs starting in one subset of its

vertices (call that subset A), and ending in another (B), and only one arc issuing from any

one vertex. This can be seen as a way of representing a function from the set A to B.

Looking at relations and functions as graphs is probably the easiest way of working out

how many of them there are. For instance for a set X with size n the number of relations

possible is 2n
2

. These range from the vacuuous one where the relation is never true to

the almost equally silly one where it is always satis�ed. See this by observing that each

relation on X can be seen as an n by n matrix with boolean entries, so there are n2 entries

in all, and each can be either true or false (2 possible values) so there are 2n
2

possibilities

in all.

6 Big-O and � notation

All the while in Computer Science we are concerned with how long things are going to

take. It is almost always necessary to make a few simplifying assumptions before starting

of cost estimation, and for algorithms the ones most commonly used are:

9

1. We only worry about the worst possible amount of time that some activity could

take. The fact that sometimes our problems get solved a lot faster than that is nice,

but the worst case is the one that is most important to worry about.

2. We do not know what brand of computer we are using, so rather than measuring

absolute computing times we will look at rates of growth as our computer is used to

solve larger and larger problems of the same sort. Often there will be a single simple

number that can be used to characterise the size of a problem, and the idea is to

express computing times as functions of this parameter. If the parameter is called n

and the growth rate is f(n) then constant multipliers will be ignored, so 100000f(n)

and 0:000001f(n) will both be considered equivalent to just f(n).

3. Any �nite number of exceptions to a cost estimate are unimportant so long as the

estimate is valid for all large enough values of n.

4. We do not restrict ourselves to just reasonable values of n or apply any other reality

checks. Cost estimation will be carried through as an abstract mathematical activity.

Despite the severity of all these limitations cost estimation for algorithms has proved

very useful, and almost always the indications it gives relate closely to the practical be-

haviour people observe when they write and run programs.

The notations bit-O and � are used as short-hand for some of the above cautions.

A function f(n) is said to be O(g(n)) if there are constants k and N such that f(n) <

kg(n) whenever n > N .

A function f(n) is said to be �(g(n)) if there are constants k1, k2 and N such that

k1g(n) < f(n) < k2g(n) whenever n > N .

Note that neither notation says anything about f(n) being a computing time estimate,

even though that will be a common use. Big-O just provides an upper bound to say that

f(n) is less than something, while � is much stronger, and indicates that eventually f and

g agree within a constant factor. Here are a few examples that may help explain:

sin(n) = O(1)

sin(n) 6= �(1)

200 + sin(n) = �(1)

123456n+ 654321 = �(n)

2n� 7 = O(17n2)

log(n) = O(n)

n100 = O(2n)

1 + 100=n = �(1)

Various important computer procedures have costs that grow as O(n log(n)). In the

proofs of this the logarithmwill often come out as ones to base 2, but observe that log2(n) =

�(log10(n)) [indeed a stronger statement could be made|the ratio between them is utterly

10

�xed], so with Big-O or � notation there is no need to specify the base of logarithms|all

versions are equally valid.

7 Recurrence Formulae

When analysing algorithms one will often end up with a proof by induction that shows

that the method described does indeed always solve the problem it was supposed to. Quite

frequently this proof can be extended to yield a way of estimating the costs involved. Look

back to the Tower of Hanoi example, and now we know that given a tower of n discs it

can be moved from one peg to another, consider how many elementary moves will be used

if we follow the recipe implicit in the inductive proof. To do this start by introducing a

name for the cost, say M(n) for the number of steps to move n discs. Then from the base

case of the induction we have M(1) = 1. The induction step shows that success is possible

by a route which gives

M(n) =M(n � 1) + 1 +M(n� 1) = 2M(n� 1) + 1

This is a recurrence formula that we would like to solve to �nd some explicit representation

of the cost growth function M(n). Note that the proof we have does not show that this

will necessarily be the most eÆcient way of moving the discs, just that it is one way

that achieves the desired �nal con�guration. Thus any result we get out from solving the

recurrence will probably be put inside a Big-O to indicate that it is just an upper bound

for the cost of solving the problem.

This course will not have either the time or inclination to show you all the clever ways

there are of solving recurrence formula, and instead just provides a cook-book listing some

of the more commonly arising ones and indicating their solutions. Symbols with names

like k stand for constants, and will sometimes need to have values larger than 0 or 1 for

the results quoted to be valid.

f(n) = f(n� 1) + k : f(n) = �(nk)

f(n) = k1f(n� 1) + k2 : f(n) = �(kn1)

f(n) = k1f(n=k1) + k1n : f(n) = �(n log(n))

f(n) = f(n=k1) + k2n : f(n) = �(log(n))

f(n) = k1f(n=k2) + : : : : f(n) = �(nlog(k1=k2))

f(n) = f(n� 1) + f(n� 2) : f(n) = �(�n)

where � = (
p
5 + 1)=2 � 1:618034, the golden ratio. In each case more careful analysis

would specify the exact constraints on the values of the constants permitted, and limitations

on the initial values of f(0) or f(1). Often an exact solution (not just one correct to within

the constant factor that � permits) can be found, for instance for the Hanoi problem the

solution is M(n) = 2n � 1.

11

Appendix: Mathematical symbol glossary

This page illustrates the most common mathematical symbols you are likely to encounter.

If any course uses a notation not on this page you should expect it to have been previously

de�ned in that course. Otherwise you should feel no hesitation in requesting an explanation

(or to ask me to include it in this glossary!).

�; �;
; Æ greek letters

A;B;�;� upper case greek letters

0, 1, -2, 3.14159 numbers

+;�;�; = arithmetic operators

<;>;�;= relational operators

^;_;:;);, logical operators

8; 9 logical quanti�ers (`for all', `there exists')

fg, f3; 5; 7g, fx j x2 � 3x+ 2 = 0g sets

\;[;�;! set operators

(intersection, union, cartesian product, function space)

�;�;= set relational operators

2 set membership

jSj number of members in set S

P(S) power set of S (set of all subsets)

IN;ZZ natural numbers (0,1,2,. . .), integers

�x:x + 1 anonymous function.

Sometimes, as for induction, A ^ B) C is written (but beware this as a sloppy explana-

tion):
A B

C

Examples (some of these are de�nitions of the corresponding symbols):

x > 5) x2 > 16

x2 � 9 , (x � 3 _ x � �3)
S \ T = fx j x 2 S ^ x 2 Tg
S [T = fx j x 2 S _ x 2 Tg
S � T = f(x; y) j x 2 S ^ y 2 Tg
x 2 S) x 2 S [T
n 2 IN) n+ 1 2 IN

(�x:x + 1)5 = 6

Mathematical induction can be summarised as:

P (0) P (k)) P (k + 1)

(8n 2 IN)P (n)

12

