
Computer Science Tripos Part 1A 
Mathematical Tripos Part 1A (CS option) 

Discrete Mathematics 

Solutions to exercises 

A1 - Integers 

1. Induction. 

2.  [n(n+1)/2]2. 

3. 1 – 1/(n+1)!. 

4. 24n+6 + 32n+3 = 16.(24n+2 + 32n+1) – 7.32n+1, 
3n+2 + 42n+1 = 3.(3n+1 + 42n-1) + 13.42n-1, 
or use modular arithmetic. 

5. Induction (or solve directly as a second-order, homogeneous, linear difference equation). 

6. Induction. 

7. P(n) = “A 2n×2n chessboard with one purple square can be covered by triominoes”. 

8. The key to cell number n has been turned once for every factor of n, so the door will be left unlocked if n 
has an odd number of factors.  The factors of n can be paired off unless n is a square. 

9. By counting, the most extrovert guest shook 2n hands and the most timid shook none.  The former shook 
hands with everyone apart from sibself and sis spouse.  It follows that the maximal and minimal shakers 
were married to each other.  Given that neither was the Master, the other could not have been the Master’s 
wife.  Uninvite them. 

10. P(n) = “n ∈ L”. 

11. Ho, ho… 

A2 – Factors 

1. No, no, yes. 

2. 57.17 – 44.22 = 1 and 57.44 – 44.57 = 0. 

3. No. 
x = 437k – 308, y = 234 – 332k. 

4. X = -31, y = 31, z = -3. 

5. 25. 

6. Suppose there are only finitely many primes of the form 4k+3.  Let pn be the largest of them and calculate N 
as in the question.  N may be composite but its prime factors are all greater than pn and so they are all 
congruent to 1 modulo 4.  So their product, N, is also congruent to 1 modulo 4.  But it isn’t. 

7. Worth thinking about efficiency:  only test for odd factors (beyond 2), stop at √n, keep a list of primes and 
only test for divisibility by them… 

8. Define a function that takes two triples (r, s, t) from the extended Euclid’s algorithm and returns the next 
one. 

9. Induction on k. 
fln = fn f(l-1)n + 1 + fn-1f(l-1)n and use induction on l. 
(fn, fn-1) = (fn-1, fn-2) = … =(f2, f1) = (1, 1) = 1 and fm = fn fm-n+1 + fn-1 fm-n.  Consider factors and replicate 
derivation of Euclid’s algorithm. 
fm | fmn and fn | fmn by above, but (fm, fn) = f(m, n) = f1 = 1, so fm fn | fmn. 
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A3 – Modular arithmetic 

1. 10 ≡ 1 (mod 9) so 10k ≡ 1 (mod 9) and Σdk10k ≡ Σdk (mod 9). 

2. 10 ≡ -1 (mod 11) so 10k ≡ (-1)k (mod 11) and Σdk10k ≡ Σ(-1)kdk (mod 11). 

3. )9(mod0459

0
≡=∑ =k

k  but 100 ≡ 1 (mod 9). 

4. 1 (99 = 9.11). 

5. A transposition of digits k and k+1 from de to ed makes a difference of [dk + e(k+1)] – [ek + d(k+1)] = e – d 
to the weighted sum.  A change from dde to dee makes a difference of (d-e)k.  A base of 10 would mask 
errors where d-e = 2 and k = 5. 

6. Consider mod 2. 

7. x ≡ 23 (mod 40). 
y ≡ 7 (mod 9). 
z ≡ 12 (mod 17) so z ≡ 97 (mod 357). 

8. 408. 

9. 21! ≡ 1 (mod 23) as in the proof of Wilson’s Theorem.  2122 ≡ 1 (mod 23) by Fermat.  21 ≡ -2 (mod 23) and 
2.12 = 24 ≡ 1 (mod 23) so 21.11 ≡ (-2).(-12) ≡ 1 (mod 23).  20! 2120 ≡ 113 ≡ 20 (mod 23). 

10. a256 ≡ 1 (mod 257) by Fermat and 256 = 28 | 109 so a1000000000 ≡ 1 (mod 257). 

11. Observe 42 = 2.3.7 and observe n7 ≡ n (mod p) for p = 2, 3 and 7. 

12. 3901 = 47.83.  1997.17 ≡ 1 (mod 46.82).  only_eight_more_terms! 

13. If a = kp then a ≡ 0 (mod p) so ade ≡ 0 (mod p).  However ade ≡ a (mod q).  Use the Chinese Remainder 
Theorem. 

14. Not all numbers are squares modulo 11.  In particular, 6 is not. 

A4 – Tripos questions 

CST 1998 Paper 1 Question 7 (Note that there was a misprint in the published version of this question.) 

CRT – bookwork. 

Decoding – ap ≡ 1 (mod q-1) so ap = k(q-1) + 1.  Now sa = mpqa ≡ (m(q-1)k m)q ≡ mq ≡ m (mod q).  sb ≡ m (mod p) 
similarly.  Now use CRT to recover m (mod pq=n). 

CST 1999 Paper 1 Question 2 

If n = a.b with a, b > 1, then 2n – 1 = (2b - 1)(2n-b + 2n-2b + 2n-3b + … 2n-ab). 

∆p = p.2n-1 and so has proper factors 1, 2, 22, 23, …, 2n-1, p, 2p, 22p, 23p, …, 2n-2p whose sum is 2n-1 + (2n-1-1)p = 
2n-1p = ∆p. 

CST 1999 Paper 1 Question 7 

ϕ(n) = |{ x∈N | 1 ≤ x < n and (x, n) = 1 }| where (x, n) denotes the highest common factor of x and n. 

Suppose n > 1 and (n, a) = 1.  Let Un = { x∈N | 1 ≤ x < n and (x, n) = 1 } be the set of units modulo n.  Say 
Un = {u1, u2, …, uf} where f = ϕ(n).  Observe a ∈ Un so a.u1, a.u2, …, a.uf are all in Un.  Moreover, they are 
distinct because a.ui = a.uj ⇒ n | a.(ui – uj), so ui = uj.  Hence {a.u1, a.u2, …, a.uf} = Un = {u1, u2, …, uf}.  
Consider the products of the elements in the two sets:  af u1u2 … uf = u1u2 … uf.  Units have multiplicative 
inverses modulo n and so can be divided away leaving af ≡ 1 (mod n) 

Given a prime p, ϕ(p) = p-1, and a < p means that (p, a) = 1.  Hence p divides ap-1-1. 

Let a = 10 so (p, a) = 1 and p | 10p-1-1.  Consider 10k(p-1)-1 for k = 1, 2, ….  Each has 9s as all its digits and is 
divisible by 10p-1-1, and so is divisible by p. 
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CST 2000 Paper 1 Question 8 

(2u,2v) = 2.(u,v), (2u,2v+1) = (u, 2v+1), (2u+1,2v) = (2u+1,v), (u,v) = (u-v,u) = (u-v,v). 

Invariant starts as (a,b).1 and ends as (a,a).c = a.c which is the final value returned. 

u.v ≤ 2u.2v/2, u.(2v+1) ≤ 2u.(2v+1)/2, (2u+1).v ≤ (2u+1).2v/2, (u-v)(2v+1) = (2u-2v)(2v+1)/2 ≤ (2u+1)(2v+1)/2. 

If a < 2n and b < 2n then a.b < 22n and the algorithm concludes in at most 4n steps.  Hence O(log a). 

CST 2001 Paper 1 Question 2 

Existence:  Use contradiction.  Pick a minimal counter-example.  Either it is prime and we are done or it can be 
factored into two smaller numbers which consequently have expressions. 

Uniqueness.  Use contradiction.  Pick a minimal counter-example and express it as two different products of 
powers of primes.  Pick a prime in the first expression.  It must appear in the second so divide by it to give two 
expressions for a smaller number, which must be the same. 

Any factor of n must consist of a product of lower powers of the same primes. 

36 = 2232, so α1=1, α2=1, α3=2 and α4=2, and the smallest number will be 22325171 = 1260. 

CST 2001 Paper 1 Question 7 

Given m ≥ 2 and a with (a, m) = 1, then aϕ(m) ≡ 1 (mod m) where ϕ(m) is Euler’s totient function. 

If there is a value a ≤ p for which ap-1 ≠ 1 (mod p), then p is not prime. 
(3-1)|(561-1), (11-1)|(561-1) and (17-1)|(561-1) so a(561-1) ≡ 1 (mod 561) for all a by the CRT.  Consider 
a(p-1)/2 ≠ ±1 (mod p) instead. 

Pick primes p and q with product m so ϕ(m) = (p-1)(q-1).  Pick e and d with ed ≡ 1 (mod ϕ(m)).  Then 
(ae)d ≡ a (mod m).  Publish m and e while keeping d secret. 

Suppose de – 1 = n ϕ(m).  n can be found by rounding up (de – 1)/m.  Hence calculate ϕ(m).  p and q are the 
roots of x2 – (m + 1 - ϕ(m))x + m = 0. 
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B1 – Sets 

1. {1, 2, 3, 5} and {3}. 
1, 5} and {2}. 
{1, 5} and {1, 2, 3, 5}. 
{1, 2, 5}. 
{(1,2), (1,3), (3,2), (3,3), (5,2), (5,3)}, vice versa and ∅. 
{(0,1), (0,3), (0,5), (1,2), (1,3)}, vice versa and {(0,1), (0,3), (0,5)} ≈ A. 

2. Yes, no, no, yes, no, no, yes. 

3. Everybody loves somebody but there is not necessarily a single person who is loved by everyone else 
(or that person wouldn’t be single, presumably…). 

4. m.n, m + n, 2m. 

5. 32. 

6. Let Ak be the number of permutations (deliveries of n letters) that result in letter k being correctly delivered.  
We are interested in deliveries in the complement of the union of the Ak. 
Let pk be the number of permutations of n letters that result in at least k of them being correctly delivered.  
To calculate pk, consider the number of ways of permuting the remaining (n-k) letters and the number of 
ways of choosing the k fixed letters from n. 
Observe that the answer tends to e-1 as n becomes large. 

7. a ⊕ b. 

8. Just do it. 

9. {[(a ∨ ~k) ⇒ g] ∧ [g ⇒ w] ∧ ~w} ⇒ k which simplifies to true. 

B2 – Relations 

1. {(2,z), (3,x), (3,z)}. 

2. R ∪ {(3,3)}. 
R ∪ {(2,4)}. 
2R3 & 3R2 but 2 ≠ 3. 
R ∪ {(3,3), (4,3)}. 

3. 2km and 2kmn. 

4. {{1}, {2}, {3}}, {{1,2}, {3}}, {{1,3}, {2}}, {{1}, {2,3}}, {{1,2,3}}.  5.  23.3 = 512. 

5. (y,x) ∈ (R∩S)-1 ⇔ (x,y) ∈ R∩S ⇔ (x,y) ∈ R ∧ (x,y) ∈ S ⇔ (y,x) ∈ R-1 ∧ (y,x) ∈ S-1 ⇔ (y,x) ∈ R-1∩S-1. 
Similarly. 

6. A = {1, 2} and R = {(1,2), (2,1)}. 

7. R is reflexive and R ⊆ R ∪ S ⊆ t(R∪S) so that is reflexive too. 
(x,y) ∈ t(R∪S) ⇒ ∃ x0 = x, x1, x2, … xn = y with (xi,xi+1) ∈ R∪S for 0 ≤ I < n.  If (xi,xi+1) ∈ R then 
(xi+1,xi) ∈ R and if (xi,xi+1) ∈ S then (xi+1,xi) ∈S, so (xi+1,xi) ∈ R∪S.  Hence (y,x) ∈ t(R∪S). 
Clearly t(R∪S). is transitive, so it is an equivalence relation. 
Moreover, any equivalence relation containing R∪S must contain t(R∪S) so that is the smallest such. 

8. r(R) – treat 1 as a prime.  s(R) – x is a multiple or divisor of y by a prime amount.  t(R) – x is a strict factor 
of y. 
Yes, yes, no (t(s(R)) is reflexive but s(t(R)) need not be). 
Yes, yes, no. 
t(s(r(R))). 
Divisibility order.  No – symmetry precludes anti-symmetry in general. 

9. Diagonal order and lexicographic order. 
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B3 – Functions 

1. 22 = 4, 23 = 8, 32 = 9 and 33 = 27. 

2. [X] ↔ X∩B.  [X] = [Y] ⇔ X∩B = Y∩B. 

3. Bijective. 

4. (a, (b,c)) ↔ ((a,b), c). 
Requires |A| = 0, 1 or ∞. 
Requires |A| = 0, 2 or ∞. 
Currying. 
|C| = 1 or |B||A| = |B|.|A|. 
(f: A+B→C) ↔ (λa.f(0,a), λb.f(1,b)). 

5. Suppose ∃ g with p ο g = f ο q.  a1Ra2 ⇒ [a1]=[a2] ⇒ p(a1)=p(a2) ⇒ g(p(a1))=g(p(a2)) ⇒ q(f(a1))=q(f(a2)) ⇒ 
[f(a1)]=[f(a2)] ⇒ f(a1) S f(a2). 
Define g([a]) = q(f(a)) which is well defined everywhere and satisfies. P ο g = f ο q. 

6. Consider Hasse diagrams. 

7. (|B|+1)|A|. 

8. Countable union of finite sets. 

9. f ↔ {n | f(n) = 1}. 

10. Countably infinite, uncountable, finite (=2), uncountable, countable. 

11. Each disc contains a point with rational coordinates. 
Circles can be nested arbitrarily. 

B4 – Tripos questions 

CST 1998 Paper 1 Question 2 

R ⊆ A × A. 
Refelxive, symmetric, transitive. 
∪ [a] = A, [a] ∩ [b] ≠ ∅ ⇒ [a] = [b]. 
n = 0, natural numbers. 

CST 1998 Paper 1 Question 8 

R ⊆ A × A;  reflexive, anti-symmetric, transitive;  ∀ a,b ∈ A . aRb ∨ bRa;  bookwork… 
Effectively product order;  consider decimal expansions. 

CST 1999 Paper 1 Question 8 

Reflexive by considering identity function.  Symmetric since inverse of bijection is a bijection.  Transistive 
because composition of bijections is a bijection. 

A is countable if A ≅ N, the natural numbers, (or if A is finite). 

Given injections A → B and B → A, ∃ a bijection A → B. 

z → 2z + 1 if z > 0, -2z otherwise.  a/b → 2a5b if a > 0, 3-a5b otherwise and use S-B.  Show P(N) uncountable by 
contradiction, construct injection P(N) → R by {ai} → Σ 10-ai and use S-B for contradiction. 

Let An be the programs of length n and so finite.  Countable union of finite sets is countable. 
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CST 2000 Paper 1 Question 2 

Reflexive, anti-symmetric and transitive. 

Reflexive: ki = i.  Anti-symmetric:  two partitions must have same number of elements so only one term in each 
sum.  Transitive:  substitute one decomposition into the other. 

1-1-1-1-1

2-1-1-1

3-1-1 2-2-1

4-1 3-2

5

 
CST 2000 Paper 1 Question 7 

Every infinite descending sequence of elements is ultimately constant. 

(a1, b1) ≤ (a2, b2) ⇔ (a1 <A a2) ∨ ((a1 = a2) ∧ (b1 ≤B b2)).  Bookwork. 

N×N with the lexicographic order:  (1,1) is separated from (2,1) which is separated from (3,1) and so on. 

Take any pair of elements x and y.  Wlog x < y.  x and y are separated, so find z1 with x < z1 < y.  Now x and z1 
are separated, so find z2 with x < z2 < z1.  Hence form an infinite descending sequence. 

CST 2001 Paper 1 Question 8 

(a1, b1) ≤ (a2, b2) ⇔ (a1 ≤A a2) ∧ (b1 ≤A b2).  Reflexive, anti-symmetric and transitive. 

Lowest common multiple and greatest common divisor. 

Union and intersection. 

N itself has no least upper bound.  Otherwise yes.  0 is LUB for N0. 

LUB of pair is pair of LUBs and so on. 


